Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model

Size: px
Start display at page:

Download "Drainage Basin Geomorphology. Nick Odoni s Slope Profile Model"

Transcription

1 Drainage Basin Geomorphology Nick Odoni s Slope Profile Model

2 Odoni s Slope Profile Model This model is based on solving the mass balance (sediment budget) equation for a hillslope profile This is achieved by discretising the slope into a series (120) of equal length (1 m) long cells (see image on next slide) The differences in sediment flux between each cell then control the rate at which the slope profile is eroded

3 Discretised Slope Profile New Initial Bedrock x = horizontal length of section z = change in elevation S IN S OUT S IN S = (S IN S OUT ) t S OUT

4 Odoni s slope profile model The mass balance equation is solved for each cell using a spreadsheet: z y z t + Q x = U Department of Geography, University of Manchester

5 Modelling Hillslope Form and Process To solve the model, in principle we needs three things: Information on the values of Q and U Sediment transport flux, Q, is estimated using process models Uplift rate, U (this is specified by the user) Initial conditions An initial slope profile at time t = 0. This is fixed by the model. It is assumed that the initial slope is an incised plateau Boundary conditions The value of Q at the top (drainage divide) and bottom (stream) of the slope We assume (a) zero flux at the divide and (b) downcutting matched by uplift at the stream boundary. This represents an assumption of an equilibrium slope

6 Process Models Odoni s model is an idealised version of reality. It models only two hillslope processes: Creep and wash. Sediment flux is therefore modelled as: Q = Q m + Q s Q m = diffusive sediment transport processes (e.g. rainsplash, creep) Q s = wash dominated processes (e.g. sheetwash, rillwash, etc)

7 Simulating Creep Odoni s model uses the following model of soil creep: Q m = K m S K m = a process constant that controls the rate of creep and accounts for factors such as climate, soil type, vegetation S = the slope gradient

8 Simulating Wash Odoni s model uses a simple sediment transport function (based on stream power) to simulate watermediated sediment transport: Q s = K s (qs Φ) K s = a process constant that controls the rate of watermediated sediment transport, accounting for climate, soil texture, vegetation, etc. q = amount of runoff on the hillslope S = the hillslope gradient Φ = the critical stream power needed to detach sediment from the slope and initiate transport. This measures the erodibility of the sediment on the hillslope Note that this model employs a threshold and also requires an estimate of the runoff volume (q).

9 Simulating Runoff Odoni s model simulates the runoff volume (q) using: q = Px α P = Precipitation intensity x = Distance from the drainage divide α = an exponent controlling the rate at which runoff increases or decreases downslope

10 Summary of Model Assumptions Equilibrium slope Creep and wash processes only Creep and wash processes are modelled in a simplified manner

11 Summary of Model Parameters Hillslope profiles vary according to the parameter values selected: U is the uplift rate and is adjusted to reflect the tectonic context of the simulated environment P is the precipitation intensity and is adjusted to reflect the climatic context of the simulated environment Φ is the soil erodibility and is adjusted to reflect the resistance to erosion of the landscape K m, K s and α are rate constants. Clever user s adjust their values to control the relative dominance of creep, wash and runoff generation processes, respectively. This provides a means to simulate the effects of variations in soil type, infiltration rates, topographic curvature and vegetation cover. For examples, see next slide

12 Selecting Parameter Values: Examples α > 1 has the effect of accelerating the concentration of runoff downslope e.g. downslope areas are less permeable (removal of vegetation, change of soil type, change of land use, etc) e.g. planform curvature of landscape surrounding the slope is concave (dissected topography) α < 1 has the effect of reducing the concentration of runoff downslope e.g. downslope areas have higher infiltration rates due to presence of vegetation e.g. planform curvature of landscape surrounding the slope is convex (domed topography)

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Topographic metrics and bedrock channels Outline of this lecture

Topographic metrics and bedrock channels Outline of this lecture Topographic metrics and bedrock channels Outline of this lecture Topographic metrics Fluvial scaling and slope-area relationships Channel steepness sensitivity to rock uplift Advancing understanding of

More information

Monitoring Headwater Streams for Landscape Response to

Monitoring Headwater Streams for Landscape Response to Monitoring Headwater Streams for Landscape Response to Climate Change Matthew Connor, PhD Connor nvironmental, nc. www.oe-i.com icom Healdsburg, California verview Headwater stream geomorphology Response

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

Down-stream process transition (f (q s ) = 1)

Down-stream process transition (f (q s ) = 1) Down-stream process transition (f (q s ) = 1) Detachment Limited S d >> S t Transport Limited Channel Gradient (m/m) 10-1 Stochastic Variation { Detachment Limited Equilibrium Slope S d = k sd A -θ d S

More information

Zeumann and Hampel, 2017, Impact of Cocos Ridge (Central America) subduction on the forearc drainage system: Geology, doi: /g

Zeumann and Hampel, 2017, Impact of Cocos Ridge (Central America) subduction on the forearc drainage system: Geology, doi: /g GSA Data Repository 2017296 Zeumann and Hampel, 2017, Impact of Cocos Ridge (Central America) subduction on the forearc drainage system: Geology, doi:10.1130/g39251.1. DESCRIPTION OF CASQUS To implement

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Earth Science. STREAM DRAINAGE PATTERNS (start by reading the first page of these notes!)

Earth Science. STREAM DRAINAGE PATTERNS (start by reading the first page of these notes!) Name _ Earth Science STREAM DRAINAGE PATTERNS (start by reading the first page of these notes!) WHAT IS A DRAINAGE PATTERN? Streams seek the lowest path as they move downhill, and they tend to erode their

More information

Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch

Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch Week 3 (Feb 12): Erosion and Sediment Transport Discussion Leader: Ariel Deutsch The papers this week explore the topics of erosion and sediment transport, with a major theme revolving around climate-tectonic

More information

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope?

Slide #2. What is the drainage pattern that you can see on this hillslope? What hillslope hydrologic phenomenon is well exemplified on this hillslope? Geology 22 Process Geomorphology Final Exam Fall, 1999 Name This exam is closed book and closed notes. Take some time to read the questions carefully before you begin writing. Answer the questions concisely

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

Name HW - Landscapes

Name HW - Landscapes Name HW - Landscapes 1. New York s Tug Hill landscape region is classified as a plateau because this region has a A) high elevation with distorted bedrock B) high elevation with nearly horizontal layers

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow Introduction Mercury, Venus, Earth and Mars share a similar history, but Earth is the only terrestrial planet with abundant water! Mercury is too small and hot Venus has a runaway green house effect so

More information

Landscape. Review Note Cards

Landscape. Review Note Cards Landscape Review Note Cards Last Ice Age Pleistocene Epoch that occurred about 22,000 Years ago Glacier A large, long lasting mass of ice which forms on land and moves downhill because of gravity. Continental

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Assessment of Concave and Linear Hillslopes for Post-Mining Landscapes 1

Assessment of Concave and Linear Hillslopes for Post-Mining Landscapes 1 Assessment of Concave and Hillslopes for Post-Mining Landscapes 1 Sumith Priyashantha 2, Brian Ayres 3, Mike O Kane 4, and Mike Fawcett 5 2 O Kane Consultants Inc., 2312 Arlington Avenue, Saskatoon, SK,

More information

Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology

Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology WATER RESOURCES RESEARCH, VOL. 35, NO. 3, PAGES 853 870, MARCH 1999 Evidence for nonlinear, diffusive sediment transport on hillslopes and implications for landscape morphology Joshua J. Roering, James

More information

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China**

Effect of Runoff and Sediment from Hillslope on Gully Slope In the Hilly Loess Region, North China** This paper was peer-reviewed for scientific content. Pages 732-736. In: D.E. Stott, R.H. Mohtar and G.C. Steinhardt (eds). 2001. Sustaining the Global Farm. Selected papers from the 10th International

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

Landslides & Debris Flows

Landslides & Debris Flows T.#Perron# #12.001# #Landslides#&#Debris#Flows# 1# Landslides & Debris Flows Many geologic processes, including those shaping the land surface, are slowacting, involving feedbacks that operate over many

More information

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal

Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Determination of uplift rates of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal Martina Böhme Institute of Geology, University of Mining and Technology, Freiberg, Germany Abstract.

More information

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands

Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Page - 1 Laboratory Exercise #4 Geologic Surface Processes in Dry Lands Section A Overview of Lands with Dry Climates The definition of a dry climate is tied to an understanding of the hydrologic cycle

More information

UNIVERSITY OF CALGARY. The Reflection of Topography in the Plant Tolerance Curve. Marianne Nicole Chase A THESIS

UNIVERSITY OF CALGARY. The Reflection of Topography in the Plant Tolerance Curve. Marianne Nicole Chase A THESIS UNIVERSITY OF CALGARY The Reflection of Topography in the Plant Tolerance Curve by Marianne Nicole Chase A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

2008 JC2 H2 GEOGRAPHY: PIONEER JUNIOR COLLEGE PRELIMINARY EXAMS. Figure 1 for Question 1

2008 JC2 H2 GEOGRAPHY: PIONEER JUNIOR COLLEGE PRELIMINARY EXAMS. Figure 1 for Question 1 PHYSICAL GEOGRAPHY Figure 1 for Question 1 Figure 2 for Question 2 Tropical air mass source regions Figure 3 for Question 3 Figure 4 for Question 4 Volcanic gases Figure 5 for Question 5 EITHER Photograph

More information

Digital Elevation Models. Using elevation data in raster format in a GIS

Digital Elevation Models. Using elevation data in raster format in a GIS Digital Elevation Models Using elevation data in raster format in a GIS What is a Digital Elevation Model (DEM)? Digital representation of topography Model based on scale of original data Commonly a raster

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

Web-based Interactive Landform Simulation Model (WILSIM)

Web-based Interactive Landform Simulation Model (WILSIM) Web-based Interactive Landform Simulation Model (WILSIM) Wei Luo Dept. of Geography Northern Illinois University, DeKalb, IL 60115 Project Funded by NSF CCLI (2002-2004) Collaborators: Kirk Duffin, Jay

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Governing Rules of Water Movement

Governing Rules of Water Movement Governing Rules of Water Movement Like all physical processes, the flow of water always occurs across some form of energy gradient from high to low e.g., a topographic (slope) gradient from high to low

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

How do landscape materials get from mountain tops to valley floors?

How do landscape materials get from mountain tops to valley floors? How do landscape materials get from mountain tops to valley floors? The processes that move materials into stream, creeks, and rivers are collectively called mass movements or mass wasting. This includes

More information

REVIEW. There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL. What is WEATHERING? The breakdown of rocks at or near Earth s surface

REVIEW. There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL. What is WEATHERING? The breakdown of rocks at or near Earth s surface REVIEW What is WEATHERING? Def: The breakdown of rocks at or near Earth s surface There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL CHEMICAL WEATHERING EXAMPLES: 1. OXIDATION (rust) CHEMICAL WEATHERING

More information

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT

OBJECTIVES. Fluvial Geomorphology? STREAM CLASSIFICATION & RIVER ASSESSMENT STREAM CLASSIFICATION & RIVER ASSESSMENT Greg Babbit Graduate Research Assistant Dept. Forestry, Wildlife & Fisheries Seneca Creek, Monongahela National Forest, West Virginia OBJECTIVES Introduce basic

More information

Towards a dynamic model of gully growth

Towards a dynamic model of gully growth Erosion, Transport and Deposition Processes (Proceedings of the Jerusalem Workshop, March-April 1987). IAHS Publ. no. 189,1990. Towards a dynamic model of gully growth INTRODUCTION ANNE C KEMP née MARCHINGTON

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Elemental Geosystems, 5e (Christopherson) Chapter 10 Weathering, Karst Landscapes, and Mass Movement

Elemental Geosystems, 5e (Christopherson) Chapter 10 Weathering, Karst Landscapes, and Mass Movement Elemental Geosystems, 5e (hristopherson) hapter 10 Weathering, Karst Landscapes, and Mass Movement 1) The science that specifically studies the origin, evolution, form, and spatial distribution of landforms

More information

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle STREAM SYSTEMS Earth Science: Chapter 5 Reading pages 114-124 The Hydrologic Cycle Oceans not filling up Evaporation = precipitation System is balanced Earth s Water and the Hydrologic Cycle Earth s Water

More information

HW #2 Landscape Travel from A to B 12,

HW #2 Landscape Travel from A to B 12, HW #2 Landscape 2016 Section: Name: ate: 1. ase your answer(s) to the following question(s) on the map below, which represents two bridges that cross the Green River. Letters,, and represent locations

More information

Benggang erosion in sub-tropical granite weathering crust geo-ecosystems: an example from Guangdong Province

Benggang erosion in sub-tropical granite weathering crust geo-ecosystems: an example from Guangdong Province Erosion, Debris Flows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 455 Benggang erosion in sub-tropical granite weathering crust geo-ecosystems:

More information

The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil Province, Iran

The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil Province, Iran River Basin Management VIII 129 The relationship between drainage density and soil erosion rate: a study of five watersheds in Ardebil Province, Iran A. Moeini 1, N. K. Zarandi 1, E. Pazira 1 & Y. Badiollahi

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5

Mountain Rivers. Gutta cavat lapidem. (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Gutta cavat lapidem (Dripping water hollows out a stone) -Ovid, Epistulae Ex Ponto, Book 3, no. 10, 1. 5 Mountain Rivers Fixed channel boundaries (bedrock banks and bed) High transport

More information

The Sandbox Project 1 cm 10 m

The Sandbox Project 1 cm 10 m The Sandbox Project 1 cm 10 m SETUP: 5 lbs of fine sand Funnel 1 measuring grid (22 by 22) adjustable hinterland height outflow pipe trash barrel ½ foam + plastic liner 63-μm sieve (sediment trap) Modeling

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product Weathering 1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product End Result of physical weathering is increased surface area. 2. Physical

More information

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow.

1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. 1. The map below shows a meandering river. A A' is the location of a cross section. The arrows show the direction of the river flow. Which cross section best represents the shape of the river bottom at

More information

Geomorphology LAB FAULT-SCARP DEGRADATION

Geomorphology LAB FAULT-SCARP DEGRADATION Geomorphology LAB FAULT-SCARP DEGRADATION Nicholas Pinter (University of California, Davis) Supplies Needed calculator straight-edge ruler PURPOSE The evolution of the Earth s surface over time is governed

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

Characteristics and processes associated with the development of Hilly Landscapes

Characteristics and processes associated with the development of Hilly Landscapes GRADE 11 GEOGRAPHY SESSION 1: GEOMORPHOLOGY I (TOPOGRAPHY) Key Concepts In this lesson we will focus on summarising what you need to know about: Topography associated with Horizontally Layered Rocks Topography

More information

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

Geog Lecture 19

Geog Lecture 19 Geog 1000 - Lecture 19 Fluvial Geomorphology and River Systems http://scholar.ulethbridge.ca/chasmer/classes/ Today s Lecture (Pgs 346 355) 1. What is Fluvial Geomorphology? 2. Hydrology and the Water

More information

UNIT 4: Earth Science Chapter 21: Earth s Changing Surface (pages )

UNIT 4: Earth Science Chapter 21: Earth s Changing Surface (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B) 1. When snow cover on the land melts, the water will most likely become surface runoff if the land surface is A) frozen B) porous C) grass covered D) unconsolidated gravel Base your answers to questions

More information

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction

9/13/2011 CHAPTER 9 AND SUBSIDENCE. Case History: La Conchita Landslide. Introduction CHAPTER 9 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Case History: La Conchita Landslide La Conchita: small coastal community 80 km (50 mi) northwest of Los Angeles Landslide occurred on January 10, 2005

More information

Continental Landscapes

Continental Landscapes Continental Landscapes Landscape influenced by tectonics, climate & differential weathering Most landforms developed within the last 2 million years System moves toward an equilibrium Continental Landscapes

More information

Abstract. landscapes with uniform and non-uniform rainfall. In the third major chapter, I employ the CHILD

Abstract. landscapes with uniform and non-uniform rainfall. In the third major chapter, I employ the CHILD Abstract The interactions and feedbacks among climate, tectonics and surface erosion are complex but fundamental in geomorphological studies, and the mechanisms that control these processes are still not

More information

Weathering, Mass Wasting and Karst

Weathering, Mass Wasting and Karst Weathering, Mass Wasting and Karst Capable of wearing down anything that the internal processes can build. Gravity, water, wind and ice Denudation - the overall effect of disintegration, wearing away and

More information

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants.

Bell Ringer. Are soil and dirt the same material? In your explanation be sure to talk about plants. Bell Ringer Are soil and dirt the same material? In your explanation be sure to talk about plants. 5.3 Mass Movements Triggers of Mass Movements The transfer of rock and soil downslope due to gravity is

More information

Drainage rearrangement: a modelling approach

Drainage rearrangement: a modelling approach Drainage rearrangement: a modelling approach Maricke van Leeuwen June, 2013 i ii Drainage rearrangement: a modelling approach MSc thesis (SGL-80436) Maricke van Leeuwen 901027509070 MSc Earth and Environment,

More information

Digital Elevation Model

Digital Elevation Model Digital Elevation Model DEM, DSM, DTM? DSM: digital surface model. Height of the earth s surface, including houses, trees, boulders...etc. DTM: digital terrain model. Bare-earth earth surface model. Filtered

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Erosion Susceptibility in the area Around the Okanogan Fire Complex, Washington, US

Erosion Susceptibility in the area Around the Okanogan Fire Complex, Washington, US Erosion Susceptibility in the area Around the Okanogan Fire Complex, Washington, US 1. Problem Construct a raster that represents susceptibility to erosion based on lithology, slope, cover type, burned

More information

FRACTAL RIVER BASINS

FRACTAL RIVER BASINS FRACTAL RIVER BASINS CHANCE AND SELF-ORGANIZATION Ignacio Rodriguez-Iturbe Texas A & M University Andrea Rinaldo University of Padua, Italy CAMBRIDGE UNIVERSITY PRESS Contents Foreword Preface page xiii

More information

A new approach for large scale simulation of complex spatial processes: the 3D soil evolution model marm

A new approach for large scale simulation of complex spatial processes: the 3D soil evolution model marm 18 th World IMACS / MODSIM Congress, Cairns, Australia 13-17 July 009 http://mssanz.org.au/modsim09 A new approach for large scale simulation of complex spatial processes: the 3D soil evolution model marm

More information

Dams, sediment, and channel changes and why you should care

Dams, sediment, and channel changes and why you should care Dams, sediment, and channel changes and why you should care Gordon E. Grant USDA Forest Service PNW Research Station Corvallis, Oregon Dam effects on river regimes FLOW (Q) SEDIMENT (Qs) TEMP CHEMISTRY

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

Assessment of solid load and siltation potential of dams reservoirs in the High Atlas of Marrakech (Moorcco) using SWAT Model

Assessment of solid load and siltation potential of dams reservoirs in the High Atlas of Marrakech (Moorcco) using SWAT Model Assessment of solid load and siltation potential of dams reservoirs in the High Atlas of Marrakech (Moorcco) using SWAT Model Amal Markhi: Phd Student Supervisor: Pr :N.Laftrouhi Contextualization Facing

More information

Watershed Application of WEPP and Geospatial Interfaces. Dennis C. Flanagan

Watershed Application of WEPP and Geospatial Interfaces. Dennis C. Flanagan Watershed Application of WEPP and Geospatial Interfaces Dennis C. Flanagan Research Agricultural Engineer USDA-Agricultural Research Service Adjunct Professor Purdue Univ., Dept. of Agric. & Biol. Eng.

More information

Module 4: Overview of the Fundamentals of Runoff and Erosion

Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4a Goal Once we can better understand the forces which cause erosion and runoff, only then can we begin to minimize the negative results.

More information

Landforms. Why does the land look like it does? 1. Controlled by water 2. Controlled by the rocks

Landforms. Why does the land look like it does? 1. Controlled by water 2. Controlled by the rocks Landforms Why does the land look like it does? 1. Controlled by water 2. Controlled by the rocks Landforms Made by Running Water Stream erosion The evolution of a river system Entrenched meanders Fluvial

More information

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering

UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy. Photo by: Josh Roering UNRAVELING THE HISTORY OF A LANDSCAPE: Using geomorphology, tephrochronology, and stratigraphy Photo by: Josh Roering Photo: Eric Bilderback Photo by: Josh Roering Goal 1. Reconstruct the paleo-landscape

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

C) use of nuclear power D) number of volcanic eruptions

C) use of nuclear power D) number of volcanic eruptions 3121-1 - Page 1 Name: 1) The graph below shows the change in carbon dioxide concentration in parts per million (ppm) in Earth's atmosphere from 1960 to 1990. The most likely cause of the overall change

More information

Ch 10 Deposition Practice Questions

Ch 10 Deposition Practice Questions 1. Base your answer to the following question on the data table below. Six identical cylinders, A through F, were filled with equal volumes of sorted spherical particles. The data table shows the particle

More information

Multicriteria GIS Modelling of Terrain Susceptibility to Gully Erosion, using the Example of the Island of Pag

Multicriteria GIS Modelling of Terrain Susceptibility to Gully Erosion, using the Example of the Island of Pag 14th International Conference on Geoinformation and Cartography Zagreb, September 27-29, 2018. Multicriteria GIS Modelling of Terrain Susceptibility to Gully Erosion, using the Example of the Island of

More information

Supplementary Information Methods:

Supplementary Information Methods: Supplementary Information Methods: Numerical Model Initial and Boundary Conditions. Initial conditions in most runs consist of a barebedrock plane 400 m wide by 2000 m long (extending from local base level

More information

Drainage Basin Geomorphology

Drainage Basin Geomorphology Drainage Basin Geomorphology Fundamentals & Basin Morphometry Dr Steve Darby Source: http://www.ucmp.berkeley.edu/tectonics/globe1.gif The Fluvial System: Components Sources, transfers, sinks (Schumm,

More information

Environmental Geology Chapter 9 Rivers and Flooding

Environmental Geology Chapter 9 Rivers and Flooding Environmental Geology Chapter 9 Rivers and Flooding Flooding in Pakistan 2010-1600 killed/20000 affected The hydrologic cycle is powered by the Sun The cycle includes evaporation, precipitation, infiltration,

More information

RR#5 - Free Response

RR#5 - Free Response Base your answers to questions 1 through 3 on the data table below and on your knowledge of Earth Science. The table shows the area, in million square kilometers, of the Arctic Ocean covered by ice from

More information

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece

Floodplain modeling. Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Floodplain modeling Ovidius University of Constanta (P4) Romania & Technological Educational Institute of Serres, Greece Scientific Staff: Dr Carmen Maftei, Professor, Civil Engineering Dept. Dr Konstantinos

More information

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide

9/23/2013. Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE. Case History: La Conchita Landslide Introduction CHAPTER 7 SLOPE PROCESSES, LANDSLIDES, AND SUBSIDENCE Landslide and other ground failures posting substantial damage and loss of life In U.S., average 25 50 deaths; damage more than $3.5 billion

More information

RIVERS, GROUNDWATER, AND GLACIERS

RIVERS, GROUNDWATER, AND GLACIERS RIVERS, GROUNDWATER, AND GLACIERS Delta A fan-shaped deposit that forms when a river flows into a quiet or large body of water, such as a lake, an ocean, or an inland sea. Alluvial Fan A sloping triangle

More information

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and

Erosion Rate is a Function of Erodibility and Excess Shear Stress = k ( o - c ) From Relation between Shear Stress and Erosion We Calculate c and Equilibrium, Shear Stress, Stream Power and Trends of Vertical Adjustment Andrew Simon USDA-ARS, Oxford, MS asimon@msa-oxford.ars.usda.gov Non-Cohesive versus Cohesive Materials Non-cohesive: sands and

More information

User Guide to TopoToolbox - Plotting ksn-values

User Guide to TopoToolbox - Plotting ksn-values User Guide to TopoToolbox - Plotting ksn-values Background... 1 Load and generate required data... 2 Calculating the concavity index... 4 Calculate and plot ksn values... 4 Aggregate ksn values in stream

More information

Geomorphically based predictive mapping of soil thickness in upland watersheds

Geomorphically based predictive mapping of soil thickness in upland watersheds WATER RESOURCES RESEARCH, VOL. 45, W947, doi:.9/8wr739, 9 Geomorphically based predictive mapping of soil thickness in upland watersheds Jon D. Pelletier and Craig Rasmussen Received 9 July 8; revised

More information

Landforms and Rock Structure

Landforms and Rock Structure Landforms and Rock Structure Rock Structure as a Landform Control Landforms of Horizontal Strata and Coastal Plains Landforms of Warped Rock Layers Landforms Developed on Other Land-Mass Types Landforms

More information

GSA DATA REPOSITORY Sternai et al. 1. Algorithm Flow Chart

GSA DATA REPOSITORY Sternai et al. 1. Algorithm Flow Chart GSA DATA REPOSITORY 2012311 Sternai et al. 1. Algorithm Flow Chart Figure DR1: Flow chart of the algorithm to further clarify the calculation scheme. 2. Reconstruction of the Pre-Glacial Alpine Topography

More information

Rivers. Regents Earth Science Weathering & Erosion

Rivers. Regents Earth Science Weathering & Erosion Regents Earth Science Weathering & Erosion Name: Rivers Use your notes, the handout Weathering and Erosion and your review book to answer the following questions on Rivers. Be sure to read the information

More information

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY

MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY MORPHOMETRIC ANALYSIS OF WATERSHEDS IN THE KUNIGAL AREA OF TUMKUR DISTRICT, SOUTH INDIA USING REMOTE SENSING AND GIS TECHNOLOGY PROJECT REFERENCE NO. : 37S1170 COLLEGE : SIDDAGANGA INSTITUTE OF TECHNOLOGY,

More information

Sensitivity analysis and parameter space exploration

Sensitivity analysis and parameter space exploration GSA Data Repository 2018013 Gray et al., 2018, Off-fault deformation rate along the southern San Andreas fault at Mecca Hills, southern California, inferred from landscape modeling of curved drainages:

More information

Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models

Predictions of steady state and transient landscape morphology using sediment-flux-dependent river incision models Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jf000567, 2007 Predictions of steady state and transient landscape morphology using sediment-flux-dependent river

More information

Geohistory Review. Things you need to know:

Geohistory Review. Things you need to know: Geohistory Review Things you need to know: a) The earth and the solar system are 4.5 billion years old (4.5 X 10 9 ) b) Law of original horizontality: Sedimentary rock layers are always deposited as horizontal

More information

CHAPTER 4 THE INFLUENCE OF RIVER BASIN MORPHOLOGY ON RIVER GROUNDWATER INTERACTION

CHAPTER 4 THE INFLUENCE OF RIVER BASIN MORPHOLOGY ON RIVER GROUNDWATER INTERACTION CHAPTER 4 THE INFLUENCE OF RIVER BASIN MORPHOLOGY ON RIVER GROUNDWATER INTERACTION CHAPTER 4 THE INFLUENCE OF RIVER BASIN MORPHOLOGY ON RIVER-GROUNDWATER INTERACTION 4.0. INTRODUCTION The relationship

More information