Analytical Electron Microscopy

Size: px
Start display at page:

Download "Analytical Electron Microscopy"

Transcription

1 Analytical Electron Microscopy Walid Hetaba Fritz-Haber-Institut der MPG MPI für Chemische Energiekonversion W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

2 1 Introduction 2 EDX 3 EELS 4 Conclusion W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

3 Introduction Analytical Electron Microscopy Imaging Diffraction Spectrometry Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

4 Introduction Mode of Operation Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

5 EDX Introduction to EDX Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

6 EDX Introduction to EDX Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

7 EDX Fluorescence Yield Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

8 Detectors EDX-Setup Detector area, collection angle SuperX (ChemiSTEM): 4 detectors Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

9 Detectors EDX Detectors Dead Time Live Time Clock Time Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

10 Detectors EDX Signal Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

11 Qualitative Analysis EDX-Spectra Cu from System Be for low background sample holder W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

12 Qualitative Analysis EDX-Spectra W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

13 Qualitative Analysis EDX-Spectra W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

14 Qualitative Analysis EDX-Maps W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

15 Qualitative Analysis EDX-Maps W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

16 Quantitative Analysis Cliff-Lorimer Ratio Technique C A /C B = k AB I A /I B k AB... Cliff-Lorimer factor C A + C B = 1 For thin specimen, absorption can be neglected k AB either measured using standards or calculated W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

17 Quantitative Analysis ζ-factor Method ρt = ζ A I A /C A C A /C B = (I A ζ A )/(I B ζ B ) ζ-factors either measured using standards or calculated For both techniques absorption correction (ZAF) possible W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

18 Electron Energy Loss Spectrometry EELS Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

19 Electron Energy Loss Spectrometry EELS Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

20 Electron Energy Loss Spectrometry Williams, Carter: Transmission Electron Microscopy - A Textbook for Materials Science, Springer 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

21 Electron Energy Loss Spectrometry Hetaba: Fine Structure and Site Specific Energy Loss Spectra of NiO, Diploma Thesis, TU Wien 2011 Schaffer et al., Phys. Rev. B, 79, (R), 2009 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

22 Electron Energy Loss Spectrometry NiO TiO 2 Cond. A Cond. B Cond. C Intensity [arb. u.] Energy Loss [ev] states / ev O p x O p y O p z Exp E - E F [ev] Hetaba: Fine Structure and Site Specific Energy Loss Spectra of NiO, Diploma Thesis, TU Wien 2011 Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

23 Classical Scattering Theory Elastic vs. inelastic scattering Differential scattering cross section dσ/dω to describe scattering Elastic Scattering Transfer of momentum Transfer of kinetic energy No change of internal energy of particle and target Inelastic Scattering Transfer of momentum Transfer of energy Internal energy of target changed W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

24 Elastic vs. Inelastic Scattering Schattschneider, Werner, Hébert: Lecture Notes Electron Beam Techniques for Nanoanalysis, TU Wien 2007 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

25 Elastic Scattering Classical scattering p 0 = p 1 + p 2 E 0 = p2 0 2m = p2 1 2m + p2 2 2M E = p2 2 2M = 4mM (M+m) 2 E 0 4 m M E 0, with m M Demtröder: Experimentalphysik 1, Springer 2013 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

26 Elastic Scattering Rutherford scattering dσ/dω = f (q) 2, f (q)... scattering factor f (q) proportional to FT [V (r)], V (r)... atomic potential Coulomb potential yields Rutherford cross section: dσ/dω = 4γZ 2 a 2 0 q4, q = 2k 0 sin(θ/2) W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

27 Elastic Scattering Egerton: Electron energy-loss spectroscopy in the electron microscope, Plenum Press 1996 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

28 Elastic Scattering Rutherford scattering dσ/dω = f (q) 2, f (q)... scattering factor f (q) proportional to FT [V (r)], V (r)... atomic potential Coulomb potential yields Rutherford cross section: dσ/dω = 4γZ 2 a 2 0 q4, q = 2k 0 sin(θ/2) Unscreended potential Overestimates elastic scattering at small θ (large b) W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

29 Elastic Scattering Yukawa potential Screened potential: V (r) = (Ze/4πɛ 0 r) exp(r/r 0 ) dσ dω = 4γ2 Z 2 1 a0 2k4 0 (θ 2 +θ0 2)2 Characteristic scattering angle: θ 0 = (k 0 r 0 ) 1 Screening radius: r 0 = a 0 Z 1/3 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

30 Elastic Scattering Schattschneider, Werner, Hébert: Lecture Notes Electron Beam Techniques for Nanoanalysis, TU Wien 2007 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

31 Elastic Scattering Diffraction and channelling effects Bragg scattering in crystals Modifies scattering cross section Channelling effects: redistribution of electron flux inside crystal Elastic scattering changes probabilites for inelastic scattering W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

32 Elastic Scattering Schattschneider, Werner, Hébert: Lecture Notes Electron Beam Techniques for Nanoanalysis, TU Wien 2007 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

33 Elastic Scattering Diffraction and channelling effects Bragg scattering in crystals Modifies scattering cross section Channelling effects: redistribution of electron flux inside crystal Elastic scattering changes probabilites for inelastic scattering W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

34 Inelastic Scattering Inelastic differential scattering cross section { } dσ i dω = 4γ2 Z 1 1 a0 2q4 [1+(qr 0 ) 2 ] 2 q 2 = k 2 0 (θ2 + θ 2 E ) θ E = E/(γm 0 v 2 ), characteristic inelastic scattering angle θ 0 = (k 0 r 0 ) 1 θ E < θ < θ 0 : dσ/dω θ 2 θ > θ 0 : dσ/dω θ 4 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

35 Inelastic Scattering Egerton: Electron energy-loss spectroscopy in the electron microscope, Plenum Press 1996 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

36 Quantum Mechanical Description Double differential scattering cross section W i f = 2π Ψ f ˆV Ψ i 2 dv f δ ( ) E Ψf E Ψi dj = dσ(e, Ω) j i 2 σ E Ω = ( ) 2π 4 m 2 k f k i i p i f ψ f f ˆV i ψ i 2 δ ( E f E i E ) W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

37 Models for the DDSCS Single plane wave ψ i,f (r) = 1 (2π) 3/2 exp[ik i,f r] 2 σ E Ω = 4γ2 k f 1 a0 2 k i Q i p 4 i f j f e iq R j i 2 δ ( E f E i E ) Dynamic Form Factor (DFF): S(Q, E) = i p i f e iq R j f j 2 σ E Ω = 4γ2 k f 1 a0 2 k i S(Q, E) Q 4 i 2 δ ( E f E i E ) W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

38 Models for the DDSCS Superposition of plane waves ψ i = a 1 k 1 + a 2 k 2, a a 2 2 = 1 2 σ E Ω = 4γ2 a0 2 [ k f k i a S(Q, E) + a Q ] ] [ +2R a 1 a2 1 S(Q, Q 2 Q 2 Q, E) Q 4 S(Q, E)+ Mixed Dynamic Form Factor (MDFF): S(Q, Q, E) = i f f eiq R i i e iq R f δ ( E f E i E ) W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

39 Models for the DDSCS k 0 θ θ' k' k G I A A R[A 1A 2 exp i(φ 1 φ 2 )] q q' 0 G A B C Demtröder: Experimentalphysik 1, Springer 2013 Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

40 Models for the DDSCS Bloch waves 2 σ E Ω = 4γ2 k f a0 2 k i x j,j,l,l X jlj l (x) S g,g,h,h g hg h x (Q,Q,E) Q 2 Q 2 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

41 MDFF for Crystals MDFF for Crystals S(Q, Q, E) = i λ λ 4π(2l + 1) ν mm λλ µµ LMS L M S (2L + 1)(2L + 1)(2λ + 1)(2λ + 1) Y µ λ (Q/Q) j λ (Q) νnjls Y µ λ (Q /Q ) j λ (Q ) νnjl S ( ) ( L λ l L λ ) ( ) ( l L λ l L λ ) l M µ m M µ m ( ) ( ) l 1 ( 1) M+M (2j + 1) 2 j l 1 2 j m S j z m S j z j z (D ν LMS ) (D ν L M S )δ(e f E i E) Löffler: Study of real space wave functions with electron energy loss spectrometry, PhD Thesis, TU Wien 2013 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

42 WIEN2k Simulations Features of WIEN2k Density Functional Theory, Kohn-Sham equation Electronic properties of crystal Electron density Bandstructure DOS TELNES.3 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

43 Density Functional Theory Kohn-Sham equation Ĥ = 2 2 N i 1 4πɛ 0 2 Ri N i,j M i 2 2 N i 2 r i m e e 2 Z i R i r j + 1 8πɛ 0 N i j e 2 r i r j + 1 8πɛ 0 N i j e 2 Z i Z j R i R j Ĥ KS = ˆT + ˆV H + ˆV xc + ˆV ext = 2 2 i + e2 2m e 4πɛ 0 i ρ( r ) r r d r + ˆV xc + ˆV ext W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

44 Calculated Spectra NiO G20 GGA LDA+U B3PW91 PBE0 G20 mbjlda Intensity [a.u.] Intensity [a.u.] Energy Loss [ev] Energy Loss [ev] Hetaba: Fine Structure and Site Specific Energy Loss Spectra of NiO, Diploma Thesis, TU Wien 2011 Hetaba et al., Phys. Rev. B 85, , 2012 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

45 Applications Oxidation State W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

46 Applications Oxidation State W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

47 Applications Crystallographic Structure - Coordination Egerton: Electron energy-loss spectroscopy in the electron microscope, Plenum Press 1996 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

48 Applications EMCD Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

49 Applications Channelling effects states / ev O p x O p y O p z TELNES E - E F [ev] Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

50 Applications Channelling effects Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 Hetaba et al., Micron 63, 15-19, 2014 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

51 Applications Channelling effects Intensity [arb. u.] Cond. A Cond. B Cond. C Energy Loss [ev] θ θ' k 0 k G k' 0 q q' G A B C Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 Hetaba et al., Micron 63, 15-19, 2014 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

52 Applications Channelling effects Cond. A Cond. B Cond. C O p x O p y O p z Intensity [arb. u.] states / ev Energy Loss [ev] E - E F [ev] Hetaba: The Theory and Application of Inelastic Coherence in the Electron Microscope, PhD Thesis, TU Wien 2015 Hetaba et al., Micron 63, 15-19, 2014 W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

53 Conclusion EDX and EELS complimentary techniques Understanding of theory necessary for interpretation Lots of different properties accessible Analytical Electron Microscopy versatile tool W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

54 Literature Useful books (linked) Analytical electron microscopy in general: Williams, Carter: Transmission Electron Micrsocopy - A Textbook for Materials Science Everything about EELS: Theory: Egerton: Electron energy-loss spectroscopy in the electron microscope Schattschneider: Fundamentals of Inelastic Electron Scattering Schattschneider: Linear and Chiral Dichroism in the Electron Microscope W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

55 Literature Links to cited articles and EELS Databases Schaffer et al., Phys. Rev. B, 79, (R), 2009 Hetaba et al., Phys. Rev. B 85, , 2012 Hetaba et al., Micron 63, 15-19, 2014 Demtröder: Experimentalphysik 1, Springer 2013 PhD thesis Löffler PhD thesis Hetaba EELS Database: Gatan EELS.info, EELS-Atlas EELS Data Base W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

56 Acknowledgments M. Willinger R. Farra G. Algara-Siller R. Schlögl P. Schattschneider S. Löffler M. Stöger-Pollach A. Hütten W. Hetaba (FHI, MPI-CEC) Analytical Electron Microscopy / 23

Core loss spectra (EELS, XAS)

Core loss spectra (EELS, XAS) Core loss spectra (EELS, XAS) Kevin Jorissen University of Washington (USA) WIENk 013 Penn State 1. Concepts WIENk calculates ELNES / XANES EELS : Electron Energy Loss Spectroscopy XAS: X-ray Absorption

More information

Quantum Physics III (8.06) Spring 2008 Assignment 10

Quantum Physics III (8.06) Spring 2008 Assignment 10 May 5, 2008 Quantum Physics III (8.06) Spring 2008 Assignment 10 You do not need to hand this pset in. The solutions will be provided after Friday May 9th. Your FINAL EXAM is MONDAY MAY 19, 1:30PM-4:30PM,

More information

KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN

KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN 20970725 HACETTEPE UNIVERSITY DEPARTMENT OF CHEMICAL ENGINEERING, SPRING 2011,APRIL,ANKARA CONTENTS

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

DFT calculations of dichroic effect in transmission electron microscope

DFT calculations of dichroic effect in transmission electron microscope DFT calculations of dichroic effect in transmission electron microscope ChiralTEM project Ján Rusz, Pavel Novák Institute of Physics Academy of Sciences of Czech Republic DFTEM, ChiralTEM Workshop, Vienna,

More information

Quantum Physics III (8.06) Spring 2005 Assignment 9

Quantum Physics III (8.06) Spring 2005 Assignment 9 Quantum Physics III (8.06) Spring 2005 Assignment 9 April 21, 2005 Due FRIDAY April 29, 2005 Readings Your reading assignment on scattering, which is the subject of this Problem Set and much of Problem

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. The Basic of Transmission Electron Microscope Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. 2009, Springer Background survey http://presemo.aalto.fi/tem1 Microscopy

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Particle Interactions in Detectors

Particle Interactions in Detectors Particle Interactions in Detectors Dr Peter R Hobson C.Phys M.Inst.P. Department of Electronic and Computer Engineering Brunel University, Uxbridge Peter.Hobson@brunel.ac.uk http://www.brunel.ac.uk/~eestprh/

More information

X-ray absorption spectroscopy.

X-ray absorption spectroscopy. X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ X-ray absorption spectroscopy www.anorg.chem.uu.nl/people/staff/frankdegroot/ Frank de Groot PhD: solid state chemistry U Nijmegen

More information

Modified Becke-Johnson (mbj) exchange potential

Modified Becke-Johnson (mbj) exchange potential Modified Becke-Johnson (mbj) exchange potential Hideyuki Jippo Fujitsu Laboratories LTD. 2015.12.21-22 OpenMX developer s meeting @ Kobe Overview: mbj potential The semilocal exchange potential adding

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6

Roger Johnson Structure and Dynamics: X-ray Diffraction Lecture 6 6.1. Summary In this Lecture we cover the theory of x-ray diffraction, which gives direct information about the atomic structure of crystals. In these experiments, the wavelength of the incident beam must

More information

arxiv: v1 [cond-mat.mtrl-sci] 17 Mar 2008

arxiv: v1 [cond-mat.mtrl-sci] 17 Mar 2008 Pushing the detection limit of Magnetic Circular Dichroism to 2 nm Peter Schattschneider and Michael Stöger-Pollach arxiv:83.2415v1 [cond-mat.mtrl-sci] 17 Mar 28 University Service Center for Transmission

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

6. Analytical Electron Microscopy

6. Analytical Electron Microscopy Physical Principles of Electron Microscopy 6. Analytical Electron Microscopy Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

Site-specific electron diffraction resolved via nuclear recoil

Site-specific electron diffraction resolved via nuclear recoil Site-specific electron diffraction resolved via nuclear recoil Aimo Winkelmann Maarten Vos Max-Planck-Institut für Mikrostrukturphysik Halle (Saale), Germany Research School of Physics and Engineering

More information

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES).

Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). S1 Small-Angle X-ray Scattering (SAXS)/X-ray Absorption Near Edge Spectroscopy (XANES). The combined SAXS/XANES measurements were carried out at the µspot beamline at BESSY II (Berlin, Germany). The beamline

More information

Neutron and x-ray spectroscopy

Neutron and x-ray spectroscopy Neutron and x-ray spectroscopy B. Keimer Max-Planck-Institute for Solid State Research outline 1. self-contained introduction neutron scattering and spectroscopy x-ray scattering and spectroscopy 2. application

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Electron-Matter Interactions

Electron-Matter Interactions Electron-Matter Interactions examples of typical EM studies properties of electrons elastic electron-matter interactions scattering processes; coherent and incoherent image formation; chemical contrast;

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg Methoden moderner Röntgenphysik I Coherence based techniques II Christian Gutt DESY Hamburg christian.gutt@desy.de 8. January 009 Outline 18.1. 008 Introduction to Coherence 8.01. 009 Structure determination

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

IMAGING DIFFRACTION SPECTROSCOPY

IMAGING DIFFRACTION SPECTROSCOPY TEM Techniques TEM/STEM IMAGING DIFFRACTION SPECTROSCOPY Amplitude contrast (diffracion contrast) Phase contrast (highresolution imaging) Selected area diffraction Energy dispersive X-ray spectroscopy

More information

Energy Spectroscopy. Excitation by means of a probe

Energy Spectroscopy. Excitation by means of a probe Energy Spectroscopy Excitation by means of a probe Energy spectral analysis of the in coming particles -> XAS or Energy spectral analysis of the out coming particles Different probes are possible: Auger

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Quantum Physics Lecture 3

Quantum Physics Lecture 3 Quantum Physics Lecture 3 If light (waves) are particle-like, are particles wave-like? Electron diffraction - Davisson & Germer Experiment Particle in a box -Quantisation of energy Wave Particle?? Wave

More information

CHEM-E5225 :Electron Microscopy X-Ray Spectrometry

CHEM-E5225 :Electron Microscopy X-Ray Spectrometry CHEM-E5225 :Electron Microscopy X-Ray Spectrometry 2016.11 Yanling Ge Outline X-ray Spectrometry X-ray Spectra and Images Qualitative and Quantitative X-ray Analysis and Imaging Discussion of homework

More information

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials

Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Making the Invisible Visible: Probing Antiferromagnetic Order in Novel Materials Elke Arenholz Lawrence Berkeley National Laboratory Antiferromagnetic contrast in X-ray absorption Ni in NiO Neel Temperature

More information

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density 1. SIESTA DFT In a Nutshell Introduction to SIESTA Atomic Orbitals Capabilities Resources 2. TranSIESTA Transport in the Nanoscale - motivation Boundary Conditions: Open systems Greens functions and charge

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

V 11: Electron Diffraction

V 11: Electron Diffraction Martin-Luther-University Halle-Wittenberg Institute of Physics Advanced Practical Lab Course V 11: Electron Diffraction An electron beam conditioned by an electron optical system is diffracted by a polycrystalline,

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Thomas Neisius Université Paul Cézanne Plan Imaging modes HAADF Example: supported Pt nanoparticles Electron sample interaction

More information

X-Ray Scattering Studies of Thin Polymer Films

X-Ray Scattering Studies of Thin Polymer Films X-Ray Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

PHYS Introduction to Synchrotron Radiation

PHYS Introduction to Synchrotron Radiation PHYS 570 - Introduction to Synchrotron Radiation Term: Spring 2015 Meetings: Tuesday & Thursday 17:00-18:15 Location: 204 Stuart Building Instructor: Carlo Segre Office: 166A Life Sciences Phone: 312.567.3498

More information

Phonons In The Elk Code

Phonons In The Elk Code Phonons In The Elk Code Kay Dewhurst, Sangeeta Sharma, Antonio Sanna, Hardy Gross Max-Planck-Institut für Mikrostrukturphysik, Halle If you are allowed to measure only one property of a material, make

More information

Some history. F p. 1/??

Some history. F p. 1/?? Some history F 12 10 18 p. 1/?? F 12 10 18 p. 1/?? Some history 1600: Galileo Galilei 1564 1642 cf. section 7.0 Johannes Kepler 1571 1630 cf. section 3.7 1700: Isaac Newton 1643 1727 cf. section 1.1 1750

More information

4. Other diffraction techniques

4. Other diffraction techniques 4. Other diffraction techniques 4.1 Reflection High Energy Electron Diffraction (RHEED) Setup: - Grazing-incidence high energy electron beam (3-5 kev: MEED,

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar Physical processes in lidar (continued) Doppler effect (Doppler shift and broadening) Boltzmann distribution Reflection

More information

Linear response theory and TDDFT

Linear response theory and TDDFT Linear response theory and TDDFT Claudio Attaccalite http://abineel.grenoble.cnrs.fr/ CECAM Yambo School 2013 (Lausanne) Motivations: +- hν Absorption Spectroscopy Many Body Effects!!! Motivations(II):Absorption

More information

ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY

ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY Annu. Rev. Mater. Res. 2005. 35:239 314 doi: 10.1146/annurev.matsci.35.102303.091623 Copyright c 2005 by Annual Reviews. All rights reserved First published online as a Review in Advance on March 17, 2005

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

Magnetism in transition metal oxides by post-dft methods

Magnetism in transition metal oxides by post-dft methods Magnetism in transition metal oxides by post-dft methods Cesare Franchini Faculty of Physics & Center for Computational Materials Science University of Vienna, Austria Workshop on Magnetism in Complex

More information

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1?

Name: (a) What core levels are responsible for the three photoelectron peaks in Fig. 1? Physics 243A--Surface Physics of Materials: Spectroscopy Final Examination December 16, 2014 (3 problems, 100 points total, open book, open notes and handouts) Name: [1] (50 points), including Figures

More information

High-Resolution Transmission Electron Microscopy

High-Resolution Transmission Electron Microscopy Chapter 2 High-Resolution Transmission Electron Microscopy The most fundamental imaging mode of a transmission electron microscope is realized by illuminating an electron-transparent specimen with a broad

More information

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University

How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science. Mark Sutton McGill University How can x-ray intensity fluctuation spectroscopy push the frontiers of Materials Science Mark Sutton McGill University Coherent diffraction (001) Cu 3 Au peak Sutton et al., The Observation of Speckle

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

Non-relativistic scattering

Non-relativistic scattering Non-relativistic scattering Contents Scattering theory 2. Scattering amplitudes......................... 3.2 The Born approximation........................ 5 2 Virtual Particles 5 3 The Yukawa Potential

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor ECLOUD 18 - Elba Island- 3-7 June 2018 OUTLINE Description of the Monte

More information

Old Dominion University Physics 811 Fall 2008

Old Dominion University Physics 811 Fall 2008 Old Dominion University Physics 811 Fall 008 Projects Structure of Project Reports: 1 Introduction. Briefly summarize the nature of the physical system. Theory. Describe equations selected for the project.

More information

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus Small Angle Neutron Scattering in Different Fields of Research Henrich Frielinghaus Jülich Centre for Neutron Science Forschungszentrum Jülich GmbH Lichtenbergstrasse 1 85747 Garching (München) h.frielinghaus@fz-juelich.de

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

Solid State Spectroscopy Problem Set 7

Solid State Spectroscopy Problem Set 7 Solid State Spectroscopy Problem Set 7 Due date: June 29th, 2015 Problem 5.1 EXAFS Study of Mn/Fe substitution in Y(Mn 1-x Fe x ) 2 O 5 From article «EXAFS, XANES, and DFT study of the mixed-valence compound

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

Drickamer type. Disk containing the specimen. Pressure cell. Press

Drickamer type. Disk containing the specimen. Pressure cell. Press ε-fe Drickamer type Press Pressure cell Disk containing the specimen Low Temperature Cryostat Diamond Anvil Cell (DAC) Ruby manometry Re gasket for collimation Small size of specimen space High-density

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

Introduction to spin and spin-dependent phenomenon

Introduction to spin and spin-dependent phenomenon Introduction to spin and spin-dependent phenomenon Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. May 16th, 2007

More information

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI

Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI Supplementary Figure 1: ADF images and profiles for several types of atomic chains encapsulated in DWNTs. (a d) ADF images of NaI, CsF, CsCl, and CsI atomic chains encapsulated in DWNTs, respectively.

More information

PHYS Introduction to Synchrotron Radiation

PHYS Introduction to Synchrotron Radiation C. Segre (IIT) PHYS 570 - Spring 2018 January 09, 2018 1 / 20 PHYS 570 - Introduction to Synchrotron Radiation Term: Spring 2018 Meetings: Tuesday & Thursday 13:50-15:05 Location: 213 Stuart Building Instructor:

More information

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK

Soft X-ray Physics DELNOR-WIGGINS PASS STATE PARK Soft X-ray Physics Overview of research in Prof. Tonner s group Introduction to synchrotron radiation physics Photoemission spectroscopy: band-mapping and photoelectron diffraction Magnetic spectroscopy

More information

Silver Thin Film Characterization

Silver Thin Film Characterization Silver Thin Film Characterization.1 Introduction Thin films of Ag layered structures, typically less than a micron in thickness, are tailored to achieve desired functional properties. Typical characterization

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

The frequency-dependent Sternheimer equation in TDDFT

The frequency-dependent Sternheimer equation in TDDFT The frequency-dependent Sternheimer equation in TDDFT A new look into an old equation Miguel A. L. Marques 1 Centre for Computational Physics, University of Coimbra, Portugal 2 LPMCN, Université Claude

More information

CRYSTALLOGRAPHIC POINT AND SPACE GROUPS. Andy Elvin June 10, 2013

CRYSTALLOGRAPHIC POINT AND SPACE GROUPS. Andy Elvin June 10, 2013 CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013 Contents Point and Space Groups Wallpaper Groups X-Ray Diffraction Electron Wavefunction Neumann s Principle Magnetic Point Groups Point

More information

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov sergey.churakov@psi.ch Paul Scherrer Institute Switzerland Cement Phase Composition C-S-H H Solid Solution Model

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Applications of scattering theory! From the structure of the proton! to protein structure!

Applications of scattering theory! From the structure of the proton! to protein structure! Applications of scattering theory From the structure of the proton to protein structure Nicuşor Tîmneanu 2016 Contents and goals What is scattering and why study it? How is the structure of matter determined?

More information

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( )

Quantum physics. Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 ( ) Quantum physics Anyone who is not shocked by the quantum theory has not understood it. Niels Bohr, Nobel Price in 1922 (1885-1962) I can safely say that nobody understand quantum physics Richard Feynman

More information

Phys 622 Problems Chapter 6

Phys 622 Problems Chapter 6 1 Problem 1 Elastic scattering Phys 622 Problems Chapter 6 A heavy scatterer interacts with a fast electron with a potential V (r) = V e r/r. (a) Find the differential cross section dσ dω = f(θ) 2 in the

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

TDDFT in Chemistry and Biochemistry III

TDDFT in Chemistry and Biochemistry III TDDFT in Chemistry and Biochemistry III Dmitrij Rappoport Department of Chemistry and Chemical Biology Harvard University TDDFT Winter School Benasque, January 2010 Dmitrij Rappoport (Harvard U.) TDDFT

More information

B k k. Fig. 1: Energy-loss spectrum of BN, showing the how K-loss intensities I K (β, ) for boron and nitrogen are defined and measured.

B k k. Fig. 1: Energy-loss spectrum of BN, showing the how K-loss intensities I K (β, ) for boron and nitrogen are defined and measured. The accuracy of EELS elemental analysis The procedure of EELS elemental analysis can be divided into three parts, each of which involves some approximation, with associated systematic or statistical errors.

More information

Technical University of Denmark. Center for Electron Nanoscopy. Advanced TEM (16 September 2010) Microanalysis in the electron microscope

Technical University of Denmark. Center for Electron Nanoscopy. Advanced TEM (16 September 2010) Microanalysis in the electron microscope Microanalysis in the electron microscope MH1 1 Technical University of Denmark Center for Electron Nanoscopy Advanced TEM (16 September 2010) Microanalysis in the electron microscope Dr C B Boothroyd Synopsis

More information

Electron Energy Loss Spectrometry

Electron Energy Loss Spectrometry Electron Energy Loss Spectrometry Cécile Hébert Centre Interdisciplinaire de Microscopie Electronique Laboratoire de Spectrométrie et Microscopie Electronique Ecole Polytechnique Fédérale de Lausanne Abstract

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Scattering of Electromagnetic Radiation. References:

Scattering of Electromagnetic Radiation. References: Scattering of Electromagnetic Radiation References: Plasma Diagnostics: Chapter by Kunze Methods of experimental physics, 9a, chapter by Alan Desilva and George Goldenbaum, Edited by Loveberg and Griem.

More information

1. Nuclear Size. A typical atom radius is a few!10 "10 m (Angstroms). The nuclear radius is a few!10 "15 m (Fermi).

1. Nuclear Size. A typical atom radius is a few!10 10 m (Angstroms). The nuclear radius is a few!10 15 m (Fermi). 1. Nuclear Size We have known since Rutherford s! " scattering work at Manchester in 1907, that almost all the mass of the atom is contained in a very small volume with high electric charge. Nucleus with

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Interaction theory Photons. Eirik Malinen

Interaction theory Photons. Eirik Malinen Interaction theory Photons Eirik Malinen Introduction Interaction theory Dosimetry Radiation source Ionizing radiation Atoms Ionizing radiation Matter - Photons - Charged particles - Neutrons Ionizing

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan

Core-Level spectroscopy. Experiments and first-principles calculations. Tomoyuki Yamamoto. Waseda University, Japan Core-Level spectroscopy Experiments and first-principles calculations Tomoyuki Yamamoto Waseda University, Japan 22 nd WIEN2k workshop Jun. 26 th, 2015@Singapore Outline What is core-level spectroscopy

More information