Electron-Matter Interactions

Size: px
Start display at page:

Download "Electron-Matter Interactions"

Transcription

1 Electron-Matter Interactions examples of typical EM studies properties of electrons elastic electron-matter interactions scattering processes; coherent and incoherent image formation; chemical contrast; electron diffraction inelastic electron-matter interactions analytical electron microscopy: generation of X-rays; electron energy loss spectroscopy; plasmons, phonons, cathodoluminescence scanning electron microscopy: secondary electrons beam damage Why do Stinging Nettles Sting? Scanning electron microscopy image of a leaf surface Examples Hollow needles contain formic acid 1

2 How do crystals look like? Shape? SEM images of zeolithes (left) and metal organic frameworks (MOF, right) Examples: electron microscopy for catalyst characterization Was Ötzi a Smoker? TEM Image Elemental Distribution Image Examples FELMI-ZFE Graz 2

3 Catalyst: Pd and Pt supported on alumina: Size of the particles? Alloy or separated? STEM + EDXS: Point Analyses Al C O Pt Pd Cu Pt Pt C Al HAADF-STEM image O Pt Pd Cu Pt Pt Examples What is the Structure of Aperiodic Compounds like? Examples Dodecagonal quasicrystal in the system Ta-Te 3

4 Electron Microscopy Methods (Selection) STEM Electron diffraction HRTEM X-ray spectroscopy SEM Examples Properties of Electrons Dualism wave-particle De Broglie (1924): = h/p = h/mv : wavelength; h: Planck constant; p: momentum U acc kv Rel. pm Mass x m 0 v rel x 10 8 m/s Electron Rest mass of an electron: m 0 = x kg Speed of light in vacuum: c = x 10 8 m/s 4

5 Interactions of Electrons with Matter SEM EDXS (EDX, EDS), WDS, EPMA AES SEM elastic scattering: TEM, HRTEM, STEM, SAED, CBED Electron-matter interactions inelastic scattering: EELS, ESI Interactions of Electrons with Matter Incident electrons with energy E 0 pass through a sample or are scattered without energy transfer. E el = E 0 Inelastic interaction Transfer of energy from the electron to the matter, causing various effects, e.g., ionization. E el < E 0 Electron-matter interactions 5

6 Elastic Electrons-Matter Interactions Elastic scattering of a incoming coherent electron wave: Scattering of electrons by individual atoms scattered waves are incoherent Scattering of electrons by a collective of atoms (crystal) scattered waves are coherent Coherent waves have the same wavelength and are in phase with each other period: time for one complete cycle for an oscillation frequency: periods per unit time (measured in Hertz) Incoherent waves Elastic Scattering of Electrons by an Atom F = Q 1 Q 2 / 4πε 0 r 2 ε 0 : dielectric constant Weak Coulomb interaction within the electron cloud low-angle scattering Strong Coulomb interaction close to the nucleus high-angle scattering or even backscattering Rutherford regime atomic-number (Z) contrast dσ e /dω ~ Z 2 6

7 Interaction Cross Section : effective interaction area /r atom : likelyhood that an interaction will occur R. Peierls: «If I throw a ball at a glass window one square foot in area, there may be one chance in ten that the window will break and nine chances that the ball will just bounce. In the physicist s language this particular window, for a ball thrown in this particular way, has a disintegration (inelastic!) crosssection of 0.1 square feet and an elastic cross-section of 0.9 square feet.» From: Williams & Carter: Transmission Electron Microscopy Interaction Cross Section : effective interaction area /r atom : likelyhood that an interaction will occur = r 2 r elast = Ze/U (r: effective radius) (U: acceleration voltage, e: charge, Z: atomic number, scattering angle) 7

8 Electron Scattering Monte-Carlo Simulations MC-Demo.ex VB40032.DLL Scanning Electron Microscopy and X-Ray Microanalysis J. Goldstein, D. Newbury, D. Joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J. Michael, Kluwer Academics/Plenum Publishers, 3 rd Ed., New York

9 Exercises: Monte-Carlo simulations Simulate the electron trajectories for (a) 100 kv and (b) 300 kev (typical voltages for TEM) through 100 nm thick foils of Al, Fe, and Au. Note the beam broadening and the number of back-scattered electrons. Make the same calculations for (a) 10 and (b) 30 kev (typical voltages for SEM). If you want to analyze small areas (i.e. with high local resolution), which voltage would you prefer to use in the (a) TEM and (b) the SEM? Interaction Cross Section σ total = σ elastic + σ inelastic Total cross-section Q T : Q T = N T = N 0 T / A Q T t = N 0 T t / A (N: number of atoms, N 0 : Avogadro s number, A: atomic weight, : density) (t: specimen thickness) mass-thickness Alternative description: mean free path = 1 / Q Electron-matter interactions 9

10 Contrast Formation A strong decrease of incoming electron beam intensity occurs if many atoms scatter, i.e. in thick areas if heavy atoms scatter Mass-Thickness Contrast Dark contrast in BF-TEM images appears if many atoms scatter (thick areas darker than thin areas) if heavy atoms scatter (areas with heavy atoms darker than such with light atoms) 10

11 Bright Field TEM Images thin C thick Amorphous SiO 2 on C foil Mainly thickness contrast Au particles on TiO 2 Mainly mass contrast Elastic Scattering of Electrons by an Atom 50 nm Applications HAADF-STEM of Au particles on titania (Z contrast imaging) dσ e /dω ~ Z 2 SEM of Pt particles on alumina: imaging with secondary electrons (left) and back-scattered electron (right) 11

12 Image of rocksalt crystals Crystals A crystal is characterized by an array of atoms that is periodic in three dimensions. Its smallest repeat unit is the unit cell with specific lattice parameters, atomic positions and symmetry. Crystal structure of NaCl Na blue; Cl red Crystallographic data of NaCl - symmetry: cubic; space group: Fm3m lattice parameters: a = b = c = Å = = = 90 atom positions: Na ½, ½, ½ Cl 0, 0, 0 Interference of Waves linear superposition waves in phase constructive interference waves not in phase destructive interference 12

13 Coherent Scattering Scattering of electrons at atoms generation of secondary spherical wavelets Interference of secondary wavelets strong direct beam (0 th order) and diffracted beams at specific angles Coherent Scattering Plane electron wave generates secondary wavelets from periodically ordered scattering centers (atoms in a crystal lattice). Constructive interference of these wavelets leads to scattered beams. Electron Diffraction 0 th order 13

14 Coherent Scattering 1 th order Plane electron wave generates secondary wavelets from periodically ordered scattering centers (atoms in a crystal lattice). Constructive interference of these wavelets leads to scattered beams. Electron Diffraction 0 th order Coherent Scattering 2 th order 1 th order Plane electron wave generates secondary wavelets from periodically ordered scattering centers (atoms in a crystal lattice). Constructive interference of these wavelets leads to scattered beams. Electron Diffraction 0 th order 14

15 Bragg Description of Diffraction Constructive interference between the waves reflected with an angle at atom planes of spacing d occurs if the path difference between the two waves is 2d sin. Bragg law: 2dsin = n Electron Diffraction Electron Diffraction Bragg law: 2dsin = n el = nm (1.97 pm) for 300 kv If d = 0.2 nm = > > 1 Reflecting lattice planes are almost parallel to the direct beam Electron Diffraction 15

16 Electron Diffraction formation of direct beam formation of diffracted beams influence of lattice distance influence of wave length Electron Diffraction on a Lattice Crystal Because of small diffraction angles, the electron beam is parallel to the zone axis of the diffracting lattice planes Diffraction pattern Electron diffraction pattern of a single crystal of Al along [111] 16

17 Coherent scattering Bragg Contrast Diffracted beams lead to a decreased intensity of crystalline areas (crystalline areas appear darker than amorphous areas) BF-TEM Image Increasing thickness ZrO 2 micro crystals; crystals orientated close to zone axis appear dark Mainly Bragg contrast 17

18 Electron Diffraction + High Resolution Transmission Electron Microscopy Nb 7 W 10 O 47 threefold superstructure of the tetragonal tungsten bronze type Inelastic Electron-Matter Interactions Energy is transferred from the electron to the specimen causing: 1. Bremsstrahlung uncharacteristic X-rays 2. Inner-shell ionisation generation of characteristic X-rays and Auger Electrons 3. Secondary electrons low energy (< 50 ev) loosely bound electrons (e.g., in the conduction band) can easily be ejected (application: SEM) 4. Phonons lattice vibrations (heat) ( beam damage) 5. Plasmons oscillations of loosely bound electrons in metals 6. Cathodoluminescence photon generated by recombination of electron-hole pairs in semiconductors 18

19 Bremsstrahlung (Braking Radiation) Deceleration of electrons in the Coulomb field of the nucleus Emission of X-ray carrying the surplus energy E (Bremsstrahlung, continuum X-rays) X-ray intensity theoretical Characteristic X-ray peaks Bremsstrahlung E/keV X rays of low energy are completely absorbed in the sample and the detector Generation of Characteristic X-rays L K 1s 2s 2p 19

20 Generation of Characteristic X-rays 1. Ionization 2. X-ray emission Generation of Characteristic X-rays 1 1. Ionization 2. X-ray emission

21 Electron Configuration of Ti: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 energy N 4s 4p 3d M 3s 3p L 2s 2p K 1s Electron Configuration of Ti: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 energy N 4s 4p 3d M 3s 3p L 2s 2p K K K 1s 21

22 Electron Configuration of Ti: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 2 energy N 4s 4p 3d M 3s L 3p L 2s 2p K 1s Energy-Dispersive X-ray Spectroscopy (EDXS) Au-Particles on TiO 2 Intensity / counts Ti L Energy / kev 22

23 Possible Transitions Between Electron Shells Causing Characteristic K, L, and M X-rays Generation of Auger Electrons 1. Ionization 2. Electron hole is filled by L 1 electron that transfers surplus energy to another electron (here: L 3 ) 3. Auger electron emission Energy of Auger electron is low (ca. 100 to some 1000 ev). Strong absorption in sample Surface technique 23

24 Cathodoluminescence 1. Incoming electron interacts with electrons in the valence band (VB) 2. Electron is promoted from the VB to the conduction band (CB), generating electron-hole pairs 3. Recombination: hole in the VB is filled by an electron from the CB with emission of surplus energy as photon (CL) incoming electron CB band gap VB e - h energy loss electron Important in semiconductor research: determination of band gaps Inelastic Scattering of Electrons Energy is transferred from the electron to the specimen causing: 1. Inner-shell ionization 2. Bremsstrahlung 3. Secondary electrons 4. Phonons 5. Plasmons 6. Cathodoluminescence Because of energy transfer to the specimen, the electron has a diminished kinetic energy E < E 0 after any inelastic scattering event. 24

25 Electron Energy Loss Spectroscopy Threshold Energy in EELS Threshold (or binding) energy: Minimum energy necessary to transfer an electron from its initial to the lowest unoccupied state This excited electron can carry any amount of excess energy (kinetic energy of ejected electrons) signal is extended above the threshold energy building up an edge 25

26 EELS: Observable Ionization Edges Edge intensity drops with increasing energy loss EELS is limited to the appr. energy range ev Almost all elements have observable edges in this energy range: K edges: Li-Si L edges: Mg-Sr M edges: Se-Os N edges: Os-U Electron Energy Loss Spectroscopy Relationship between the EEL Spectrum and a Core-Loss Exication within the Band Structure N(E) Filled states E F Near edge fine structure Empty states E Extended fine structure ELNES: Electron Energy Loss Near Edge Structure - reflects local density of unoccupied states (DOS) - corresponds to XANES in X-ray diffraction EXELFS: Extended Energy Loss Fine Structure - information on local atomic arrangements - corresponds to EXAFS in X-ray diffraction 26

27 Fine Structures in EELS * sp 2 sp 3 Characteristics of the C_K edge depend on hybridization Characteristics of the Cu_L 2,3 edges depend on oxidation state of Cu Cu 0 : 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 1 Interactions of Electrons with Matter SEM EXDS (EDX, EDS), WDS, EPMA AES SEM elastic scattering: TEM, HRTEM, STEM, SAED, CBED Electron-matter interactions inelastic scattering: EELS, ESI 27

28 Interaction Volume in Compact Samples Secondary electrons (SE) Low energy < 50 ev (inelastic interactions) Information about topology and morphology Back-scattered electrons (BSE) High energy E 0 (mostly elastic interactions) Morphology and chemical information Electron-matter interactions Cu Z=29 Au (Z=79) Elastic Scattering of Electrons Amount of high-angle scattering or even backscattering of incident electrons increases with increasing atomic number (e. g., scattering cross section Au >> Cu ) decreases with increasing electron energy Monte-Carlo simulations of paths of scattered electrons As a general effect of scattering events, the incoming electron beam is weakened and broadened brightness of the direct beam depends on the material contrast between different materials 28

29 Dependence of Interaction Volume on Electron Energy 10 kev Penetration depth increases with increasing electron energy 20 kev 30 kev Monte-Carlo simulations of electron trajectories in Fe SEM: Dependence on Electron Energy Electron-matter interactions Penetration depth of electrons in matter increases with increasing V acc decreases with increasing atomic number 29

30 Radiolysis Beam Damage Ionization breaking of chemical bonds (e.g., in polymers) Knock-on damage Displacement of atoms in crystal lattice point defects (metals) Phonon generation Charging Specimen heating sample drift, structure destruction, melting Electron-matter interactions Summary no energy transfer coherent scattering on crystals (diffraction) incoherent scattering on atoms energy is transferred from the incident electron to the sample X-rays secondary electrons (low energy SE, Auger electrons) phonons, plasmons, cathodoluminescence Electron-matter interactions 30

31 Explain the following abbreviations. Is the corresponding method based on elastic or on inelastic electron-matter interactions? HRTEM SEM STEM EDXS EELS EFTEM After passing a thin sample, two types of electron beams (namely one scattered into low and one into high angles, respectively) are present besides the direct beam (s. scheme). Which one is more likely caused by elastic and which by inelastic scattering? 31

32 Additional material: Interaction.pdf on Next week: Image Processing Please bring your laptop and download software Digital Micrograph (Gatan) (commercial product; demo version available) ImageJ (National Institute of Health) (public domain software; Java) Links on: Images and DM on: 32

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy

Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy Properties of Electrons, their Interactions with Matter and Applications in Electron Microscopy By Frank Krumeich Laboratory of Inorganic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications

Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Techniques EDX, EELS et HAADF en TEM: possibilités d analyse et applications Thomas Neisius Université Paul Cézanne Plan Imaging modes HAADF Example: supported Pt nanoparticles Electron sample interaction

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

4. Inelastic Scattering

4. Inelastic Scattering 1 4. Inelastic Scattering Some inelastic scattering processes A vast range of inelastic scattering processes can occur during illumination of a specimen with a highenergy electron beam. In principle, many

More information

h p λ = mν Back to de Broglie and the electron as a wave you will learn more about this Equation in CHEM* 2060

h p λ = mν Back to de Broglie and the electron as a wave you will learn more about this Equation in CHEM* 2060 Back to de Broglie and the electron as a wave λ = mν h = h p you will learn more about this Equation in CHEM* 2060 We will soon see that the energies (speed for now if you like) of the electrons in the

More information

Interactions with Matter

Interactions with Matter Manetic Lenses Manetic fields can displace electrons Manetic field can be produced by passin an electrical current throuh coils of wire Manetic field strenth can be increased by usin a soft ferromanetic

More information

Elastic and Inelastic Scattering in Electron Diffraction and Imaging

Elastic and Inelastic Scattering in Electron Diffraction and Imaging Elastic and Inelastic Scattering in Electron Diffraction and Imaging Contents Introduction Symbols and definitions Part A Diffraction and imaging of elastically scattered electrons Chapter 1. Basic kinematical

More information

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney

An Introduction to Diffraction and Scattering. School of Chemistry The University of Sydney An Introduction to Diffraction and Scattering Brendan J. Kennedy School of Chemistry The University of Sydney 1) Strong forces 2) Weak forces Types of Forces 3) Electromagnetic forces 4) Gravity Types

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Chapter 37 Early Quantum Theory and Models of the Atom

Chapter 37 Early Quantum Theory and Models of the Atom Chapter 37 Early Quantum Theory and Models of the Atom Units of Chapter 37 37-7 Wave Nature of Matter 37-8 Electron Microscopes 37-9 Early Models of the Atom 37-10 Atomic Spectra: Key to the Structure

More information

Overview of scattering, diffraction & imaging in the TEM

Overview of scattering, diffraction & imaging in the TEM Overview of scattering, diffraction & imaging in the TEM Eric A. Stach Purdue University Scattering Electrons, photons, neutrons Radiation Elastic Mean Free Path (Å)( Absorption Length (Å)( Minimum Probe

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

6. Analytical Electron Microscopy

6. Analytical Electron Microscopy Physical Principles of Electron Microscopy 6. Analytical Electron Microscopy Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

Electron and electromagnetic radiation

Electron and electromagnetic radiation Electron and electromagnetic radiation Generation and interactions with matter Stimuli Interaction with sample Response Stimuli Waves and energy The energy is propotional to 1/λ and 1/λ 2 λ λ 1 Electromagnetic

More information

Praktikum zur. Materialanalytik

Praktikum zur. Materialanalytik Praktikum zur Materialanalytik Energy Dispersive X-ray Spectroscopy B513 Stand: 19.10.2016 Contents 1 Introduction... 2 2. Fundamental Physics and Notation... 3 2.1. Alignments of the microscope... 3 2.2.

More information

April 10th-12th, 2017

April 10th-12th, 2017 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 April 10th-12th, 2017 Outline 1. What is microcopy?

More information

IMAGING DIFFRACTION SPECTROSCOPY

IMAGING DIFFRACTION SPECTROSCOPY TEM Techniques TEM/STEM IMAGING DIFFRACTION SPECTROSCOPY Amplitude contrast (diffracion contrast) Phase contrast (highresolution imaging) Selected area diffraction Energy dispersive X-ray spectroscopy

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Structure of Surfaces

Structure of Surfaces Structure of Surfaces C Stepped surface Interference of two waves Bragg s law Path difference = AB+BC =2dsin ( =glancing angle) If, n =2dsin, constructive interference Ex) in a cubic lattice of unit cell

More information

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13

Atomic Physics. Chapter 6 X ray. Jinniu Hu 24/12/ /20/13 Atomic Physics Chapter 6 X ray 11/20/13 24/12/2018 Jinniu Hu 1!1 6.1 The discovery of X ray X-rays were discovered in 1895 by the German physicist Wilhelm Roentgen. He found that a beam of high-speed electrons

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS

MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 5: RBS Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

Surface Sensitivity & Surface Specificity

Surface Sensitivity & Surface Specificity Surface Sensitivity & Surface Specificity The problems of sensitivity and detection limits are common to all forms of spectroscopy. In its simplest form, the question of sensitivity boils down to whether

More information

X-ray Absorption Spectroscopy

X-ray Absorption Spectroscopy X-ray Absorption Spectroscopy Nikki Truss November 26, 2012 Abstract In these experiments, some aspects of x-ray absorption spectroscopy were investigated. The x-ray spectrum of molybdenum was recorded

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960 Introduction to X-ray Photoelectron Spectroscopy (XPS) X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a widely used technique to investigate

More information

Part II: Thin Film Characterization

Part II: Thin Film Characterization Part II: Thin Film Characterization General details of thin film characterization instruments 1. Introduction to Thin Film Characterization Techniques 2. Structural characterization: SEM, TEM, AFM, STM

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM THE UNIVERSITY Chemical Analysis in the SEM Ian Jones Centre for Electron Microscopy OF BIRMINGHAM Elastic and Inelastic scattering Electron interacts with one of the orbital electrons Secondary electrons,

More information

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH

X-RAY PRODUCTION. Prepared by:- EN KAMARUL AMIN BIN ABDULLAH X-RAY PRODUCTION Prepared by:- EN KAMARUL AMIN BIN ABDULLAH OBJECTIVES Discuss the process of x-ray being produced (conditions) Explain the principles of energy conversion in x-ray production (how energy

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 21 Electron Microscopy and X-ray Spectroscopy Suggested Reading Leng, Chapter 3, pp. 83-126; Chapter 4, pp. 127-160; Chapter 6, pp. 191-219 P.J. Goodhew, J. Humphreys

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN

KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN KMÜ 396 MATERIALS SCIENCE AND TECH. I PRESENTATION ELECTRON ENERGY LOSS SPECTROSCOPY (EELS) TUĞÇE SEZGİN 20970725 HACETTEPE UNIVERSITY DEPARTMENT OF CHEMICAL ENGINEERING, SPRING 2011,APRIL,ANKARA CONTENTS

More information

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis

X-ray Spectroscopy. Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis X-ray Spectroscopy Interaction of X-rays with matter XANES and EXAFS XANES analysis Pre-edge analysis EXAFS analysis Element specific Sensitive to low concentrations (0.01-0.1 %) Why XAS? Applicable under

More information

Shell Atomic Model and Energy Levels

Shell Atomic Model and Energy Levels Shell Atomic Model and Energy Levels (higher energy, deeper excitation) - Radio waves: Not absorbed and pass through tissue un-attenuated - Microwaves : Energies of Photos enough to cause molecular rotation

More information

Basic physics Questions

Basic physics Questions Chapter1 Basic physics Questions S. Ilyas 1. Which of the following statements regarding protons are correct? a. They have a negative charge b. They are equal to the number of electrons in a non-ionized

More information

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015

X-ray Spectroscopy. Danny Bennett and Maeve Madigan. October 12, 2015 X-ray Spectroscopy Danny Bennett and Maeve Madigan October 12, 2015 Abstract Various X-ray spectra were obtained, and their properties were investigated. The characteristic peaks were identified for a

More information

Practical course in scanning electron microscopy

Practical course in scanning electron microscopy Practical course in scanning electron microscopy Fortgeschrittenen Praktikum an der Technischen Universität München Wintersemester 2017/2018 Table of contents 1. Introduction 3 2. Formation of an electron

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect

More information

November 30th -December 2 nd, st 2nd 3rd. 8:15 7)HRTEM 10) TEM imaging and diffraction examples. 9:15 8)HRTEM 10) Diffraction going further

November 30th -December 2 nd, st 2nd 3rd. 8:15 7)HRTEM 10) TEM imaging and diffraction examples. 9:15 8)HRTEM 10) Diffraction going further Thomas LaGrange, Ph.D. Faculty and Staff Scientist Introduction: Basics of Transmission Electron Microscopy (TEM) TEM Doctoral Course MS-637 November 30th -December 2 nd, 2015 Planning MSE-637 TEM -basics

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications

CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications CHEM 681 Seminar Mingqi Zhao April 20, 1998 Room 2104, 4:00 p.m. High Resolution Transmission Electron Microscopy: theories and applications In materials science, people are always interested in viewing

More information

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter.

The Basic of Transmission Electron Microscope. Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. The Basic of Transmission Electron Microscope Text book: Transmission electron microscopy by David B Williams & C. Barry Carter. 2009, Springer Background survey http://presemo.aalto.fi/tem1 Microscopy

More information

An Introduction to XAFS

An Introduction to XAFS An Introduction to XAFS Matthew Newville Center for Advanced Radiation Sources The University of Chicago 21-July-2018 Slides for this talk: https://tinyurl.com/larch2018 https://millenia.cars.aps.anl.gov/gsecars/data/larch/2018workshop

More information

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF)

Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Radiation interaction with matter and energy dispersive x-ray fluorescence analysis (EDXRF) Giancarlo Pepponi Fondazione Bruno Kessler MNF Micro Nano Facility pepponi@fbk.eu MAUD school 2017 Caen, France

More information

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM)

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM) CBE 30361 Science of Engineering Materials Scanning Electron Microscopy (SEM) Scale of Structure Organization Units: micrometer = 10-6 m = 1µm nanometer= 10-9 m = 1nm Angstrom = 10-10 m = 1Å A hair is

More information

X-ray practical: Crystallography

X-ray practical: Crystallography X-ray practical: Crystallography Aim: To familiarise oneself with the operation of Tex-X-Ometer spectrometer and to use it to determine the lattice spacing in NaCl and LiF single crystals. Background:

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture Nanoelectronics 09 Atsufumi Hirohata Department of Electronics 13:00 Monday, 12/February/2018 (P/T 006) Quick Review over the Last Lecture ( Field effect transistor (FET) ): ( Drain ) current increases

More information

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price X Rays & Crystals Characterizing Mineral Chemistry & Structure J.D. Price Light - electromagnetic spectrum Wave behavior vs. particle behavior If atoms are on the 10-10 m scale, we need to use sufficiently

More information

Auger Electron Spectroscopy

Auger Electron Spectroscopy Auger Electron Spectroscopy Auger Electron Spectroscopy is an analytical technique that provides compositional information on the top few monolayers of material. Detect all elements above He Detection

More information

Scanning Electron Microscopy & Ancillary Techniques

Scanning Electron Microscopy & Ancillary Techniques Scanning Electron Microscopy & Ancillary Techniques By Pablo G. Caceres-Valencia The prototype of the first Stereoscan supplied by the Cambridge Instrument Company to the dupont Company, U.S.A. (1965)

More information

X-Ray Photoelectron Spectroscopy (XPS)

X-Ray Photoelectron Spectroscopy (XPS) X-Ray Photoelectron Spectroscopy (XPS) Louis Scudiero http://www.wsu.edu/~scudiero; 5-2669 Electron Spectroscopy for Chemical Analysis (ESCA) The basic principle of the photoelectric effect was enunciated

More information

2008 Brooks/Cole 2. Frequency (Hz)

2008 Brooks/Cole 2. Frequency (Hz) Electromagnetic Radiation and Matter Oscillating electric and magnetic fields. Magnetic field Electric field Chapter 7: Electron Configurations and the Periodic Table Traveling wave moves through space

More information

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law:

QUANTUM PHYSICS. Limitation: This law holds well only for the short wavelength and not for the longer wavelength. Raleigh Jean s Law: Black body: A perfect black body is one which absorbs all the radiation of heat falling on it and emits all the radiation when heated in an isothermal enclosure. The heat radiation emitted by the black

More information

Particle nature of light & Quantization

Particle nature of light & Quantization Particle nature of light & Quantization A quantity is quantized if its possible values are limited to a discrete set. An example from classical physics is the allowed frequencies of standing waves on a

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Electron Microprobe Analysis and Scanning Electron Microscopy

Electron Microprobe Analysis and Scanning Electron Microscopy Electron Microprobe Analysis and Scanning Electron Microscopy Electron microprobe analysis (EMPA) Analytical technique in which a beam of electrons is focused on a sample surface, producing X-rays from

More information

is the minimum stopping potential for which the current between the plates reduces to zero.

is the minimum stopping potential for which the current between the plates reduces to zero. Module 1 :Quantum Mechanics Chapter 2 : Introduction to Quantum ideas Introduction to Quantum ideas We will now consider some experiments and their implications, which introduce us to quantum ideas. The

More information

Interaction of Ionizing Radiation with Matter

Interaction of Ionizing Radiation with Matter Type of radiation charged particles photonen neutronen Uncharged particles Charged particles electrons (β - ) He 2+ (α), H + (p) D + (d) Recoil nuclides Fission fragments Interaction of ionizing radiation

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Introduction to EDX. Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) Basics of EDX

Introduction to EDX. Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) Basics of EDX Introduction to EDX Energy Dispersive X-ray Microanalysis (EDS, Energy dispersive Spectroscopy) EDX Marco Cantoni 1 Basics of EDX a) Generation of X-rays b) Detection Si(Li) Detector, SDD Detector, EDS

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010

X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 X-ray Absorption Spectroscopy Eric Peterson 9/2/2010 Outline Generation/Absorption of X-rays History Synchrotron Light Sources Data reduction/analysis Examples Crystallite size from Coordination Number

More information

Generation of X-Rays in the SEM specimen

Generation of X-Rays in the SEM specimen Generation of X-Rays in the SEM specimen The electron beam generates X-ray photons in the beam-specimen interaction volume beneath the specimen surface. Some X-ray photons emerging from the specimen have

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices Introduction to Quantum Mechanics In order to understand the current-voltage characteristics, we need some knowledge of electron behavior in semiconductor when the electron is subjected to various potential

More information

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst

Conventional Transmission Electron Microscopy. Introduction. Text Books. Text Books. EMSE-509 CWRU Frank Ernst Text Books Conventional Transmission Electron Microscopy EMSE-509 CWRU Frank Ernst D. B. Williams and C. B. Carter: Transmission Electron Microscopy, New York: Plenum Press (1996). L. Reimer: Transmission

More information

Energy-Filtering. Transmission. Electron Microscopy

Energy-Filtering. Transmission. Electron Microscopy Part 3 Energy-Filtering Transmission Electron Microscopy 92 Energy-Filtering TEM Principle of EFTEM expose specimen to mono-energetic electron radiation inelastic scattering in the specimen poly-energetic

More information

Basic structure of SEM

Basic structure of SEM Table of contents Basis structure of SEM SEM imaging modes Comparison of ordinary SEM and FESEM Electron behavior Electron matter interaction o Elastic interaction o Inelastic interaction o Interaction

More information

RED. BLUE Light. Light-Matter

RED. BLUE Light.   Light-Matter 1 Light-Matter This experiment demonstrated that light behaves as a wave. Essentially Thomas Young passed a light of a single frequency ( colour) through a pair of closely spaced narrow slits and on the

More information

Probing Matter: Diffraction, Spectroscopy and Photoemission

Probing Matter: Diffraction, Spectroscopy and Photoemission Probing Matter: Diffraction, Spectroscopy and Photoemission Anders Nilsson Stanford Synchrotron Radiation Laboratory Why X-rays? VUV? What can we hope to learn? 1 Photon Interaction Incident photon interacts

More information

X-Ray Photoelectron Spectroscopy (XPS)-2

X-Ray Photoelectron Spectroscopy (XPS)-2 X-Ray Photoelectron Spectroscopy (XPS)-2 Louis Scudiero http://www.wsu.edu/~pchemlab ; 5-2669 Fulmer 261A Electron Spectroscopy for Chemical Analysis (ESCA) The 3 step model: 1.Optical excitation 2.Transport

More information

Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples

Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples Contrasted strengths and weakness of EDS, WDS and AES for determining the composition of samples Ana-Marija Nedić Course 590B 12/07/2018 Iowa State University Contrasted strengths and weakness of EDS,

More information

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for

PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application. Electron Microscopy. for PHYS-E0541:Special Course in Physics Gas phase synthesis of carbon nanotubes for thin film application Electron Microscopy for Introduction to Electron Microscopy Carbon Nanomaterials (nanotubes) Dr. Hua

More information

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect

Outline. Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter. Photon interactions. Photoelectric effect Chapter 6 The Basic Interactions between Photons and Charged Particles with Matter Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther

More information

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln

X-ray Absorption Spectroscopy. Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln X-ray Absorption Spectroscopy Kishan K. Sinha Department of Physics and Astronomy University of Nebraska-Lincoln Interaction of X-rays with matter Incident X-ray beam Fluorescent X-rays (XRF) Scattered

More information

Electron Rutherford Backscattering, a versatile tool for the study of thin films

Electron Rutherford Backscattering, a versatile tool for the study of thin films Electron Rutherford Backscattering, a versatile tool for the study of thin films Maarten Vos Research School of Physics and Engineering Australian National University Canberra Australia Acknowledgements:

More information

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli Lecture PowerPoints Chapter 27 Physics: Principles with Applications, 7th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011

X-ray Spectroscopy. c David-Alexander Robinson & Pádraig Ó Conbhuí. 14th March 2011 X-ray Spectroscopy David-Alexander Robinson; Pádraig Ó Conbhuí; 08332461 14th March 2011 Contents 1 Abstract 2 2 Introduction & Theory 2 2.1 The X-ray Spectrum............................ 2 2.2 X-Ray Absorption

More information

Chapter V: Interactions of neutrons with matter

Chapter V: Interactions of neutrons with matter Chapter V: Interactions of neutrons with matter 1 Content of the chapter Introduction Interaction processes Interaction cross sections Moderation and neutrons path For more details see «Physique des Réacteurs

More information

Interaction theory Photons. Eirik Malinen

Interaction theory Photons. Eirik Malinen Interaction theory Photons Eirik Malinen Introduction Interaction theory Dosimetry Radiation source Ionizing radiation Atoms Ionizing radiation Matter - Photons - Charged particles - Neutrons Ionizing

More information

Geology 777 Monte Carlo Exercise I

Geology 777 Monte Carlo Exercise I Geology 777 Monte Carlo Exercise I Purpose The goal of this exercise is to get you to think like an electron... to start to think about where electrons from the stream of high energy electrons go when

More information