Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Size: px
Start display at page:

Download "Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist"

Transcription

1 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary Sciences Massachusetts Institute of Technology

2 Uses of the EPMA 2 Spot mode operation for quantitative analysis: Micron-scale, complete chemical analysis Be to U (10-50 ppm under favorable conditions) Raster mode operation for high resolution imaging: Back-scattered electron: composition and topography Secondary electron: topography Cathodoluminescence (light): trace elements, defects X-ray map: spatial distribution of elements

3 An example: Compositional imaging with back-scattered electrons 3 Back-scattered electron Plane polarized transmitted light Low-Z elements High-Z Polished surface Function of composition Thin section Function of optical properties

4 Qualitative analysis 4 Visual characterization of phases in image (shape, size, surface topography, etc.) Qualitative identification of elements in each phase

5 Semi-quantitative analysis 5 Quick and approximate concentration measurement at a spot Elemental mapping of a surface to determine spatial distribution of elements

6 Quantitative analysis 6 Complete chemical analysis of a micron-sized spot to determine concentration of all elements Concentration mapping to determine the abundance of all elements at every pixel of an image

7 JEOL JXA-8200 Superprobe 7 Condenser lens Electron gun Optical Microscope LN 2 SE EDS Objective lens BSE Stage WDS High vacuum

8 Electron emitting source: Tungsten hairpin 8 Cathode: Filament at negative potential Tungsten has a high melting point and a low work-function energy barrier; heated by filament current, i f, until electrons overcome the barrier Wehnelt Cylinder at a slightly higher negative potential than the filament because of the Bias Resistor Bias voltage (V bias ) automatically adjusts with changes in i e to stabilize emission; the grid cap also focuses the electron beam Anode: Plate at ground potential Self-biased thermionic electron gun Potential difference (accelerating voltage, V 0 ) causes electron emission (current, i e )

9 Electron probe parameters 9 Sample Accelerating voltage, V 0 (V 0 of 15 kv generates electron beam with 15 kev energy) Final beam current, or probe current, i p Final beam diameter, or probe diameter, d p Final beam convergence angle, or probe convergence angle, a p

10 d p (nm) 10 Different electron sources W hairpin Field Emission LaB 6 Probe diameter decreases with decrease in Probe current increase in Accelerating voltage W > LaB6 > Field Emission source Higher probe current improves signal but results in poorer image resolution Tungsten hairpin, 15 kv, 10 na, d p 100 nm

11 Depth of focus 11 Large depth of focus Small depth of focus

12 Spatial resolution: electron interaction volume 12 Vertical electron beam, probe diameter = 0.1 mm Horizontal sample surface 1 2 Depth (mm) mm 2.25 mm Low atomic number: large tear-drop shape Monte Carlo simulations of electron trajectories in the sample High atomic number: small hemisphere Width of interaction volume >> probe diameter (interaction volume can be reduced by reducing the probe diameter using a lower accelerating voltage)

13 Electron interaction depth (range) 13 R : Kanaya-Okayama electron range E : beam energy A : atomic weight r : density Z : atomic number Electron range increases as E increases, and decreases as r and rz increase E.g., at 20 kv, R = 4.29 mm in Carbon (Z = 6, A = 12.01, r = 2.26 g/cc) R = 0.93 mm in Uranium (Z = 92, A = , r = g/cc)

14 Electron interaction depth (range) 14 Electron range increases as E increases, and decreases as r and rz increase

15 Electron beam 15

16 Spatial resolution for different signals kev, W filament diameter ~150 nm 150 nm 450 nm Fluorescence of CoKa by CuKa ~60 mm (not to scale) CuKa ~1 mm CuLa ~1.5 mm Production volume for different signals is different The onion shell model: Cu-10%Co alloy

17 Spatial resolution for cathodoluminescence 17 2 mm Gallium Nitride

18 Electron-specimen interactions: Elastic scattering 18 Back-scattered electron

19 Electron-specimen interactions: Inelastic scattering 19 Inner shell interactions: Characteristic X-rays Secondary electron Outer shell interactions: Continuum X-rays Secondary electron Cathodoluminescence

20 Back-scattered electron (BSE) 20 Beam electrons scattered elastically at high angles Commonly scattered multiple times, so energy of BSE beam energy

21 Electron backscatter coefficient 21 Fraction of beam electrons scattered backward high-z W Au (74) (79) low-z K (19) Si (14) (Z) Large differences between high- and low-atomic number elements Larger differences among low-z elements than among high-z elements

22 Back-scattered electron detector 22 Objective Lens BSE detector A B

23 Back-scattered electron detector 23 Solid-state diode

24 Compositional and topographic imaging with BSE 24 A+B Compositional mode A-B Topographic mode

25 Secondary electron (SE) 25 Specimen electrons mobilized by beam electrons by inelastic scattering (both outer and inner shell interactions) Emitted at low energies (typical: <10 ev) (recall BSE have high energies up to that of the electron beam)

26 Secondary electron detector 26 Located on the side wall of the sample chamber

27 Secondary electron detector 27 (+ve bias)

28 Imaging with the Everhart-Thornley detector 28 Negative Faraday cage bias only BSE Positive Faraday cage bias BSE + SE Surfaces in direct line of sight are illuminated All surfaces are illuminated

29 Cathodoluminescence (CL) 29 Caused by inelastic scattering of beam electrons in semiconductors Filled valence band is separated from an empty conduction band by E gap, characteristic of the compound Electron recombines with the valence band to generate light with energy E gap Electron beam interacts: Valence electron is promoted to the conduction band Trace element impurities produce additional energy levels outside the conduction band, and enable other electron transitions; emitted light has different colors with energies E E gap

30 Cathodoluminescence spectrometer 30 Optical microscope camera (not used) Optical microscope light (turned off) Optical spectrometer (CCD array detector)

31 Intensity Cathodoluminescence spectrum 31 Mn Light wavelength (nm) Dolomite with trace of Mn

32 Hyperspectral CL imaging 32 A continuous (l = 200 to 950 nm) light spectrum is collected at each point of the image area Intensity of nm light: counts (blue shades) Intensity range of nm light: counts (red shades) Intensity of nm light: counts (green shades) Intensity of nm light: counts (red shades)

33 Hyperspectral CL imaging 33 Intensity range of light (all wavelengths) in grey scale Black: no light White: maximum intensity Intensity range of nm light in multicolor scale: Blue ( 0 counts): no light Red (9884 counts): maximum intensity

34 The X-ray spectrum 34 Characteristic X-rays Continuum X-rays

35 Energy Dispersive Spectrometer (EDS) 35 EDS detector: solid-state semiconductor, window and aperture Multichannel analyzer (MCA) processes the X-ray signal

36 Negatively biased surface repels electrons Energy Dispersive Spectrometer (EDS) 36 electron hole X-ray A single crystal of silicon Pure Si is a semiconductor. But impurity of boron, a p-type dopant, makes it a conductor Lithium, an n-type dopant, counteracts the effect of boron and produces an intrinsic semiconductor Lithium-drifted silicon, or Si(Li), p-i-n detector

37 Mean Atomic Number Qualitative analysis with BSE and EDS ilmenite 37 hornblende plagioclase

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist

Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist 12.141 Electron Microprobe Analysis 1 Nilanjan Chatterjee, Ph.D. Principal Research Scientist Massachusetts Institute of Technology Electron Microprobe Facility Department of Earth, Atmospheric and Planetary

More information

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee Massachusetts Institute of Technology Dr. Nilanjan Chatterjee Electron Probe Micro-Analysis (EPMA) Imaging and micrometer-scale chemical compositional analysis of solids Signals produced in The Electron

More information

Part II: Thin Film Characterization

Part II: Thin Film Characterization Part II: Thin Film Characterization General details of thin film characterization instruments 1. Introduction to Thin Film Characterization Techniques 2. Structural characterization: SEM, TEM, AFM, STM

More information

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM

Chapter 9. Electron mean free path Microscopy principles of SEM, TEM, LEEM Chapter 9 Electron mean free path Microscopy principles of SEM, TEM, LEEM 9.1 Electron Mean Free Path 9. Scanning Electron Microscopy (SEM) -SEM design; Secondary electron imaging; Backscattered electron

More information

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn? EPMA - what is it? Precise and accurate quantitative chemical analyses of micron-size

More information

Modern Optical Spectroscopy

Modern Optical Spectroscopy Modern Optical Spectroscopy X-Ray Microanalysis Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ Backscattered

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis MT-0.6026 Electron microscopy Scanning electron microscopy and electron probe microanalysis Eero Haimi Research Manager Outline 1. Introduction Basics of scanning electron microscopy (SEM) and electron

More information

Everhart-Thornley detector

Everhart-Thornley detector SEI Detector Everhart-Thornley detector Microscope chamber wall Faraday cage Scintillator Electrons in Light pipe Photomultiplier Electrical signal out Screen Quartz window +200 V +10 kv Always contains

More information

Why microscopy?

Why microscopy? Electron Microscopy Why microscopy? http://www.cellsalive.com/howbig.htm 2 Microscopes are used as magnifying tools (although not exclusively as will see later on). The resolution of the human eye is limited

More information

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai

HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS. SCSAM Short Course Amir Avishai HOW TO APPROACH SCANNING ELECTRON MICROSCOPY AND ENERGY DISPERSIVE SPECTROSCOPY ANALYSIS SCSAM Short Course Amir Avishai RESEARCH QUESTIONS Sea Shell Cast Iron EDS+SE Fe Cr C Objective Ability to ask the

More information

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition

Gaetano L Episcopo. Scanning Electron Microscopy Focus Ion Beam and. Pulsed Plasma Deposition Gaetano L Episcopo Scanning Electron Microscopy Focus Ion Beam and Pulsed Plasma Deposition Hystorical background Scientific discoveries 1897: J. Thomson discovers the electron. 1924: L. de Broglie propose

More information

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM

SEM. Chemical Analysis in the. Elastic and Inelastic scattering. Chemical analysis in the SEM. Chemical analysis in the SEM THE UNIVERSITY Chemical Analysis in the SEM Ian Jones Centre for Electron Microscopy OF BIRMINGHAM Elastic and Inelastic scattering Electron interacts with one of the orbital electrons Secondary electrons,

More information

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high?

= 6 (1/ nm) So what is probability of finding electron tunneled into a barrier 3 ev high? STM STM With a scanning tunneling microscope, images of surfaces with atomic resolution can be readily obtained. An STM uses quantum tunneling of electrons to map the density of electrons on the surface

More information

Basic structure of SEM

Basic structure of SEM Table of contents Basis structure of SEM SEM imaging modes Comparison of ordinary SEM and FESEM Electron behavior Electron matter interaction o Elastic interaction o Inelastic interaction o Interaction

More information

Practical course in scanning electron microscopy

Practical course in scanning electron microscopy Practical course in scanning electron microscopy Fortgeschrittenen Praktikum an der Technischen Universität München Wintersemester 2017/2018 Table of contents 1. Introduction 3 2. Formation of an electron

More information

Scanning Electron Microscopy

Scanning Electron Microscopy Scanning Electron Microscopy Field emitting tip Grid 2kV 100kV Anode ZEISS SUPRA Variable Pressure FESEM Dr Heath Bagshaw CMA bagshawh@tcd.ie Why use an SEM? Fig 1. Examples of features resolvable using

More information

h p λ = mν Back to de Broglie and the electron as a wave you will learn more about this Equation in CHEM* 2060

h p λ = mν Back to de Broglie and the electron as a wave you will learn more about this Equation in CHEM* 2060 Back to de Broglie and the electron as a wave λ = mν h = h p you will learn more about this Equation in CHEM* 2060 We will soon see that the energies (speed for now if you like) of the electrons in the

More information

Electron Microprobe Analysis. Course Notes

Electron Microprobe Analysis. Course Notes Electron Microprobe Analysis Course 12.141 Notes Dr. Nilanjan Chatterjee The electron microprobe provides a complete micron-scale quantitative chemical analysis of inorganic solids. The method is nondestructive

More information

Electron Microscopy I

Electron Microscopy I Characterization of Catalysts and Surfaces Characterization Techniques in Heterogeneous Catalysis Electron Microscopy I Introduction Properties of electrons Electron-matter interactions and their applications

More information

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5

Chemical Analysis in TEM: XEDS, EELS and EFTEM. HRTEM PhD course Lecture 5 Chemical Analysis in TEM: XEDS, EELS and EFTEM HRTEM PhD course Lecture 5 1 Part IV Subject Chapter Prio x-ray spectrometry 32 1 Spectra and mapping 33 2 Qualitative XEDS 34 1 Quantitative XEDS 35.1-35.4

More information

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures:

XRF books: Analytical Chemistry, Kellner/Mermet/Otto/etc. 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: 1 3 rd year XRF Spectroscopy Dr. Alan Ryder (R222, Physical Chemistry) 2 lectures: XRF spectroscopy 1 exam question. Notes on: www.nuigalway.ie/nanoscale/3rdspectroscopy.html XRF books: Analytical Chemistry,

More information

M2 TP. Low-Energy Electron Diffraction (LEED)

M2 TP. Low-Energy Electron Diffraction (LEED) M2 TP Low-Energy Electron Diffraction (LEED) Guide for report preparation I. Introduction: Elastic scattering or diffraction of electrons is the standard technique in surface science for obtaining structural

More information

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu

Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy (AES) Prof. Paul K. Chu Auger Electron Spectroscopy Introduction Principles Instrumentation Qualitative analysis Quantitative analysis Depth profiling Mapping Examples The Auger

More information

Electron Microprobe Analysis and Scanning Electron Microscopy

Electron Microprobe Analysis and Scanning Electron Microscopy Electron Microprobe Analysis and Scanning Electron Microscopy Electron microprobe analysis (EMPA) Analytical technique in which a beam of electrons is focused on a sample surface, producing X-rays from

More information

Analytical Methods for Materials

Analytical Methods for Materials Analytical Methods for Materials Lesson 21 Electron Microscopy and X-ray Spectroscopy Suggested Reading Leng, Chapter 3, pp. 83-126; Chapter 4, pp. 127-160; Chapter 6, pp. 191-219 P.J. Goodhew, J. Humphreys

More information

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 19 Chapter 12 There are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry X-ray Techniques include:

More information

Invited Lecture. "Different Aspects of Electron Microscopy. Sardar Vallabhbhai National Institute of Technology, Surat. Deepak Rajput & S.K.

Invited Lecture. Different Aspects of Electron Microscopy. Sardar Vallabhbhai National Institute of Technology, Surat. Deepak Rajput & S.K. Invited Lecture on "Different Aspects of Electron Microscopy at Sardar Vallabhbhai National Institute of Technology, Surat Deepak Rajput & S.K. Tiwary R&D and Product Development Essar Steel Limited Abstract

More information

Transmission Electron Microscopy

Transmission Electron Microscopy L. Reimer H. Kohl Transmission Electron Microscopy Physics of Image Formation Fifth Edition el Springer Contents 1 Introduction... 1 1.1 Transmission Electron Microscopy... 1 1.1.1 Conventional Transmission

More information

EDS User School. Principles of Electron Beam Microanalysis

EDS User School. Principles of Electron Beam Microanalysis EDS User School Principles of Electron Beam Microanalysis Outline 1.) Beam-specimen interactions 2.) EDS spectra: Origin of Bremsstrahlung and characteristic peaks 3.) Moseley s law 4.) Characteristic

More information

Scanning Electron Microscopy & Ancillary Techniques

Scanning Electron Microscopy & Ancillary Techniques Scanning Electron Microscopy & Ancillary Techniques By Pablo G. Caceres-Valencia The prototype of the first Stereoscan supplied by the Cambridge Instrument Company to the dupont Company, U.S.A. (1965)

More information

An Anomalous Contrast in Scanning Electron Microscopy of Insulators: The Pseudo Mirror Effect.

An Anomalous Contrast in Scanning Electron Microscopy of Insulators: The Pseudo Mirror Effect. SCANNING VOL., 35-356 (000) Received: March 7, 000 FAMS, Inc. Accepted with revision: August, 000 An Anomalous Contrast in Scanning Electron Microscopy of Insulators: The Pseudo Mirror Effect. M. BELHAJ

More information

object objective lens eyepiece lens

object objective lens eyepiece lens Advancing Physics G495 June 2015 SET #1 ANSWERS Field and Particle Pictures Seeing with electrons The compound optical microscope Q1. Before attempting this question it may be helpful to review ray diagram

More information

Part I Basics and Methods

Part I Basics and Methods j1 Part I Basics and Methods In-situ Electron Microscopy: Applications in Physics, Chemistry and Materials Science, First Edition. Edited by Gerhard Dehm, James M. Howe, and Josef Zweck. Ó 2012 Wiley-VCH

More information

SEM Optics and Application to Current Research

SEM Optics and Application to Current Research SEM Optics and Application to Current Research Azure Avery May 28, 2008 1 Introduction 1.1 History The optical microscope was invented in the early 17th century. Although revolutionary, the earliest microscopes

More information

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price X Rays & Crystals Characterizing Mineral Chemistry & Structure J.D. Price Light - electromagnetic spectrum Wave behavior vs. particle behavior If atoms are on the 10-10 m scale, we need to use sufficiently

More information

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani

SOLID STATE PHYSICS PHY F341. Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani SOLID STATE PHYSICS PHY F341 Dr. Manjuladevi.V Associate Professor Department of Physics BITS Pilani 333031 manjula@bits-pilani.ac.in Characterization techniques SEM AFM STM BAM Outline What can we use

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011

ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011 ABC s of Electrochemistry series Materials Characterization techniques: SEM and EDS Ana María Valenzuela-Muñiz November 3, 2011 CEER, Department of Chemical and Biomolecular Engineering Outline Introduction

More information

SEM stands for Scanning Electron Microscopy. The earliest known work describing

SEM stands for Scanning Electron Microscopy. The earliest known work describing 1. HISTORY ABOUT SEM SEM stands for Scanning Electron Microscopy. The earliest known work describing the concept of a Scanning Electron Microscope was by M. Knoll (1935) who, along with other pioneers

More information

AP5301/ Name the major parts of an optical microscope and state their functions.

AP5301/ Name the major parts of an optical microscope and state their functions. Review Problems on Optical Microscopy AP5301/8301-2015 1. Name the major parts of an optical microscope and state their functions. 2. Compare the focal lengths of two glass converging lenses, one with

More information

Weak-Beam Dark-Field Technique

Weak-Beam Dark-Field Technique Basic Idea recall bright-field contrast of dislocations: specimen close to Bragg condition, s î 0 Weak-Beam Dark-Field Technique near the dislocation core, some planes curved to s = 0 ) strong Bragg reflection

More information

The illumination source: the electron beam

The illumination source: the electron beam The SEM Column The illumination source: the electron beam The probe of the electron microscope is an electron beam with very high and stable energy (10-100 kev) in order to get images with high resolution.

More information

6. Analytical Electron Microscopy

6. Analytical Electron Microscopy Physical Principles of Electron Microscopy 6. Analytical Electron Microscopy Ray Egerton University of Alberta and National Institute of Nanotechnology Edmonton, Canada www.tem-eels.ca regerton@ualberta.ca

More information

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

Imaging Methods: Scanning Force Microscopy (SFM / AFM) Imaging Methods: Scanning Force Microscopy (SFM / AFM) The atomic force microscope (AFM) probes the surface of a sample with a sharp tip, a couple of microns long and often less than 100 Å in diameter.

More information

Interactions with Matter

Interactions with Matter Manetic Lenses Manetic fields can displace electrons Manetic field can be produced by passin an electrical current throuh coils of wire Manetic field strenth can be increased by usin a soft ferromanetic

More information

Geology 777 Monte Carlo Exercise I

Geology 777 Monte Carlo Exercise I Geology 777 Monte Carlo Exercise I Purpose The goal of this exercise is to get you to think like an electron... to start to think about where electrons from the stream of high energy electrons go when

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8. EPMA IMAGES The attached images and mineral data can be used to supplement an instrument-based lab, or serve as the basis for lab that can be completed without an instrument. Please provide credit for

More information

Electron Microscopy. SEM = Scanning Electron Microscopy TEM = Transmission Electron Microscopy. E. coli, William E. Bentley, Maryland, USA

Electron Microscopy. SEM = Scanning Electron Microscopy TEM = Transmission Electron Microscopy. E. coli, William E. Bentley, Maryland, USA Electron Microscopy Transmission Electron Microscopy SEM = Scanning Electron Microscopy TEM = Transmission Electron Microscopy Sara Henriksson, UCEM 2017-02-16 E. coli, William E. Bentley, Maryland, USA

More information

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler Energetic particles and their detection in situ (particle detectors) Part II George Gloeckler University of Michigan, Ann Arbor, MI University of Maryland, College Park, MD Simple particle detectors Gas-filled

More information

á1181ñ SCANNING ELECTRON MICROSCOPY

á1181ñ SCANNING ELECTRON MICROSCOPY USP 40 General Information / á1181ñ Scanning Electron Microscopy 1 á1181ñ SCANNING ELECTRON MICROSCOPY INTRODUCTION Over the last few decades, electron microscopy has become a reliable investigative tool

More information

Questions/Answers. Chapter 1

Questions/Answers. Chapter 1 Questions/Answers Chapter 1 1.1 What are the advantages of the SEM over optical microscopy? Advantages: Higher resolution and greater depth of field and microchemical analysis Disadvantages: Expensive,

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Optical Microscope Plan Lenses In an "ideal" single-element lens system all planar wave fronts are focused to a point at distance f from the lens; therefore: Image near the optical axis will be in perfect

More information

Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A

Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A EECS 16B Spring 2019 Designing Information Devices and Systems II A. Sahai, J. Roychowdhury, K. Pister Discussion 1A 1 Semiconductor Physics Generally, semiconductors are crystalline solids bonded into

More information

Depth Distribution Functions of Secondary Electron Production and Emission

Depth Distribution Functions of Secondary Electron Production and Emission Depth Distribution Functions of Secondary Electron Production and Emission Z.J. Ding*, Y.G. Li, R.G. Zeng, S.F. Mao, P. Zhang and Z.M. Zhang Hefei National Laboratory for Physical Sciences at Microscale

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Auger Electron Spectroscopy (AES)

Auger Electron Spectroscopy (AES) 1. Introduction Auger Electron Spectroscopy (AES) Silvia Natividad, Gabriel Gonzalez and Arena Holguin Auger Electron Spectroscopy (Auger spectroscopy or AES) was developed in the late 1960's, deriving

More information

ECE Semiconductor Device and Material Characterization

ECE Semiconductor Device and Material Characterization ECE 4813 Semiconductor Device and Material Characterization Dr. Alan Doolittle School of Electrical and Computer Engineering Georgia Institute of Technology As with all of these lecture slides, I am indebted

More information

EEE4106Z Radiation Interactions & Detection

EEE4106Z Radiation Interactions & Detection EEE4106Z Radiation Interactions & Detection 2. Radiation Detection Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za May 06, 2015 EEE4106Z :: Radiation

More information

APPENDICES. Appendix 1

APPENDICES. Appendix 1 Corthouts, T.L., Lageson, D.R., and Shaw, C.A., 2016, Polyphase deformation, dynamic metamorphism and metasomatism of Mount Everest s summit limestone, east central Himalaya, Nepal/Tibet: Lithosphere,

More information

Rutherford Backscattering Spectrometry

Rutherford Backscattering Spectrometry Rutherford Backscattering Spectrometry EMSE-515 Fall 2005 F. Ernst 1 Bohr s Model of an Atom existence of central core established by single collision, large-angle scattering of alpha particles ( 4 He

More information

Single Photon detectors

Single Photon detectors Single Photon detectors Outline Motivation for single photon detection Semiconductor; general knowledge and important background Photon detectors: internal and external photoeffect Properties of semiconductor

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

Chemical Analysis. Energy Dispersive X-Ray Spectroscopy (EDS)

Chemical Analysis. Energy Dispersive X-Ray Spectroscopy (EDS) Chemical Analysis We have so far discussed several of the signals detected on interaction of a high-energy electron beam with a solid sample (secondary, backscattered, transmitted, and diffracted electrons);

More information

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy

PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy PHI 5000 Versaprobe-II Focus X-ray Photo-electron Spectroscopy The very basic theory of XPS XPS theroy Surface Analysis Ultra High Vacuum (UHV) XPS Theory XPS = X-ray Photo-electron Spectroscopy X-ray

More information

The Standard Auger Electron Spectra in The AIST DIO-DB(111); Ge(111)

The Standard Auger Electron Spectra in The AIST DIO-DB(111); Ge(111) Paper The Standard Auger Electron Spectra in The AIST DIO-DB(111); Ge(111) K. Goto, a,* Adel Alkafri, b Y. Ichikawa, b A.Kurokawa, c and Y. Yamauchi a a AIST-Chubu Center, Anagahora 2266, Moriyama-ku,

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Semiconductors Figure 1-1 The Bohr model of an atom showing electrons in orbits

More information

Introduction to Engineering Materials ENGR2000. Dr.Coates

Introduction to Engineering Materials ENGR2000. Dr.Coates Introduction to Engineering Materials ENGR2000 Chapter 18: Electrical Properties Dr.Coates 18.2 Ohm s Law V = IR where R is the resistance of the material, V is the voltage and I is the current. l R A

More information

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile Basic Concepts of Electricity oltage E Current I Ohm s Law Resistance R E = I R Electric Fields An electric field applies a force to a charge Force on positive charge is in direction of electric field,

More information

Lecture: Solid State Chemistry (Festkörperchemie) Part 1. H.J. Deiseroth, SS 2006

Lecture: Solid State Chemistry (Festkörperchemie) Part 1. H.J. Deiseroth, SS 2006 Lecture: Solid State Chemistry (Festkörperchemie) Part 1 H.J. Deiseroth, SS 2006 Resources Resources Textbooks: Shriver, Atkins, Inorganic Chemistry (3rd ed, 1999) W.H. Freeman and Company (Chapter 2,

More information

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Tobias Eggert Ketek GmbH Semiconductor X-Ray Detectors Part A Principles of Semiconductor Detectors 1. Basic Principles 2. Typical Applications 3. Planar Technology 4. Read-out

More information

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM)

CBE Science of Engineering Materials. Scanning Electron Microscopy (SEM) CBE 30361 Science of Engineering Materials Scanning Electron Microscopy (SEM) Scale of Structure Organization Units: micrometer = 10-6 m = 1µm nanometer= 10-9 m = 1nm Angstrom = 10-10 m = 1Å A hair is

More information

Lecture 5. X-ray Photoemission Spectroscopy (XPS)

Lecture 5. X-ray Photoemission Spectroscopy (XPS) Lecture 5 X-ray Photoemission Spectroscopy (XPS) 5. Photoemission Spectroscopy (XPS) 5. Principles 5.2 Interpretation 5.3 Instrumentation 5.4 XPS vs UV Photoelectron Spectroscopy (UPS) 5.5 Auger Electron

More information

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy

Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy. Chemistry 311: Instrumentation Analysis Topic 2: Atomic Spectroscopy Topic 2b: X-ray Fluorescence Spectrometry Text: Chapter 12 Rouessac (1 week) 4.0 X-ray Fluorescence Download, read and understand EPA method 6010C ICP-OES Winter 2009 Page 1 Atomic X-ray Spectrometry Fundamental

More information

Auger Electron Spectroscopy Overview

Auger Electron Spectroscopy Overview Auger Electron Spectroscopy Overview Also known as: AES, Auger, SAM 1 Auger Electron Spectroscopy E KLL = E K - E L - E L AES Spectra of Cu EdN(E)/dE Auger Electron E N(E) x 5 E KLL Cu MNN Cu LMM E f E

More information

tip conducting surface

tip conducting surface PhysicsAndMathsTutor.com 1 1. The diagram shows the tip of a scanning tunnelling microscope (STM) above a conducting surface. The tip is at a potential of 1.0 V relative to the surface. If the tip is sufficiently

More information

CHARACTERIZATION of NANOMATERIALS KHP

CHARACTERIZATION of NANOMATERIALS KHP CHARACTERIZATION of NANOMATERIALS Overview of the most common nanocharacterization techniques MAIN CHARACTERIZATION TECHNIQUES: 1.Transmission Electron Microscope (TEM) 2. Scanning Electron Microscope

More information

Nano-Microscopy. Lecture 2. Scanning and Transmission Electron Microscopies: Principles. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA

Nano-Microscopy. Lecture 2. Scanning and Transmission Electron Microscopies: Principles. Pavel Zinin HIGP, University of Hawaii, Honolulu, USA GG 711: Advanced Techniques in Geophysics and Materials Science Nano-Microscopy. Lecture 2 Scanning and Transmission Electron Microscopies: Principles Pavel Zinin HIGP, University of Hawaii, Honolulu,

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

Scanning Electron Microscopy

Scanning Electron Microscopy Scanning Electron Microscopy Amanpreet Kaur 1 www.reading.ac.uk/emlab Scanning Electron Microscopy What is scanning electron microscopy? Basic features of conventional SEM Limitations of conventional SEM

More information

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu

X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-Ray Photoelectron Spectroscopy (XPS) Prof. Paul K. Chu X-ray Photoelectron Spectroscopy Introduction Qualitative analysis Quantitative analysis Charging compensation Small area analysis and XPS imaging

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

Scanning electron microscopy

Scanning electron microscopy Scanning electron microscopy Fei Quanta Tabletop Hitachi Example: Tin soldier Pb M Sn L Secondary electrons Backscatter electrons EDS analysis Average composition Learning goals: Understanding the principle

More information

MSE 321 Structural Characterization

MSE 321 Structural Characterization Auger Spectroscopy Auger Electron Spectroscopy (AES) Scanning Auger Microscopy (SAM) Incident Electron Ejected Electron Auger Electron Initial State Intermediate State Final State Physical Electronics

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Understanding X-rays: The electromagnetic spectrum

Understanding X-rays: The electromagnetic spectrum Understanding X-rays: The electromagnetic spectrum 1 ULa 13.61 kev 0.09 nm BeKa 0.11 kev 11.27 nm E = hn = h c l where, E : energy, h : Planck's constant, n : frequency c : speed of light in vacuum, l

More information

SEM Doctoral Course MS-636. April 11-13, 2016

SEM Doctoral Course MS-636. April 11-13, 2016 Thomas LaGrange, Ph.D. Faculty Lecturer and Senior Staff Scientist Electron Sources, Optics and Detectors SEM Doctoral Course MS-636 April 11-13, 2016 Summary Electron propagation is only possible through

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Methods of surface analysis

Methods of surface analysis Methods of surface analysis Nanomaterials characterisation I RNDr. Věra Vodičková, PhD. Surface of solid matter: last monoatomic layer + absorbed monolayer physical properties are effected (crystal lattice

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Electrical Resistance

Electrical Resistance Electrical Resistance I + V _ W Material with resistivity ρ t L Resistance R V I = L ρ Wt (Unit: ohms) where ρ is the electrical resistivity 1 Adding parts/billion to parts/thousand of dopants to pure

More information

Quality Assurance. Purity control. Polycrystalline Ingots

Quality Assurance. Purity control. Polycrystalline Ingots Quality Assurance Purity control Polycrystalline Ingots 1 Gamma Spectrometry Nuclide Identification Detection of Impurity Traces 1.1 Nuclides Notation: Atomic Mass Atomic Number Element Neutron Atomic

More information

Homework 2: Forces on Charged Particles

Homework 2: Forces on Charged Particles Homework 2: Forces on Charged Particles 1. In the arrangement shown below, 2 C of positive charge is moved from plate S, which is at a potential of 250 V, to plate T, which is at a potential of 750 V.

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF 2016 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization techniques (1 lecture)

More information

Generation of X-Rays in the SEM specimen

Generation of X-Rays in the SEM specimen Generation of X-Rays in the SEM specimen The electron beam generates X-ray photons in the beam-specimen interaction volume beneath the specimen surface. Some X-ray photons emerging from the specimen have

More information

New technique for in-situ measurement of backscattered and. secondary electron yields for the calculation of signal-to-noise ratio in a SEM

New technique for in-situ measurement of backscattered and. secondary electron yields for the calculation of signal-to-noise ratio in a SEM Journal of Microscopy, Vol. 217, Pt 3 March 2005, pp. 235 240 Received 15 July 2004; accepted 3 November 2004 New technique for in-situ measurement of backscattered and Blackwell Publishing, Ltd. secondary

More information

Photoemission Spectroscopy

Photoemission Spectroscopy FY13 Experimental Physics - Auger Electron Spectroscopy Photoemission Spectroscopy Supervisor: Per Morgen SDU, Institute of Physics Campusvej 55 DK - 5250 Odense S Ulrik Robenhagen,

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information