Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC

Size: px
Start display at page:

Download "Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC"

Transcription

1 Structure of Cement Phases from ab initio Modeling Crystalline C-S-HC Sergey V. Churakov Paul Scherrer Institute Switzerland

2 Cement Phase Composition C-S-H H Solid Solution Model C-S-H C-S-H Lothenbach &Winnefelf(2006) after Kulik & Kersten (2001) Lothenbach et al. (2008)

3 Possible end-members for Amorphous C-S-H C H Solid Solutions CSH C-S-H (I): H Tobermorite (I): Anomalous Solid Solution Normal Tobermorite Ca 5-x Si 6 O 17-2x 2x(OH) Solid Solution 2x 5H 2 O Ca/Si = = Ca 4 Si 6 O 15 (OH) H 2 O Ca 4.5 Si O 16 (OH) 16 5H 2 O C-S-H H (II): Normal Tobermorite Jennite Solid Solution Ca/Si = Ca 4.5 Si 6 O 16 (OH) 5H 2 O Ca 9 Si 6 O 18 (OH) 6 8H 2 O Further relevant C-S-H C H Phases Xonotlite: Ca 6 Si 6 O 17 (OH) 2

4 Nuclear Energy and Safety Research Department Basic Structural Elements of C-S-H Phases Xonotlite 11 Å Tobermorite Jennite Ca6Si6O17(OH)2 Ca4+xSi6O15+2x(OH)2-2x 5H2O Ca9Si6O18(OH)6 8H2O 11 Å 7Å Silicate chain Ca-Layer c b a c b b

5 Method Molecular Dynamics (MD) Newton Equation M k 2 d R dt k 2 = U ( R) R k Must be known Γ({ R k},{ R& k}) Ensemble of position and velocities Average over Ensemble Structure: Bond distances Crystallographic positions Thermodynamics: Energies Temperature Dynamics: IR spectra Diffusion

6 Interaction Potentials Nuclear Energy and Safety Research Department Ab Initio methods Solve Schrödinger equation to obtain energy and forces 2 h 2m 2 Ψ + UΨ = EΨ Empirical force field methods intra-molecular: harmonic bond stretching, bending inter-molecular: electrostatic and van der Waals interaction Ab Initio <=> Empirical Computationally expensive Valid for any P-T conditions and chemistry Correct description of bond breaking/forming up to ~ n 10 2 atoms up to ~ n 10 ps Fast computation Must be calibrated for the system of interest Fail to describe bond breaking/forming up to ~ n 10 6 atoms up to ~ n 10 2 ns

7 Density functional theory Hohenberg & Kohn, 1964; Kohn & Sham 1965; Nuclear Energy and Safety Research Department Schrödinger Equation HΨ( R N ) = EΨ( R3 3 N Kohn-Sham Equation ) Exact Hamiltonian 3N dimensional problem far too complex :-(( H H KS KS ψ ( r ψ 1 N 3 ( r ) = ε... 3 ) = ε KS 1 ψ ( r KS N 1 ψ N 3 ) ( r 3 ) Approximate Hamiltonian 3 dimensional problem but can be solved! :-)) H KS = Kinetic Energy Coulomb Interactio n of Electrons 678 Nuclei Electrons Electrons el + Vˆ ext ( Rnuc ) + Vˆ Hartree [ ρ ] Exact Coulomb Interactio n Quantum effects el Vˆ xc[ ρ ] Approximat ion el ρ ( r) = ψ i ( r) i 2 Major uncertainty

8 xc Nuclear Energy and Safety Research Department Approximations for Exchange and Correlation functional el local density approximation (LDA) Vˆ xc[ ρ ( r homogeneous electron gas generalized gradient approximation (BLYP, PBE,...) ˆ el el V [ ρ ( r), ρ ( r)] Vˆ )] Pseudopotential approximation Radial Electron Wavefuctions in Si Atom an example for Si atom all electro vs. pseudo wavefunctions xc Core Region Valence Region Core Region Valence Region 1s 3s Plane Waves ψ = e i k 2s R [bohr] c i, k ikr Basis set 3s pseudowavefunction 3s true wavefunction R [bohr] Gaussian basis set ψ = i,μϕ μ ϕ μ ( α, l, m, n) = Ne i c αr l m n μ 2 x y z

9 DFT approach used in this work CPMD code (used for oblique supercell) Plane Wave basis set 70 Ry cut-off BLYP functional, MT-pseudopotentials Car-Parrinello MD CP2K/Quickstep code (used for orthogonal supercell) Gaussian and Plane Wave basis set Triple-ζ basis for O and H, double-ζ for Si and Ca PBE functional, Goedeker - pseudopotentials Born Oppenheimer MD

10 Q 2 Xonotlite Ca 6 Si 6 O 17 (OH) 2 Ideal structure from X-ray X studies: Q 3 Experimental Observations NMR: Presence of both Q 2, Q 3 and Q 1 sites Presence OH with different environment and molecular H 2 O IR and TG/DTA: Presence of molecular H 2 O Calculated IR spectra EDS: Ca:Si > 1.0 in disordered samples Experimental arb. units ν Η [cm ] Possible defect formation mechanism {Si} X Si + 2H 2 O ={4H} X Si + SiO 2 CPMD, BLYP, MT-PP, 80 Ry

11 Assumed Defect Formation Mechanism {Si} X Si + 2H 2 O ={4H} X Si + SiO 2 Δ57 kj/mol Δ40 kj/mol Δ5 5 kj/mol Δ0 0 kj/mol {4H} x Q3 {4H} x Q2 {8H} x {Q3,Q3} {8H} x {Q2,Q3} CPMD, BLYP, MT-PP, 80 Ry Churakov & Mandaliev (2008) CCR

12 Thermodynamics of Defects in Xonotlite 2{H = 4 } Q {Si} + 3 Q {Si 3 2} Q3, Q {H 3 8} Q3, Q 3 [{Si2} ][ {H8} ] ΔE Q, Q Q, Q = exp 2 [{H } {Si} ] RT 4 Q 3 Q { Si } 2 Q 3, Q3 1.0 { H } 8 Q Q 3 3, 3 mole fraction K 500K { H 4 } Q { Q 3 Si} Churakov & Mandaliev (2008) CCR

13 Structure of Defects in Xonotlite Nuclear Energy and Safety Research Department Idealized Structure Structure with Defects Si-OH {4H} x Q3 Ca-OH {8H} x {Q3,Q3} H 2 O Churakov & Mandaliev (2008) CCR

14 IR spectra Nuclear Energy and Safety Research Department Ideal arb. units Experimental ν Η [cm ] arb. units Q 3 O10 O9 O5 O6 Structure with defects O ν Η [cm ] Churakov & Mandaliev (2008) CCR

15 Structure of 11 Å Tobermorite Nuclear Energy and Safety Research Department Anomalous Tobermorite Ca 4 Si 6 O 15 (OH) 2 5H 2 O Normal Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O

16 Anomalous 11 Å Tobermorite Ca 4 Si 6 O 15 (OH) 2 5H 2 O Nuclear Energy and Safety Research Department 20 ps NVE ab initio MD trajectory T~ 310 K cp2k/quickstep/gpw, PBE, DZP(Ca,Si), TZ2P(O,H)

17 Preserential orientation of water molecules in anomalous 11 Å Tobermorite A B C D O2 O1 W2 O7 W2 W6 W1,3 O6 W6 O1,O7 W2 W6 W1,3 O6 W6 O1,O7 W2 W3 O1,W2 O7,W2 W1 W6 O6 W3 W2 W1 W6 c c c c b a a b Churakov (2009) Amer. Miner.

18 Preferential orientation of water molecules in anomalous 11 Å Tobermorite 506K 321K c W3 O7,W2 O1,W2 W6 W1 O6 W3 W2 W6 W c, [Å] arb. units W3 W1 arb. units ΔR HB, [Å] h(t) K 506K W1 W c, [Å] b Churakov (2009) Amer. Miner. ΔR HB, [Å] h(t) t, [ps] t, [ps]

19 Normal 11 Å Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O Nuclear Energy and Safety Research Department Merlino et al. (2001) X-ray diffraction

20 Supercell setup Normal 11 Å Tobermorite Ca 4.5 Si 6 O 16 (OH) 5H 2 O Nuclear Energy and Safety Research Department Set 0 Set I Set II Ca2* b a Set III Set IV Set V Merlino et al. (2001) X-ray diffraction

21 Normal 11 Å Tobermorite Nuclear Energy and Safety Research Department Ca 4.5 Si 6 O 16 (OH) 5H 2 O Snapshot form ab initio MD AI MD, PBE, cp2k/quickstep/gpw, 310 K Churakov (2009) EJM

22 X-ray diffraction Normal Tobermorite Nuclear Energy and Safety Research Department Snapshot form ab initio MD Merlino et al. (2001) cp2k/quickstep/gpw, PBE, 310 K

23 Structure of interlayer Ca ion in Normal Tobermorite W6 O7 O6 O1 W6 O1,7 O6 W3 W2 W1 W2 W1,3 W6 O6 W6 O1,7 O2 O6 c c b a Churakov (2009) EJM

24 Calculated vibrational density of state Normal 11 Å Tobermorite W6 O7 W3 W6 O6 W2 O6 O1 W1 b c arb. units CaW1, CaW3 W1, W3 W6 W2 CaW2 c O2 O1 W2 O7 b W2 c W6 W1,3 O6 W6 a O1,O7 W2 OH ν, cm -1 Measured IR spectra ν, cm -1 Yu et al. (1999) 4000 Churakov (2009) EJM

25 Jennite Experimental Observations Ca 9 Si 6 O 18 (OH) 6 8H 2 O XRD: Presence of both Q 2 sites only Presence >Ca-OH linkage only NMR: Presence of both Q 2, and Q 1 sites Presence both >Si-OH and >Ca-OH linkage Bonaccorsi et al. (2004)

26 Jennite Ca 9 Si 6 O 18 (OH) 6 8H 2 O Dynamic Proton Distribution log(ρ H (Γ)) ~ -ΔE/kT O13 O12 R[O8-W1] O8..H..O13 O8..H..O13 W2 W1 O14 R[O8-W1] O8..H..W2 R[W1H] - R[O8H] O8..H..W2 c O11 O13 O12 O2 O11 O2 R[O8-W1] R[W1H] - R[O8H] O8..H..W1 O8..H..W1 b R[W1H] - R[O8H] ΔE = kj mol K MD CPMD, BLYP, MT-PP, 70 Ry Churakov (2008) CNR

27 Summary structure of C-S-H C H phase Xonotlite, Tobermorite and Jennite Nuclear Energy and Safety Research Department Distribution of water and cations in the interlayer of tobermorite and jennite IR and NMR spectra are interpreted on the basis of calculation Preferential formations of defects in Q 3 sites in xonotlite Preferential stability of defects in bridging tetrahedra of CSH phases Dangling O-sites O on the bridging Si tetrahedra of jennite are de-protonated The dangling de-protonated sites are likely sorption sites

28 Acknowledgments Peter Mandaliev Jan Tits Erich Wieland Dmitri Kulik Marcella Iannuzzi-Mauri Matthias Krack

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn

Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride. Dimer. Philip Straughn Exchange Correlation Functional Investigation of RT-TDDFT on a Sodium Chloride Dimer Philip Straughn Abstract Charge transfer between Na and Cl ions is an important problem in physical chemistry. However,

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Ab initio molecular dynamics

Ab initio molecular dynamics Ab initio molecular dynamics Kari Laasonen, Physical Chemistry, Aalto University, Espoo, Finland (Atte Sillanpää, Jaakko Saukkoriipi, Giorgio Lanzani, University of Oulu) Computational chemistry is a field

More information

Car-Parrinello Molecular Dynamics

Car-Parrinello Molecular Dynamics Car-Parrinello Molecular Dynamics Eric J. Bylaska HPCC Group Moral: A man dreams of a miracle and wakes up with loaves of bread Erich Maria Remarque Molecular Dynamics Loop (1) Compute Forces on atoms,

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic structure calculations: fundamentals George C. Schatz Northwestern University Electronic Structure (often called Quantum Chemistry) calculations use quantum mechanics to determine the wavefunctions

More information

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools to help increase student understanding of material

More information

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems

Molecular Mechanics. I. Quantum mechanical treatment of molecular systems Molecular Mechanics I. Quantum mechanical treatment of molecular systems The first principle approach for describing the properties of molecules, including proteins, involves quantum mechanics. For example,

More information

Set the initial conditions r i. Update neighborlist. Get new forces F i

Set the initial conditions r i. Update neighborlist. Get new forces F i v Set the initial conditions r i ( t 0 ), v i ( t 0 ) Update neighborlist Quantum mechanical models Get new forces F i ( r i ) Solve the equations of motion numerically over time step Δt : r i ( t n )

More information

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method

An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Fakultät für Mathematik und Naturwissenschaften - Lehrstuhl für Physikalische Chemie I / Theoretische Chemie An Approximate DFT Method: The Density-Functional Tight-Binding (DFTB) Method Jan-Ole Joswig

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Algorithms and Computational Aspects of DFT Calculations

Algorithms and Computational Aspects of DFT Calculations Algorithms and Computational Aspects of DFT Calculations Part I Juan Meza and Chao Yang High Performance Computing Research Lawrence Berkeley National Laboratory IMA Tutorial Mathematical and Computational

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci)

Reactivity and Organocatalysis. (Adalgisa Sinicropi and Massimo Olivucci) Reactivity and Organocatalysis (Adalgisa Sinicropi and Massimo Olivucci) The Aldol Reaction - O R 1 O R 1 + - O O OH * * H R 2 R 1 R 2 The (1957) Zimmerman-Traxler Transition State Counterion (e.g. Li

More information

Density Functional Theory

Density Functional Theory Density Functional Theory Iain Bethune EPCC ibethune@epcc.ed.ac.uk Overview Background Classical Atomistic Simulation Essential Quantum Mechanics DFT: Approximations and Theory DFT: Implementation using

More information

Introduction to density-functional theory. Emmanuel Fromager

Introduction to density-functional theory. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Institut

More information

Lecture 8: Introduction to Density Functional Theory

Lecture 8: Introduction to Density Functional Theory Lecture 8: Introduction to Density Functional Theory Marie Curie Tutorial Series: Modeling Biomolecules December 6-11, 2004 Mark Tuckerman Dept. of Chemistry and Courant Institute of Mathematical Science

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

MD simulation: output

MD simulation: output Properties MD simulation: output Trajectory of atoms positions: e. g. diffusion, mass transport velocities: e. g. v-v autocorrelation spectrum Energies temperature displacement fluctuations Mean square

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 14 Molecular Models David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Review Monte Carlo ensemble averaging, no dynamics easy

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122

CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 19122 CLIMBING THE LADDER OF DENSITY FUNCTIONAL APPROXIMATIONS JOHN P. PERDEW DEPARTMENT OF PHYSICS TEMPLE UNIVERSITY PHILADELPHIA, PA 191 THANKS TO MANY COLLABORATORS, INCLUDING SY VOSKO DAVID LANGRETH ALEX

More information

The electronic structure of materials 2 - DFT

The electronic structure of materials 2 - DFT Quantum mechanics 2 - Lecture 9 December 19, 2012 1 Density functional theory (DFT) 2 Literature Contents 1 Density functional theory (DFT) 2 Literature Historical background The beginnings: L. de Broglie

More information

First-principles Molecular Dynamics Simulations

First-principles Molecular Dynamics Simulations First-principles Molecular Dynamics Simulations François Gygi University of California, Davis fgygi@ucdavis.edu http://eslab.ucdavis.edu http://www.quantum-simulation.org MICCoM Computational School, Jul

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Molecular Mechanics by Ju Li. Given August 9, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use

More information

Ab initio phonon calculations in mixed systems

Ab initio phonon calculations in mixed systems Ab initio phonon calculations in mixed systems Andrei Postnikov apostnik@uos.de Outline: Experiment vs. ab initio theory Ways of theory: linear response and frozen phonon approaches Applications: Be x

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Ab Ini'o Molecular Dynamics (MD) Simula?ons

Ab Ini'o Molecular Dynamics (MD) Simula?ons Ab Ini'o Molecular Dynamics (MD) Simula?ons Rick Remsing ICMS, CCDM, Temple University, Philadelphia, PA What are Molecular Dynamics (MD) Simulations? Technique to compute statistical and transport properties

More information

Computational Modeling Software and their applications

Computational Modeling Software and their applications Computational Modeling Software and their applications June 21, 2011 Damilola Daramola Center for Electrochemical Engineering Research ABC s of electrochemistry Introduction Computational Modeling the

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

1 Density functional theory (DFT)

1 Density functional theory (DFT) 1 Density functional theory (DFT) 1.1 Introduction Density functional theory is an alternative to ab initio methods for solving the nonrelativistic, time-independent Schrödinger equation H Φ = E Φ. The

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations

Institut Néel Institut Laue Langevin. Introduction to electronic structure calculations Institut Néel Institut Laue Langevin Introduction to electronic structure calculations 1 Institut Néel - 25 rue des Martyrs - Grenoble - France 2 Institut Laue Langevin - 71 avenue des Martyrs - Grenoble

More information

Introduction to first-principles modelling and CASTEP

Introduction to first-principles modelling and CASTEP to first-principles modelling and Phil Hasnip to + Atomistic Simulations If we know what the bonding in a material is beforehand, then we can often find good expressions for the forces between atoms, e.g.

More information

Molecular Mechanics: The Ab Initio Foundation

Molecular Mechanics: The Ab Initio Foundation Molecular Mechanics: The Ab Initio Foundation Ju Li GEM4 Summer School 2006 Cell and Molecular Mechanics in BioMedicine August 7 18, 2006, MIT, Cambridge, MA, USA 2 Outline Why are electrons quantum? Born-Oppenheimer

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

CHE3935. Lecture 4 Quantum Mechanical Simulation Methods Continued

CHE3935. Lecture 4 Quantum Mechanical Simulation Methods Continued CHE3935 Lecture 4 Quantum Mechanical Simulation Methods Continued 1 OUTLINE Review Introduction to CPMD MD and ensembles The functionals of density functional theory Return to ab initio methods Binding

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Time-dependent density functional theory

Time-dependent density functional theory Time-dependent density functional theory E.K.U. Gross Max-Planck Institute for Microstructure Physics OUTLINE LECTURE I Phenomena to be described by TDDFT Some generalities on functional theories LECTURE

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry room B430, Chemicum 4th floor vesa.hanninen@helsinki.fi September 3, 2013 Introduction and theoretical backround September

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionals by Michel Côté Université de Montréal Département de physique Eamples Carbazole molecule Inside of diamant Réf: Jean-François Brière http://www.phys.umontreal.ca/~michel_

More information

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor

Spring College on Computational Nanoscience May Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor 2145-25 Spring College on Computational Nanoscience 17-28 May 2010 Variational Principles, the Hellmann-Feynman Theorem, Density Functional Theor Stefano BARONI SISSA & CNR-IOM DEMOCRITOS Simulation Center

More information

Electronic structure, plane waves and pseudopotentials

Electronic structure, plane waves and pseudopotentials Electronic structure, plane waves and pseudopotentials P.J. Hasnip Spectroscopy Workshop 2009 We want to be able to predict what electrons and nuclei will do from first principles, without needing to know

More information

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density 1. SIESTA DFT In a Nutshell Introduction to SIESTA Atomic Orbitals Capabilities Resources 2. TranSIESTA Transport in the Nanoscale - motivation Boundary Conditions: Open systems Greens functions and charge

More information

Introduction to DFTB. Marcus Elstner. July 28, 2006

Introduction to DFTB. Marcus Elstner. July 28, 2006 Introduction to DFTB Marcus Elstner July 28, 2006 I. Non-selfconsistent solution of the KS equations DFT can treat up to 100 atoms in routine applications, sometimes even more and about several ps in MD

More information

Module 6 1. Density functional theory

Module 6 1. Density functional theory Module 6 1. Density functional theory Updated May 12, 2016 B A DDFT C K A bird s-eye view of density-functional theory Authors: Klaus Capelle G http://arxiv.org/abs/cond-mat/0211443 R https://trac.cc.jyu.fi/projects/toolbox/wiki/dft

More information

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland 1) Question. Two methods which are widely used for the optimization of molecular geometies are the Steepest descents and Newton-Raphson

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

The Plane-Wave Pseudopotential Method

The Plane-Wave Pseudopotential Method Hands-on Workshop on Density Functional Theory and Beyond: Computational Materials Science for Real Materials Trieste, August 6-15, 2013 The Plane-Wave Pseudopotential Method Ralph Gebauer ICTP, Trieste

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane

A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane A Molecular Dynamics Simulation of a Homogeneous Organic-Inorganic Hybrid Silica Membrane Supplementary Information: Simulation Procedure and Physical Property Analysis Simulation Procedure The molecular

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz May 27, 2012 Large barrier-activated processes time-dependent bias potential extended Lagrangian formalism Basic idea: during the MD dynamics

More information

Bert de Groot, Udo Schmitt, Helmut Grubmüller

Bert de Groot, Udo Schmitt, Helmut Grubmüller Computergestützte Biophysik I Bert de Groot, Udo Schmitt, Helmut Grubmüller Max Planck-Institut für biophysikalische Chemie Theoretische und Computergestützte Biophysik Am Fassberg 11 37077 Göttingen Tel.:

More information

Tight-Binding Model of Electronic Structures

Tight-Binding Model of Electronic Structures Tight-Binding Model of Electronic Structures Consider a collection of N atoms. The electronic structure of this system refers to its electronic wave function and the description of how it is related to

More information

Recent advances in development of single-point orbital-free kinetic energy functionals

Recent advances in development of single-point orbital-free kinetic energy functionals PacifiChem 2010 p. 1/29 Recent advances in development of single-point orbital-free kinetic energy functionals Valentin V. Karasiev vkarasev@qtp.ufl.edu Quantum Theory Project, Departments of Physics and

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Al 2 O 3. Al Barrier Layer. Pores

Al 2 O 3. Al Barrier Layer. Pores Overview of DFT Calculations for Nanoscience and Nanotechnology Oğuz Gülseren Al 2 O 3 Al Barrier Layer Pores Jules Verne A Trip to the Moon, 1865 Nanostructures: a. Contain a countable number of atoms

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Large Scale Electronic Structure Calculations

Large Scale Electronic Structure Calculations Large Scale Electronic Structure Calculations Jürg Hutter University of Zurich 8. September, 2008 / Speedup08 CP2K Program System GNU General Public License Community Developers Platform on "Berlios" (cp2k.berlios.de)

More information

Supporting Information for. Dynamics Study"

Supporting Information for. Dynamics Study Supporting Information for "CO 2 Adsorption and Reactivity on Rutile TiO 2 (110) in Water: An Ab Initio Molecular Dynamics Study" Konstantin Klyukin and Vitaly Alexandrov,, Department of Chemical and Biomolecular

More information

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno Quantum Chemical Simulations and Descriptors Dr. Antonio Chana, Dr. Mosè Casalegno Classical Mechanics: basics It models real-world objects as point particles, objects with negligible size. The motion

More information

Before we start: Important setup of your Computer

Before we start: Important setup of your Computer Before we start: Important setup of your Computer change directory: cd /afs/ictp/public/shared/smr2475./setup-config.sh logout login again 1 st Tutorial: The Basics of DFT Lydia Nemec and Oliver T. Hofmann

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory

Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory Electronic structure theory: Fundamentals to frontiers. 2. Density functional theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley

More information

The Projector Augmented Wave method

The Projector Augmented Wave method The Projector Augmented Wave method Advantages of PAW. The theory. Approximations. Convergence. 1 The PAW method is... What is PAW? A technique for doing DFT calculations efficiently and accurately. An

More information

Introduction to First-Principles Method

Introduction to First-Principles Method Joint ICTP/CAS/IAEA School & Workshop on Plasma-Materials Interaction in Fusion Devices, July 18-22, 2016, Hefei Introduction to First-Principles Method by Guang-Hong LU ( 吕广宏 ) Beihang University Computer

More information

Key concepts in Density Functional Theory

Key concepts in Density Functional Theory From the many body problem to the Kohn-Sham scheme ILM (LPMCN) CNRS, Université Lyon 1 - France European Theoretical Spectroscopy Facility (ETSF) December 12, 2012 Lyon Outline 1 The many-body problem

More information

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2

Yingwei Wang Computational Quantum Chemistry 1 Hartree energy 2. 2 Many-body system 2. 3 Born-Oppenheimer approximation 2 Purdue University CHM 67300 Computational Quantum Chemistry REVIEW Yingwei Wang October 10, 2013 Review: Prof Slipchenko s class, Fall 2013 Contents 1 Hartree energy 2 2 Many-body system 2 3 Born-Oppenheimer

More information

Water Oxidation on Porphyrines. A First-principles Study ADAM ARVIDSSON

Water Oxidation on Porphyrines. A First-principles Study ADAM ARVIDSSON Water Oxidation on Porphyrines A First-principles Study ADAM ARVIDSSON Department of Applied Physics Division of Chemical Physics Chalmers University of Technology Gothenburg, Sweden 2014 Thesis for the

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory

DFT and beyond: Hands-on Tutorial Workshop Tutorial 1: Basics of Electronic Structure Theory DFT and beyond: Hands-on Tutorial Workshop 2011 Tutorial 1: Basics of Electronic Structure Theory V. Atalla, O. T. Hofmann, S. V. Levchenko Theory Department, Fritz-Haber-Institut der MPG Berlin July 13,

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Ab initio molecular dynamics

Ab initio molecular dynamics Ab initio molecular dynamics Molecular dynamics Why? allows realistic simulation of equilibrium and transport properties in Nature ensemble averages can be used for statistical mechanics time evolution

More information

Ab initio molecular dynamics: Basic Theory and Advanced Met

Ab initio molecular dynamics: Basic Theory and Advanced Met Ab initio molecular dynamics: Basic Theory and Advanced Methods Uni Mainz October 30, 2016 Bio-inspired catalyst for hydrogen production Ab-initio MD simulations are used to learn how the active site

More information

Projector augmented wave Implementation

Projector augmented wave Implementation Projector augmented wave Implementation Peter. E. Blöchl Institute for Theoretical Physics Clausthal University of Technology, Germany http://www.pt.tu-clausthal.de/atp/ 1 = Projector augmented wave +

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Ab initio molecular dynamics and nuclear quantum effects

Ab initio molecular dynamics and nuclear quantum effects Ab initio molecular dynamics and nuclear quantum effects Luca M. Ghiringhelli Fritz Haber Institute Hands on workshop density functional theory and beyond: First principles simulations of molecules and

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler http://www.fhi-berlin.mpg.de/th/th.html I. From the many-particle problem to the Kohn-Sham functional II. From

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Integrated Computational Materials Engineering Education

Integrated Computational Materials Engineering Education Integrated Computational Materials Engineering Education Lecture on Density Functional Theory An Introduction Mark Asta Dept. of Materials Science and Engineering, University of California, Berkeley &

More information

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface Supporting Information for Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite Edge Water Interface Zhen Jiang, Konstantin Klyukin, and Vitaly Alexandrov,, Department

More information

Parameterization of a reactive force field using a Monte Carlo algorithm

Parameterization of a reactive force field using a Monte Carlo algorithm Parameterization of a reactive force field using a Monte Carlo algorithm Eldhose Iype (e.iype@tue.nl) November 19, 2015 Where innovation starts Thermochemical energy storage 2/1 MgSO 4.xH 2 O+Q MgSO 4

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal Study of Ozone in Tribhuvan University, Kathmandu, Nepal Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal 1 Country of the Mt Everest 2 View of the Mt Everest 3 4 5

More information

The rôle of surfaces in prebiotic chemistry. Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino

The rôle of surfaces in prebiotic chemistry. Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino The rôle of surfaces in prebiotic chemistry Piero Ugliengo University of Torino Dip. Chimica Via P. Giuria, 7 - Torino 1 A collaborative work Dip. Chimica - NIS Centre Torino University TO BCN Dep. Quimica

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information