Intro to Quantitative Geology

Size: px
Start display at page:

Download "Intro to Quantitative Geology"

Transcription

1 Introduction to Quantitative Geology Lecture 5 Natural diffusion: Hillslope sediment transport, Earth s thermal field Lecturer: David Whipp david.whipp@helsinki.fi

2 Goals of this lecture Provide a quick introduction to the diffusion process Introduce hillslope diffusive processes (heave/creep, solifluction, rainsplash) Present a short example of heat conduction in the Earth 3

3 Natural diffusion What comes to mind when you think about diffusion? 4

4 Diffusion as a geological process Grain boundary sliding (diffusion creep) 5

5 4 He diffusion Pristine apatite Damaged apatite 4 He produced by radioactive decay may not diffuse equally within a mineral grain 4 He diffusion in the mineral apatite Shuster et al.,

6 Diffusion as a geological process Rain splash results in downhill diffusion of soil/sediment 7

7 Diffusion as a geological process Heat conduction is a diffusive heat transfer process It can be the dominant heat transfer process in tectonically inactive regions (i.e., here) Popov et al.,

8 Diffusion as a geological process Popov et al., 1999 Dominantly conductive heat transfer is typically reflected in a linear relationship between! and " 9

9 Diffusion as a geological process Popov et al., 1999 Dominantly conductive heat transfer is typically reflected in a linear relationship between! and " 10

10 General concepts of diffusion Diffusion is a process resulting in mass transport or mixing as a result of the random motion of diffusing particles Diffusion reduces gradients Net motion of mass or transfer of energy is from regions of high concentration to regions of low concentration This definition is OK for us, but not perfect Hillslope diffusion is a name given to the overall behavior of numerous surface processes that are not themselves diffusion processes based on the definition above 11

11 The diffusion process 12

12 The diffusion process Concentration gradient 13

13 General concepts of diffusion Diffusion is a process resulting in mass transport or mixing as a result of the random motion of diffusing particles Net motion of mass or transfer of energy is from regions of high concentration to regions of low concentration Diffusion reduces concentration gradients This definition is OK for true diffusion processes, but there are also numerous geological processes that are not themselves diffusion processes, but result in diffusion-like behavior Hillslope diffusion is a name given to the overall behavior of various surface processes that transfer mass on hillslopes in a diffusion-like manner 14

14 A more quantitative definition Diffusion occurs when a conservative property moves through space at a rate proportional to a gradient Conservative property: A quantity that must be conserved in the system (e.g., mass, energy, momentum) Rate proportional to a gradient: Movement occurs in direct relationship to the change in concentration Consider a one hot piece of metal that is put in contact with a cold piece of metal. Along the interface the change in temperature will be most rapid when the temperature difference is largest 15

15 A mathematical definition Consider the example to the left of the concentration of some atoms A and B We can think of formulate the diffusion of atoms of A in terms of their flux # across the red line with time q = where $ is a constant called the diffusivity, %A is the concentration of atoms of A, and & is the spatial coordinate From this, we can see the flux of A is directly proportional to the change in concentration %A along an infinitesimal length & (the concentration gradient) 16

16 A mathematical definition If we assume that mass is conserved, we can say that the change in concentration %A in the infinitesimal time ' is a function of the change in the flux of A # across an infinitesimal distance @x What?!? Essentially, all this says is that the concentration of A will change based on the flux across a reference face at position & minus the flux across a reference face at position & + (& 17

17 Let s see if we get it & & + (& q = A @x Based on our two equations for diffusion, how do you expect the concentration of atoms of A %A to change between positions & and & + (&? Think in terms of the mass flux 18

18 Let s see if we get it & & + (& q = A @x What about now? How do you expect the concentration of atoms of A %A to change between positions & and & + (&? Think in terms of the mass flux 19

19 General concepts of diffusion So our definitions of diffusion to this point are OK for true diffusion processes, but there are also numerous geological processes that are not themselves diffusion processes, but result in diffusion-like behaviour Hillslope diffusion is a name given to the overall behaviour of various surface processes that transfer mass on hillslopes in a diffusion-like manner 20

20 Erosional processes Erosional processes are divided between short range (e.g., hillslope) and long range (e.g., fluvial) transport processes 21

21 Hillslope processes Hillslope processes comprise the different types of mass movements that occur on hillslopes Slides refer to cohesive blocks of material moving on a well-defined surface of sliding Flows move entirely by differential shearing within the transported mass with no clear plane at the base of the flow Heave results from disrupting forces acting perpendicular to the ground surface by expansion of the material 22

22 Hillslope processes Hillslope processes comprise the different types of mass movements that occur on hillslopes Slides refer to cohesive blocks of material moving on a well-defined surface of sliding Flows move entirely by differential shearing within the transported mass with no clear plane at the base of the flow Our focus Heave results from disrupting forces acting perpendicular to the ground surface by expansion of the material 23

23 Mass movement processes Creep is almost too slow to monitor Fig. 4.27, Ritter et al.,

24 Heave and creep Creep: The extremely slow movement of material in response to gravity Heave: The vertical movement of unconsolidated particles in response to expansion and contraction, resulting in a net downslope movement on even the slightest slopes Seasonal creep or soil creep is periodically aided by heaving 25

25 Heave and creep Nearly vertical Romney shale displaced by seasonal creep Fig. 4.28, Ritter et al.,

26 Heave and creep Fig. 4.29, Ritter et al.,

27 How does heaving work? Near-surface material moves perpendicular to the surface during expansion (E) Expansion can result from swelling or freezing In theory, particles settle vertically downward during contraction (C) In reality, particle settling is not vertical, but follows a path closer to D Fig. 4.30, Ritter et al., 2002 What influences the rate of downslope material transport by heaving? Slope angle, soil/regolith moisture, particle size/ composition 28

28 How does heaving work? Near-surface material moves perpendicular to the surface during expansion (E) Swelling can result from swelling or freezing In theory, particles settle vertically downward during contraction (C) In reality, particle settling is not vertical, but follows a path closer to D Fig. 4.30, Ritter et al., 2002 Based on this concept, what would you expect to influence the rates of creep? 29

29 How does heaving work? Near-surface material moves perpendicular to the surface during expansion (E) Swelling can result from swelling or freezing In theory, particles settle vertically downward during contraction (C) In reality, particle settling is not vertical, but follows a path closer to D Fig. 4.30, Ritter et al., 2002 Based on this concept, what would you expect to influence the rates of creep? Slope angle, soil/regolith moisture, particle size/ composition 30

30 Mass movement by heaving Creep rates vary with depth and soil/ regolith composition Fig. 4.31, Ritter et al.,

31 Frost creep and solifluction Solifluction occurs in saturated soils, often in periglacial regions In periglacial settings, frost heave leads to expansion of the near-surface material During warm periods, saturated material at the surface flows downslope above the impermeable permafrost beneath Fig b, Ritter et al.,

32 Rain splash Rain splash transport refers to the downslope drift of grains on a sloped surface as a result of displacement by raindrop impacts Although this process can produce significant downslope mass transport, it is generally less significant than heave 33

33 Studying rain splash Experimental setup: Rain drops released from a syringe ~5 m above a dry sand target Drops travel down a pipe to avoid interference by wind Various drop sizes (2-4 mm), sand grain sizes ( mm) and hillslope angles High-speed camera used to capture raindrop impact and sand grain motion Furbish et al.,

34 Studying rain splash Dry sand grains are displaced following raindrop impact Miniature bolide impacts (?) Furbish et al.,

35 Studying rain splash More particles drift downslope as slope angle increase Furbish et al.,

36 Common features What do all of these sediment transport processes have in common? In each case, the rate of transport is strongly dependent on the hillslope angle Steeper slopes result in faster downslope transport In other words, the flux of mass is proportional to the topographic gradient This suggests these erosional processes can be modelled as diffusive 37

37 Heat in the Earth 38

38 Heat transfer in the Earth Conduction: The diffusive transfer of heat by kinetic atomic or molecular interactions within the material. Also known as thermal diffusion. Advection: The transfer of heat by physical movement of molecules or atoms within a material. A type of convection, mostly applied to heat transfer in solid materials. Production: Not really a heat transfer process, but rather a source of heat. Sources in the lithosphere include radioactive decay, friction in deforming rock or chemical reactions such as phase transitions. 39

39 Heat transfer in the Earth Conduction: The diffusive transfer of heat by kinetic atomic or molecular interactions within the material. Also known as thermal diffusion. Advection: The transfer of heat by physical movement of molecules or atoms within a material. A type of convection, mostly applied to heat transfer in solid materials. Production: Not really a heat transfer process, but rather a source of heat. Sources in the lithosphere include radioactive decay, friction in deforming rock or chemical reactions such as phase transitions. 40

40 Heat conduction in the Earth Turcotte and Schubert, 2002 Cooling of a 2-m wide dike following emplacement Time-dependent heat conduction processes are nice examples of thermal diffusion Changes in boundary temperatures take time to propagate 41

41 Heat conduction in the Earth Turcotte and Schubert, 2002 Cooling of a 2-m wide dike following emplacement Time-dependent heat conduction processes are nice examples of thermal diffusion Changes in boundary temperatures take time to propagate 42

42 Heat conduction in the Earth Turcotte Heat and Transfer Schubert, 2002 Cooling of a 2-m wide dike following emplacement Surface temperature changes over the past 500 a Huang et al., 2000 Global Time-dependent heat conduction processes are nice examples of thermal diffusion Temperature profiles at different times during dike solidifica- Temperature relative to present day (K) Northern H emisphere Southern H emisphere Changes in boundary temperatures take time to propagate ountry rock and the solidified magma from Equation (4 139) he temperatureprofiles at several times are given in Figure Use the results of the sudden half-space heating problem, 17), to estimate the time required for dike Intro to solidification Quantitative Geology by b. Howdoesthistimecomparewiththe10.9dayscomputed Year 43

43 Recap Diffusion is a mass transport or mixing process resulting from random motion of diffusing particles Hillslope diffusion occurs as a result of numerous processes, notably heave Heat conduction is an important thermal process where thermal energy diffuses from hot regions to cold regions 44

44 References Allen, P. A. (1997). Earth Surface Processes (1st ed.). Wiley-Blackwell. Furbish, D. J., Hamner, K. K., Schmeeckle, M., Borosund, M. N., & Mudd, S. M. (2007). Rain splash of dry sand revealed by high-speed imaging and sticky paper splash targets. J. Geophys. Res., 112(F1), F doi: /2006JF Huang, S., Pollack, H. N., & Shen, P.-Y. (2000). Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 403(6771), doi: / Popov, Y. A., Pevzner, S. L., Pimenov, V. P., & Romushkevich, R. A. (1999). New geothermal data from the Kola superdeep well SG-3. Tectonophysics, 306(3), Ritter, D. F., Kochel, R. C., & Miller, J. R. (2002). Process Geomorphology (4 ed.). MgGraw-Hill Higher Education. Shuster, D. L., Flowers, R. M., & Farley, K. A. (2006). The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249(3-4), Turcotte, D. L., & Schubert, G. (2002). Geodynamics (2nd ed.). Cambridge, UK: Cambridge University Press. 45

Intro to Quantitative Geology

Intro to Quantitative Geology Introduction to Quantitative Geology Natural diffusion: Hillslope sediment transport Lecturer: David Whipp david.whipp@helsinki.fi 13.11.2017 3 Goals of this lecture Introduce the diffusion process Present

More information

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting Mass Wasting Movement of earth materials downslope, driven by Gravitational Forces. Landslides - general term for rock or soil movement. In U.S., on average, mass wasting causes 1 to 2 billion dollars

More information

Geodynamics Lecture 8 Thermal processes in the lithosphere

Geodynamics Lecture 8 Thermal processes in the lithosphere Geodynamics Lecture 8 Thermal processes in the lithosphere Lecturer: David Whipp david.whipp@helsinki.fi 25.9.2014 Geodynamics www.helsinki.fi/yliopisto 2 Goals of this lecture Introduce time dependence

More information

Periglacial Geomorphology

Periglacial Geomorphology Periglacial Geomorphology Periglacial Geomorphology Periglacial: literally means around glacial - term introduced in 1909 to describe landforms and processes around glaciated areas. Periglacial environments:

More information

Chapter 11 10/30/2013. Mass Wasting. Introduction. Factors That Influence Mass Wasting. Introduction. Factors That Influence Mass Wasting

Chapter 11 10/30/2013. Mass Wasting. Introduction. Factors That Influence Mass Wasting. Introduction. Factors That Influence Mass Wasting Introduction Chapter 11 Mass wasting - The downslope movement of material resulting from the force of gravity. Mass Wasting Mass wasting results when the force of gravity acting on a slope exceeds the

More information

Mass Wasting: The Work of Gravity

Mass Wasting: The Work of Gravity Chapter 15 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Mass Wasting: The Work of Gravity Tarbuck and Lutgens Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the

More information

Earth Science, 10e. Edward J. Tarbuck & Frederick K. Lutgens

Earth Science, 10e. Edward J. Tarbuck & Frederick K. Lutgens Earth Science, 10e Edward J. Tarbuck & Frederick K. Lutgens Weathering, Soil, and Mass Wasting Chapter 3 Earth Science, 10e Stan Hatfield and Ken Pinzke Southwestern Illinois College Earth's external processes

More information

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere.

Biosphere. All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere. Unit 1 Study Guide Earth s Spheres Biosphere All living things, plants, animals, (even you!) are part of the zone of the earth called the biosphere. Hydrosphere Water covers ¾ of the earth, made up mostly

More information

Intro to Quantitative Geology

Intro to Quantitative Geology Introduction to Quantitative Geology Lesson 13.1 Basic concepts of thermochronology Lecturer: David Whipp david.whipp@helsinki.fi 4.12.17 3 Goals of this lecture Introduce the basic concepts of thermochronology

More information

Understanding Earth Fifth Edition

Understanding Earth Fifth Edition Understanding Earth Fifth Edition Grotzinger Jordan Press Siever Chapter 16: WEATHERING, EROSION, AND MASS WASTING Interface Between Climate and Tectonics Lecturer: H Mohammadzadeh Assistant professors,

More information

Intro to Quantitative Geology

Intro to Quantitative Geology Introduction to Quantitative Geology Lesson 13.2 Low-temperature thermochronology Lecturer: David Whipp david.whipp@helsinki.fi 4.12.17 3 Goals of this lecture Define low-temperature thermochronology Introduce

More information

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements. ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 26: Planetary Geology [3/23/07] Announcements Planetary Geology Planetary

More information

The Official CA State Science Education Standards for Earth Science K 8

The Official CA State Science Education Standards for Earth Science K 8 The Official CA State Science Education Standards for Earth Science K 8 Kindergarten The Earth is composed of land, air and water. As a basis for understanding this concept, students know: a. characteristics

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS

AN APPROACH TO THE CLASSIFICATION OF SLOPE MOVEMENTS Training/workshop on Earthquake Vulnerability and Multi-Hazard Risk Assessment: Geospatial Tools for Rehabilitation and Reconstruction Effort 13 31 March 2006, Islamabad, Pakistan AN APPROACH TO THE CLASSIFICATION

More information

Constructive & Destructive Forces

Constructive & Destructive Forces Constructive & Destructive Forces Intro: Constructive Forces Processes that create landforms. Destructive Forces Processes that destroy landforms. Intro: Constructive Forces Volcanoes Deposition Landslides

More information

Mass Movements. Rock Weathering. Accumulation of Debris on Slopes. Landslides 12/8/2014

Mass Movements. Rock Weathering. Accumulation of Debris on Slopes. Landslides 12/8/2014 Mass Movements Already talked a little about landslides with earthquakes AKA mass wasting A mass movement is any displacement of large amounts of soil down slopes over (often) a comparatively short period

More information

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land

UNIT SEVEN: Earth s Water. Chapter 21 Water and Solutions. Chapter 22 Water Systems. Chapter 23 How Water Shapes the Land UNIT SEVEN: Earth s Water Chapter 21 Water and Solutions Chapter 22 Water Systems Chapter 23 How Water Shapes the Land Chapter Twenty-Three: How Water Shapes the Land 23.1 Weathering and Erosion 23.2

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

Mass Wasting and Landscape Evolution

Mass Wasting and Landscape Evolution Mass Wasting and Landscape Evolution 11-8-06 Uplift is a tectonic process Three types of uplift: 1. Collisional uplift 2. isostatic uplift 3. Extensional uplif. A physical experiment in isostasy: [crust

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas WEATHERING & MASS WASTING Denudation Disintegration, wearing away, and removal of rock material Involves three activities: Weathering is the break down of rocks into smaller

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Geology 101. Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142)

Geology 101. Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142) Geology 101 Name Reading Guides for Chapters 5 and 14 Weathering: the Breakdown of Rocks (p. 142) Please read the introduction to the chapter. What is the difference between weathering and erosion? Weathering

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Section 5.1 Weathering This section describes different types of weathering in rocks.

Section 5.1 Weathering This section describes different types of weathering in rocks. Section 5.1 Weathering This section describes different types of weathering in rocks. Reading Strategy Building Vocabulary As you read the section, define each vocabulary term. For more information on

More information

The landforms of Svalbard

The landforms of Svalbard The landforms of Svalbard Content Periglacial landforms -) ice-wedges -) rock glaciers -) pingos -) solifluction -) avalanches -) debris flows -) rock falls -) nivation -) aeolian landforms Glacial landforms

More information

Surface Processes on the Earth. Rocks, Weathering, Erosion and Soil

Surface Processes on the Earth. Rocks, Weathering, Erosion and Soil Surface Processes on the Earth Rocks, Weathering, Erosion and Soil ROCKS AND ROCK CYCLE Rock types Three main types of rock Igneous Metamorphic Sedimentary Igneous Form when magma or lava cools and hardens

More information

How do landscape materials get from mountain tops to valley floors?

How do landscape materials get from mountain tops to valley floors? How do landscape materials get from mountain tops to valley floors? The processes that move materials into stream, creeks, and rivers are collectively called mass movements or mass wasting. This includes

More information

Engineering Geology ECIV 3302

Engineering Geology ECIV 3302 Engineering Geology ECIV 3302 Instructor : Dr. Jehad Hamad 2019-2018 Chapter (5) Weathering & Soil Chapter 5: Weathering, Soil, and Mass Wasting External processes include : (1) Weathering (2) Mass wasting

More information

Correlation: California State Curriculum Standards of Science for Grade 6 Focus on Earth Science

Correlation: California State Curriculum Standards of Science for Grade 6 Focus on Earth Science Correlation: California State Curriculum Standards of Science for Grade 6 Focus on Earth Science To Science Workshop Series Earth Science: Geology The Universe Oceans and Atmosphere Plate Tectonics and

More information

Weathering, Soil, and Mass Movements

Weathering, Soil, and Mass Movements Tarbuck Lutgens Weathering, Soil, and Mass Movements 5.1 Weathering Mechanical Weathering Mechanical weathering occurs when physical forces break rock into smaller and smaller pieces without changing the

More information

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification: Petrology Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include: Petrography: study of description and classification of rocks

More information

( Your responses must be complete, using terminology and concepts.

(  Your responses must be complete, using terminology and concepts. Running head: ARTICLE SUMMARY 1 Question Topic: Summary of information about website http://www.tulane.edu/~sanelson/geol204/masswastproc.htm Pages: 3 Sources: 4 Format: APA Deadline: 24 hours Instructions:

More information

Mass Movements and Hillslopes

Mass Movements and Hillslopes Mass Movements and Hillslopes Erosion (or lack of) results from balance between internal resistance of materials & magnitude of external forces acting on them Evolution of landscapes depends largely on

More information

The Importance of Mass Wasting

The Importance of Mass Wasting Mass Wasting: The Work of Gravity Earth Chapter 15 Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the most common elements in our physical landscape Slopes may appear to be stable, but

More information

Geosphere Final Exam Study Guide

Geosphere Final Exam Study Guide Geosphere Final Exam Study Guide Chapter 1 Intro to Earth Systems 1. Name and describe Earth s 4 major spheres Geosphere-- nonliving, mostly solid rock divided into crust, mantle, and core Atmosphere a

More information

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below

1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below 1. Which type of climate has the greatest amount of rock weathering caused by frost action? A) a wet climate in which temperatures remain below freezing B) a wet climate in which temperatures alternate

More information

Heat Transfer There are three mechanisms for the transfer of heat:

Heat Transfer There are three mechanisms for the transfer of heat: Heat Transfer There are three mechanisms for the transfer of heat: Conduction Convection Radiation CONDUCTION is a diffusive process wherein molecules transmit their kinetic energy to other molecules by

More information

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model

Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model Drainage Basin Geomorphology Nick Odoni s Slope Profile Model Odoni s Slope Profile Model This model is based on solving the mass balance (sediment budget) equation for a hillslope profile This is achieved

More information

Section 3. Slopes and Landscapes. What Do You See? Think About It. Investigate. Learning Outcomes

Section 3. Slopes and Landscapes. What Do You See? Think About It. Investigate. Learning Outcomes Chapter 4 Surface Processes Section 3 Slopes and Landscapes What Do You See? Learning Outcomes In this section, you will Calculate the angle of repose for different kinds of soils and other granular materials.

More information

Soil Mechanics. Chapter # 1. Prepared By Mr. Ashok Kumar Lecturer in Civil Engineering Gpes Meham Rohtak INTRODUCTION TO SOIL MECHANICS AND ITS TYPES

Soil Mechanics. Chapter # 1. Prepared By Mr. Ashok Kumar Lecturer in Civil Engineering Gpes Meham Rohtak INTRODUCTION TO SOIL MECHANICS AND ITS TYPES Soil Mechanics Chapter # 1 INTRODUCTION TO SOIL MECHANICS AND ITS TYPES Prepared By Mr. Ashok Kumar Lecturer in Civil Engineering Gpes Meham Rohtak Chapter Outlines Introduction to Soil Mechanics, Soil

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

Geog 1000 Lecture 17: Chapter 10

Geog 1000 Lecture 17: Chapter 10 Geog 1000 Lecture 17: Chapter 10 Landslides and Mass Movements Link to lectures: http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture 1. Assignment 2 Due Pick up Assignment 1 if you don t have

More information

Geology 101. Reading Guides for Chapters 6 and 12

Geology 101. Reading Guides for Chapters 6 and 12 Geology 101 Name Chapter 6: Weathering and Soils (p. 160): Reading Guides for Chapters 6 and 12 This chapter is about the processes involved in the disintegration of rock. Weathering is often mistaken

More information

Chapter 12 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Earth s Interior. Tarbuck and Lutgens Pearson Education, Inc.

Chapter 12 Lecture. Earth: An Introduction to Physical Geology. Eleventh Edition. Earth s Interior. Tarbuck and Lutgens Pearson Education, Inc. Chapter 12 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Earth s Interior Tarbuck and Lutgens Earth s Internal Structure Earth s interior can be divided into three major layers defined

More information

What is a water table? What is an aquifer? What is the difference between a spring and a well?

What is a water table? What is an aquifer? What is the difference between a spring and a well? CHAPTER 11 3 Water Underground SECTION The Flow of Fresh Water BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a water table? What is an aquifer? What

More information

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA

UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA UNIT 3 GEOLOGY VOCABULARY FLASHCARDS THESE KEY VOCABULARY WORDS AND PHRASES APPEAR ON THE UNIT 3 CBA A map that shows Earth s Topographic Map surface topography, which is Earth s shape and features Contour

More information

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook

F = ma. ATS 150 Global Climate Change Winds and Weather. Scott Denning CSU CMMAP 1. Please read Chapter 6 from Archer Textbook Winds and Weather Please read Chapter 6 from Archer Textbook Circulation of the atmosphere and oceans are driven by energy imbalances Energy Imbalances What Makes the Wind Blow? Three real forces (gravity,

More information

Introduction: What is Mass Wasting? (1)

Introduction: What is Mass Wasting? (1) Mass Wasting Introduction: What is Mass Wasting? (1) Mass wasting is the downslope movement of regolith and masses of rock under the pull of gravity. Mass wasting is a basic part of the rock cycle. Weathering,

More information

Geodynamics Lecture 10 The forces driving plate tectonics

Geodynamics Lecture 10 The forces driving plate tectonics Geodynamics Lecture 10 The forces driving plate tectonics Lecturer: David Whipp! david.whipp@helsinki.fi!! 2.10.2014 Geodynamics www.helsinki.fi/yliopisto 1 Goals of this lecture Describe how thermal convection

More information

CALIFORNIA CONTENT STANDARDS FOCUS ON EARTH SCIENCE, Grade 6. Correlated to AGS EARTH SCIENCE

CALIFORNIA CONTENT STANDARDS FOCUS ON EARTH SCIENCE, Grade 6. Correlated to AGS EARTH SCIENCE CALIFORNIA CONTENT STANDARDS FOCUS ON EARTH SCIENCE, Grade 6 Correlated to AGS EARTH SCIENCE PLATE TECTONICS AND EARTH S STRUCTURE 1. Plate tectonics accounts for important features of Earth s surface

More information

4 th Grade Science Unit C: Earth Sciences Chapter 6: Minerals and Rocks Lesson 1: What are minerals?

4 th Grade Science Unit C: Earth Sciences Chapter 6: Minerals and Rocks Lesson 1: What are minerals? 4 th Grade Science Unit C: Earth Sciences Chapter 6: Minerals and Rocks Lesson 1: What are minerals? mineral A mineral is a natural, nonliving, solid crystal that makes up rocks. All over the world, each

More information

GEOG 1010A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

GEOG 1010A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock midterm UNDER EXAM CONDITIONS. This means: Complete the midterm in 1.5 hours. Work on your own. Keep your notes and textbook closed. Attempt every question.

More information

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6 Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur Lecture 6 Good morning and welcome to the next lecture of this video course on Advanced Hydrology.

More information

WEATHERING AND MASS MOVEMENTS. 1. Introduction 2. Physical/mechanical weathering 3. Chemical weathering 4. Mass movement processes

WEATHERING AND MASS MOVEMENTS. 1. Introduction 2. Physical/mechanical weathering 3. Chemical weathering 4. Mass movement processes WEATHERING AND MASS MOVEMENTS 1. Introduction 2. Physical/mechanical weathering 3. Chemical weathering 4. Mass movement processes Mean annual temperature ( C) Hot Cold TEMP. -10 0 10 20 Strong chemical

More information

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education:

The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education: MS-ESS2-1 Earth's Systems Students who demonstrate understanding can: MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. [Clarification

More information

3 Erosion and Deposition by Ice

3 Erosion and Deposition by Ice CHAPTER 12 3 Erosion and Deposition by Ice SECTION Agents of Erosion and Deposition BEFORE YOU READ After you read this section, you should be able to answer these questions: What are glaciers? How do

More information

Earth: An Introduction to Physical Geology Weathering and Soil

Earth: An Introduction to Physical Geology Weathering and Soil Chapter 6 Lecture Earth: An Introduction to Physical Geology Eleventh Edition Weathering and Soil Tarbuck and Lutgens Weathering Weathering involves the physical breakdown and chemical alteration of rock

More information

CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment...

CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment... CONTENTS CHAPTER 1: PROLOGUE The Local Environment... 1 Observation, Inference, Classification Properties of the Environment... 3 Measurement, Percent Deviation From Accepted Value Density... 6 Density

More information

Name Date Class Benchmark 3 Science Study Guide. Weather & Geology

Name Date Class Benchmark 3 Science Study Guide. Weather & Geology Benchmark 3 Science Study Guide Weather & Geology S6E5 A-Crust, Mantle, Core 1. What happens to the temperature as you travel to the center of the Earth? Temperature increases with depth 2. What happens

More information

Geomorphology LAB FAULT-SCARP DEGRADATION

Geomorphology LAB FAULT-SCARP DEGRADATION Geomorphology LAB FAULT-SCARP DEGRADATION Nicholas Pinter (University of California, Davis) Supplies Needed calculator straight-edge ruler PURPOSE The evolution of the Earth s surface over time is governed

More information

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives

Day 3 Weathering and Erosion.notebook. October 02, Section 7.2. Erosion and Deposition. Objectives Objectives Describe the relationship of gravity to all agents of erosion. Contrast the features left from different types of erosion. Analyze the impact of living and nonliving things on the processes

More information

Internal Layers of the Earth

Internal Layers of the Earth Lecture #4 notes Geology 3950, Spring 2006; CR Stern Seismic waves, earthquake magnitudes and location, and internal earth structure (pages 28-95 in the 4 th edition and 28-32 and 50-106 in the 5 th edition)

More information

Mechanical Weathering

Mechanical Weathering Weathering is the disintegration and decomposition of material at or near the surface. Erosion is the incorporation and transportation of material by a mobile agent, usually water, wind, or ice. Geologists

More information

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as Sample questions 1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as b. continental drift c. subduction d. conduction 2. The transfer of thermal

More information

Chapter 8 cont. Clouds and Storms

Chapter 8 cont. Clouds and Storms Chapter 8 cont. Clouds and Storms Spring 2007 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Unsafe Ground: Landslides and Other Mass Movements

Unsafe Ground: Landslides and Other Mass Movements Unsafe Ground: Landslides and Other Mass Movements Mass Movements Downslope motion of earth materials by gravity. Mass movements are a type of natural hazard. Natural feature of the environment. Can cause

More information

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p. 95-125) Workbook Chapter 4, 5 THE BIG PICTURE: Weathering, erosion and deposition are processes that cause changes to rock material

More information

Weathering of Rocks. Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks

Weathering of Rocks. Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks Weathering of Rocks Weathering - Breakdown of rocks into pieces (sediment) 2 main types of weathering to rocks Mechanical weathering requires physical forces to break rocks into smaller pieces. Chemical

More information

Chapter 2 Planet Earth

Chapter 2 Planet Earth Chapter 2 Planet Earth Section Notes Earth and the Sun s Energy Water on Earth The Land Close-up The Water Cycle World Almanac Major Eruptions in the Ring of Fire Quick Facts Chapter 2 Visual Summary Video

More information

Match up the pictures and key terms

Match up the pictures and key terms Match up the pictures and key terms 1 Plucking Striations 3 Roche Mountonnees 2 Chatter Marks 4 What is the difference between plucking and abrasion? Glacial Processes Erosion, Weathering and Deposition

More information

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion

Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Section 1: Earth s Interior and Plate Tectonics Section 2: Earthquakes and Volcanoes Section 3: Minerals and Rocks Section 4: Weathering and Erosion Key Terms Crust Mantle Core Lithosphere Plate Tectonics

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

Impact : Changes to Existing Topography (Less than Significant)

Impact : Changes to Existing Topography (Less than Significant) 4.2 Land Resources 4.2.1 Alternative A Proposed Action Impact 4.2.1-1: Changes to Existing Topography (Less than Significant) Development of the project site would involve grading and other earthwork as

More information

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of.

water erosion lithosphere Describe the process of erosion and deposition. chemical weathering Dissolving limestone is an example of. At one time, there was one large island off the coast of Mississippi and now it is two separate islands. What caused the island to be split into two? water erosion The crust and the top part of the upper

More information

Weathering, Erosion, Deposition

Weathering, Erosion, Deposition Weathering, Erosion, Deposition The breakdown of rocks at or near the Earth s Surface. Physical Chemical - The breakdown of rock into smaller pieces without chemical change. - Dominant in moist /cold conditions

More information

Physical Geology, 15/e

Physical Geology, 15/e Lecture Outlines Physical Geology, 15/e Plummer, Carlson & Hammersley Weathering and Soil Physical Geology 15/e, Chapter 5 Weathering, Erosion and Transportation Rocks exposed at Earth s surface are constantly

More information

Chapter 1 Section 2. Land, Water, and Climate

Chapter 1 Section 2. Land, Water, and Climate Chapter 1 Section 2 Land, Water, and Climate Vocabulary 1. Landforms- natural features of the Earth s land surface 2. Elevation- height above sea level 3. Relief- changes in height 4. Core- most inner

More information

Lecture 9 faults, folds and mountain building

Lecture 9 faults, folds and mountain building Lecture 9 faults, folds and mountain building Rock deformation Deformation = all changes in size, shape, orientation, or position of a rock mass Structural geology is the study of rock deformation Deformation

More information

Environmental Geology Lab 5 - Mass Wasting Hazards

Environmental Geology Lab 5 - Mass Wasting Hazards Environmental Geology Lab 5 - Mass Wasting Hazards page - 1 Many landslides, slope failures or sinkholes (collapse structures formed in terrain underlain by limestone rocks) occur during or immediately

More information

Preliminaries to Erosion: Weathering and Mass Wasting

Preliminaries to Erosion: Weathering and Mass Wasting Preliminaries to Erosion: Weathering & Mass Wasting All things deteriorate in time. Virgil 1 Preliminaries to Erosion: Weathering and Mass Wasting Denudation The Impact of Weathering and Mass Wasting on

More information

Forms of Energy. Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms

Forms of Energy. Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms Forms of Energy Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms Work: defined as the product of a force (F) times times a displacement acting

More information

Changing Landscapes: Glaciated Landscapes. How do glaciers move?

Changing Landscapes: Glaciated Landscapes. How do glaciers move? Changing Landscapes: Glaciated Landscapes How do glaciers move? What you need to know Differences between cold-and warm-based glaciers, their locations and rates of movement Glacier ice movement including

More information

Mass Movements, Wind, and Glaciers

Mass Movements, Wind, and Glaciers Mass Movements,, and Glaciers SECTION 8.1 Mass Movement at Earth s Surface In your textbook, read about mass movement. Use each of the terms below just once to complete the passage. avalanche creep landslide

More information

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth

Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth Rock Rheology GEOL 5700 Physics and Chemistry of the Solid Earth References: Turcotte and Schubert, Geodynamics, Sections 2.1,-2.4, 2.7, 3.1-3.8, 6.1, 6.2, 6.8, 7.1-7.4. Jaeger and Cook, Fundamentals of

More information

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State.

1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 1. Base your answer to the following question on the map below, which shows the generalized bedrock of a part of western New York State. 3. The table below describes the deposits that an observer saw while

More information

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure. Standard 2: Students will understand Earth s internal structure and the dynamic nature of the tectonic plates that form its surface. Standard 2, Objective 1: Evaluate the source of Earth s internal heat

More information

Winds and Currents in the Oceans

Winds and Currents in the Oceans Winds and Currents in the Oceans Atmospheric Processes Density of air is controlled by temperature, pressure, and moisture content. 1. Warm air is less dense than cold air and moist air is less dense than

More information

1 Water Beneath the Surface

1 Water Beneath the Surface CHAPTER 16 1 Water Beneath the Surface SECTION Groundwater KEY IDEAS As you read this section, keep these questions in mind: What are two properties of aquifers? How is the water table related to the land

More information

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets Importance of Solar System Objects discussed thus far Interiors of Terrestrial Planets Chapter 9 Sun: Major source of heat for the surfaces of planets Asteroids: Provide possible insight to the composition

More information

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope?

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope? Geology 22 Process Geomorphology Final Exam Fall, 1999 Name This exam is closed book and closed notes. Take some time to read the questions carefully before you begin writing. Answer the questions concisely

More information

Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax

Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax Essay Question on Carbon Tax 1. Drilling 2. Volcanic Activity 3. Laboratory experiments

More information

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant?

Figure 1 The map shows the top view of a meandering stream as it enters a lake. At which points along the stream are erosion and deposition dominant? 1. In which type of climate does chemical weathering usually occur most rapidly? 1. hot and dry 3. cold and dry 2. hot and wet 4. cold and wet 2. Figure 1 The map shows the top view of a meandering stream

More information

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans?

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans? CHAPTER 13 1 Earth s Oceans SECTION Exploring the Oceans BEFORE YOU READ After you read this section, you should be able to answer these questions: What affects the salinity of ocean water? What affects

More information

of Friction in Fluids Dept. of Earth & Clim. Sci., SFSU

of Friction in Fluids Dept. of Earth & Clim. Sci., SFSU Summary. Shear is the gradient of velocity in a direction normal to the velocity. In the presence of shear, collisions among molecules in random motion tend to transfer momentum down-shear (from faster

More information

1. Erosion by Running Water Most powerful cause of erosion

1. Erosion by Running Water Most powerful cause of erosion I. Destructive Forces Notes: Destructive force: a process in which land is destroyed or changed such as weathering and erosion. All landforms are a result of a combination of constructive and destructive

More information

EART162: PLANETARY INTERIORS

EART162: PLANETARY INTERIORS EART16: PLANETARY INTERIORS Francis Nimmo F.Nimmo EART16 Spring 10 Last Week Elasticity: G E (1 v) xx Flexural equation gives deflection w in response to load 4 d w D gw q( x) 4 m w dx The flexural parameter

More information

Chapter 8 cont. Clouds and Storms. Spring 2018

Chapter 8 cont. Clouds and Storms. Spring 2018 Chapter 8 cont. Clouds and Storms Spring 2018 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Mass Wasting. 3 Types of Mass Wasting

Mass Wasting. 3 Types of Mass Wasting Mass Wasting 3 Types of Mass Wasting Unless otherwise noted the artwork and photographs in this slide show are original and by Burt Carter. Permission is granted to use them for non-commercial, non-profit

More information

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday Today Terrestrial Planet Geology Events Fall break next week - no class Tuesday When did the planets form? We cannot find the age of a planet, but we can find the ages of the rocks that make it up. We

More information