The origin of Rivers Erosion:

Size: px
Start display at page:

Download "The origin of Rivers Erosion:"

Transcription

1 The origin of Rivers Erosion: is the action of surface processes (such as water flow or wind) that removes soil, rock, or dissolved material from one location on the Earth's crust, and then transport it away to another location. The particulate breakdown of rock or soil into clastic sediment is referred to as physical or mechanical erosion; this contrasts with chemical erosion, where soil or rock material is removed from an area by its dissolving into a solvent (typically water), followed by the flow away of that solution. Eroded sediment or solutes may be transported just a few millimetres, or for thousands of kilometres.

2 Erosion Land degradation by the exogen forces Soil erosion Erosion by fluvial systems Wind erosion Freeze/Thaw erosion Mass movements and landslides Areal erosion Linear erosion

3 Areal Erosion Rain drop erosion Crumb disintegration as a result of the mechanical impact of raindrops Drop erosion is reduced by the vegetation on the surface. The higher the crop coverage is, the more water the foliage can retain, thereby reducing the impact energy and protracting the contact between the drops and the soil surface. Sheet erosion once the upper soil layer reached its maximum water capacity, it is no longer capable to let water through at the same rate as it reaches the surface and a veillike coverage will be developed in the area The accumulated water begins to move towards the slope direction, it forms streamlets and flows towards the next dip

4 Rain drop (splash) erosion Aspects affecting the extent of rain drop erosion: the size of water drops from above amount of water in a unit of time, i.e., the intensity of precipitation duration of rainfall moisture conditions of the soil, water uptake, permeability and retention ability of the soil soil structure and compactness extent of crop coverage

5 Sheet Erosion Extents are less then centimeters Mainly on bare surfaces with gentle roughness Laminar flows Mechanical effect is weak, chemical processes more dominant

6 Linear Erosion Runoff starts when rainfall intensity exceeds soil absorption capacity Runoff starts when all the pores in the soil are filled with water Turbulent flows appear

7 Rill erosion Rill erosion is the removal of soil by concentrated water running through little streamlets, or headcuts. Detachment in a rill occurs if the sediment in the flow is below the amount the load can transport and if the flow exceeds the soil's resistance to detachment. As detachment continues or flow increases, rills will become wider and deeper.

8 Gully erosion Gully erosion is the removal of soil along drainage lines by surface water runoff. Once started, gullies will continue to move by headward erosion or by slumping of the side walls unless steps are taken to stabilise the disturbance. What causes gully erosion? Gully erosion occurs when water is channelled across unprotected land and washes away the soil along the drainage lines. Under natural conditions, run-off is moderated by vegetation which generally holds the soil together, protecting it from excessive run-off and direct rainfall. Excessive clearing, inappropriate land use and compaction of the soil caused by grazing often means the soil is left exposed and unable to absorb excess water. Surface run-off then increases and concentrates in drainage lines, allowing gully erosion to develop in susceptible areas.

9 Stabilising gullies The object is to divert and modify the flow of water moving into and through the gully so that scouring is reduced, sediment accumulates and revegetation can proceed. Stabilising the gully head is important to prevent damaging water flow and headward erosion. A variety of options can be used to get the water safely from the natural level to the gully floor. Improvements like grass chutes, pipe structures, rock chutes or drop structures can be installed to do this effectively. Structures might also be required along gully floors since some grades can be quite steep and allow water to rush down under peak flows, ripping away soil and vegetation. These may take the form of rock barrages, wire netting or logs across gullies. Sediments held in the water will then be deposited along the flatter grades as a result of slower water flow, allowing vegetation to re-establish. If erosion control and revegetation work is undertaken, then damaged areas should be fenced off from stock, until restoration is complete. Dams can also be constructed to slow the flow of water into the gully head, but special care needs to be taken to get the overflow water back into the gully floor safely.

10 Preventing the problem As with other forms of erosion, prevention is better than cure. In most cases gullies can be prevented by good land management practices aimed at maintaining even infiltration rates and a good plant cover. Strategies for preventing gully erosion include: maintaining remnant vegetation along drainage lines and eliminating grazing from these areas increasing water usage by planting deep-rooted perennial pastures, trees, or an appropriate mixture of both thus maintaining healthy, vigorous levels of vegetation identifying drainage lines as a separate land class in which vegetation needs to be protected immediate stabilisation of sheet or rill erosion vermin control ensuring run-off from tracks is evenly distributed across paddocks ton dissipate its energy maintaining high levels of organic matter in the soil avoiding excessive cultivation.

11 Badlands Badlands are a type of dry terrain where softer sedimentary rocks and clay-rich soils have been extensively eroded by wind and water. They are characterized by steep slopes, minimal vegetation, lack of a substantial regolith, and high drainage density. They can resemble malpaís, a terrain of volcanic rock. Canyons, ravines, gullies, buttes, mesas, hoodoos and other such geologic forms are common in badlands. They are often difficult to navigate by foot. Badlands often have a spectacular color display that alternates from dark black/blue coal stria to be bright clays to red scoria.

12

13

14 Summary of Erosion types

15 Summary of Erosion types Splash erosion The forece of falling irrigation or rainwater displaces soil particles. Sheet erosion Impermeable surfaces, compacted soil, or bare soil lets water run across it, washing away disturbed surface particles. Rill erosion Sheet erosion wears down soil to establish a define path, forming rivulets in the soil referred to as rills. Rill erosion is much more visible to humans than splash and sheet erosion. Gully erosion Over time, rills widen and deepen into a gully, accelerating the effects of erosion by creating more and more surface area susceptible to disturbance, Bank erosion Fast water flows (often caused by influx of stormwater from impermeable surfaces wear away stream sides at an accelerated pace, often causing bank failure.

16 Stream flow and sediment transport Streams move downslope under the influence of gravity, the passage of water is called stream flow. Several factors control the amount of sediment that can be carried by a stream: 1) volume of stream flow, 2) the stream gradient, 3) shape of the stream channel, 4) kinds and volume of sediments available for erosion in a drainage basin. During floods, the volume and rate of stream flow increases, and erosion along the stream bed mobilizes sediments that accumulate during times of decreasing stream flow. Erosion carves the sides of stream channels, contributing sediments to streams and allowing the channel to migrate over time. Turbulence in the often violent or unsteady movement and mixing of air or water, or of some other fluid.; a most important factor influencing sediment transport in a stream. stream capacity the theoretical maximum mass of suspended sediment transported by a stream difficult to determine because a sediment laden stream is transitional to a debris flow increases with the 2-3rd power of discharge (i.e. faster than the increase of channel width or depth with discharge) as mass wasting and slope erosion in headwaters deliver sediment to tributary streams

17 Stream transport Sediment load in the channel depends on: Physical geography factors Type of input: Direct (rock falls) Indirect (areal erosion, gully erosion, landslides) Transport capicity depends on: Sediment grain size Stream turbulence Stream velocity

18

19 types of sediment load 1. dissolved sediment in solution (ionic) transport requires no mechanical energy reflects solubility of rocks in the watershed, rates of weathering and proportion of groundwater input versus softer surface water 2. traction (bedload) coarse fraction that rolls and slides along bed or moves in long low paths by saltation common where coarse materials are delivered to the channel with high velocities (flood flows or steep channels) 3. suspended accounts for most stream sediment and most of the work performed by streams, because suspendable (fine) sediments are always available and all streams are capable of suspending fine sediment measured and expressed as load (mass) or concentration (mass/unit volume) concentration decreases downstream as the number of small tributaries (sources of much sediment) decrease and the proportion of baseflow (groundwater) increases

20 Channel geometry significant difference between bedrock (structurally controlled) versus alluvial(adjustable) channels plan view meandering sinuous single thread, the most stable and efficient channel geometry (least variable energy distribution) to conduct water and sediment over any surface (e.g. supraglacial streams formed and maintained by erosion of banks and deposition on point bars braided multiple thread, superimposed meandering channels as discharge and sediment load vary seasonally and diurnally, e.g. semiarid and proglacial streams bars reforms during flood stage, deposition during falling stage that splits subsequent flow different hydraulic geometry at different stages anatomosing permanent multiple channels and mid-channel bars channel width increases and depth decreases below a threshold for sediment transport and flow splits into deeper more narrow channels straight either artificial or structurally controlled

21 longitudinal profile concave upward, i.e. slope is an inverse exponential function of discharge (Q 0.5 to -1.0 ) because flow is more efficient in larger channels, i.e. requires less slope to maintain velocity and sediment transport thus in an influent stream, where Q decreases with distance downstream (e.g. an irrigation canal) slope must increase downstream to maintain flow straight or convex segment of the long profile (e.g. bedrock outcrops, waterfalls, other knickpoints represent local deviations from the gross concave upward profile along the profile potential energy (mgh) is converted to kinetic energy (1/2mv 2 )according to he rate of decrease in h (i.e. the slope) and increase in velocity, until PE reaches 0 at base level: sea level (ultimate base level) or a lake or trunk stream (local base level)

22

23 meandering straight Braided, anastomosing

24

25 Meander geometry Channel planform morphometry

26 2014. AUG SEPT AUG AUG

27 Crevasse Splay A crevasse splay is a sedimentary fluvial deposit which forms when a stream breaks its natural or artificial levees and deposits sediment on a floodplain. A breach that forms a crevasse splay deposits sediments in similar pattern to an alluvial fan deposit. Once the levee has been breached the water flows out of its channel. As the water spreads onto the flood plain sediments will start to fall out of suspension as the water loses energy. In some cases crevasse splays can cause a river to abandon its old river channel, a process known as avulsion. Breaches that form a crevasse splay deposits occur most commonly on the outside banks of meanders where the water has the highest energy. Crevasse splay deposits can range in size. Larger deposits can be 6 m (20 ft) thick at the levee and spread 2 km (1.2 mi) wide, while smaller deposits may only be 1 cm (0.39 in) thick.

28

29 Crevasse Splay

30

31

32 Structure of the floodplain

33 Accumulation Alluvial fans

Erosion Surface Water. moving, transporting, and depositing sediment.

Erosion Surface Water. moving, transporting, and depositing sediment. + Erosion Surface Water moving, transporting, and depositing sediment. + Surface Water 2 Water from rainfall can hit Earth s surface and do a number of things: Slowly soak into the ground: Infiltration

More information

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow

11/12/2014. Running Water. Introduction. Water on Earth. The Hydrologic Cycle. Fluid Flow Introduction Mercury, Venus, Earth and Mars share a similar history, but Earth is the only terrestrial planet with abundant water! Mercury is too small and hot Venus has a runaway green house effect so

More information

Surface Water and Stream Development

Surface Water and Stream Development Surface Water and Stream Development Surface Water The moment a raindrop falls to earth it begins its return to the sea. Once water reaches Earth s surface it may evaporate back into the atmosphere, soak

More information

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b.

ES 105 Surface Processes I. Hydrologic cycle A. Distribution % in oceans 2. >3% surface water a. +99% surface water in glaciers b. ES 105 Surface Processes I. Hydrologic cycle A. Distribution 1. +97% in oceans 2. >3% surface water a. +99% surface water in glaciers b. >1/3% liquid, fresh water in streams and lakes~1/10,000 of water

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas FLUVIAL PROCESSES Fluvial Processes The Impact of Fluvial Processes on the Landscape Streams and Stream Systems Stream Channels Structural Relationships The Shaping and

More information

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College

Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Running Water Earth - Chapter 16 Stan Hatfield Southwestern Illinois College Hydrologic Cycle The hydrologic cycle is a summary of the circulation of Earth s water supply. Processes involved in the hydrologic

More information

Streams. Stream Water Flow

Streams. Stream Water Flow CHAPTER 14 OUTLINE Streams: Transport to the Oceans Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies. Streams Streams are the major geological agents

More information

Streams. Water. Hydrologic Cycle. Geol 104: Streams

Streams. Water. Hydrologic Cycle. Geol 104: Streams Streams Why study streams? Running water is the most important geologic agent in erosion, transportation and deposition of sediments. Water The unique physical and chemical properties of water make it

More information

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle WATER ON AND UNDER GROUND Objectives Define and describe the hydrologic cycle. Identify the basic characteristics of streams. Define drainage basin. Describe how floods occur and what factors may make

More information

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012

Stream Geomorphology. Leslie A. Morrissey UVM July 25, 2012 Stream Geomorphology Leslie A. Morrissey UVM July 25, 2012 What Functions do Healthy Streams Provide? Flood mitigation Water supply Water quality Sediment storage and transport Habitat Recreation Transportation

More information

STREAM SYSTEMS and FLOODS

STREAM SYSTEMS and FLOODS STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Runoff Transpiration Earth s Water and the Hydrologic Cycle The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration

Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle. Runoff Transpiration STREAM SYSTEMS and FLOODS The Hydrologic Cycle Precipitation Evaporation Infiltration Earth s Water and the Hydrologic Cycle Runoff Transpiration The Hydrologic Cycle The Hydrologic Cycle Oceans not filling

More information

Landscape Development

Landscape Development Landscape Development Slopes Dominate Natural Landscapes Created by the interplay of tectonic and igneous activity and gradation Deformation and uplift Volcanic activity Agents of gradation Mass wasting

More information

GEOL 1121 Earth Processes and Environments

GEOL 1121 Earth Processes and Environments GEOL 1121 Earth Processes and Environments Wondwosen Seyoum Department of Geology University of Georgia e-mail: seyoum@uga.edu G/G Bldg., Rm. No. 122 Seyoum, 2015 Chapter 6 Streams and Flooding Seyoum,

More information

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement

STUDY GUIDE FOR CONTENT MASTERY. Surface Water Movement Surface Water SECTION 9.1 Surface Water Movement In your textbook, read about surface water and the way in which it moves sediment. Complete each statement. 1. An excessive amount of water flowing downslope

More information

Summary. Streams and Drainage Systems

Summary. Streams and Drainage Systems Streams and Drainage Systems Summary Streams are part of the hydrologic cycle and the chief means by which water returns from the land to the sea. They help shape the Earth s surface and transport sediment

More information

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation

Each basin is surrounded & defined by a drainage divide (high point from which water flows away) Channel initiation DRAINAGE BASINS A drainage basin or watershed is defined from a downstream point, working upstream, to include all of the hillslope & channel areas which drain to that point Each basin is surrounded &

More information

Year 6. Geography. Revision

Year 6. Geography. Revision Year 6 Geography Revision November 2017 Rivers and World knowledge How the water cycle works and the meaning of the terms evaporation, condensation, precipitation, transpiration, surface run-off, groundwater

More information

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water

Final Exam. Running Water Erosion and Deposition. Willamette Discharge. Running Water Final Exam Running Water Erosion and Deposition Earth Science Chapter 5 Pages 120-135 Scheduled for 8 AM, March 21, 2006 Bring A scantron form A calculator Your 3 x 5 paper card of formulas Review questions

More information

Earth Science Chapter 6 Section 2 Review

Earth Science Chapter 6 Section 2 Review Name: Class: Date: Earth Science Chapter 6 Section Review Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Most streams carry the largest part of their

More information

Earth Science Chapter 9. Day 6 - Finish Capillary Action Lab - Quiz over Notes - Review Worksheets over Sections 9.2 and 9.3

Earth Science Chapter 9. Day 6 - Finish Capillary Action Lab - Quiz over Notes - Review Worksheets over Sections 9.2 and 9.3 Earth Science Chapter 9 Day 1 Day 2 Day 3 Read Section 9.1 Surface Water Chapter 9 Term Sheet Notes over Section 9.1 Surface Water Section 9.1 Review Worksheets Quiz over Section 9.1 Notes Virtual Lab

More information

What is weathering and how does it change Earth s surface? Answer the question using

What is weathering and how does it change Earth s surface? Answer the question using 7 th Grade Lesson What is weathering and how does it change Earth s surface? Answer the question using the sentence frame. You have 4 minutes. Weathering is. This changes the Earth s surface because. 1

More information

Chapter 11. Rivers: Shaping our landscape

Chapter 11. Rivers: Shaping our landscape Chapter 11 Rivers: Shaping our landscape Learning outcomes In this presentation you will learn: Common terms associated with rivers About the three stages of a river About the processes of river erosion

More information

Fresh Water: Streams, Lakes Groundwater & Wetlands

Fresh Water: Streams, Lakes Groundwater & Wetlands Fresh Water:, Lakes Groundwater & Wetlands Oct 27 Glaciers and Ice Ages Chp 13 Nov 3 Deserts and Wind and EXAM #3 Slope hydrologic cycle P = precip I = precip intercepted by veg ET = evapotranspiration

More information

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output

mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output mountain rivers fixed channel boundaries (bedrock banks and bed) high transport capacity low storage input output strong interaction between streams & hillslopes Sediment Budgets for Mountain Rivers Little

More information

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water.

Aquifer an underground zone or layer of sand, gravel, or porous rock that is saturated with water. Aggradation raising of the streambed by deposition that occurs when the energy of the water flowing through a stream reach is insufficient to transport sediment conveyed from upstream. Alluvium a general

More information

Rivers T. Perron

Rivers T. Perron 1 Rivers T. Perron 12.001 After our discussions of large-scale topography, how we represent topography in maps, and how topography interacts with geologic structures, you should be frothing at the mouth

More information

6.1 Water. The Water Cycle

6.1 Water. The Water Cycle 6.1 Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This unending circulation of Earth s water supply is the water cycle. The Water Cycle

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Running Water and Groundwater Running Water The Water Cycle Water constantly moves among the oceans, the atmosphere, the solid Earth, and the biosphere. This

More information

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting

Mass Wasting. Requirements for Mass Wasting. Slope Stability. Geol 104: mass wasting Mass Wasting Movement of earth materials downslope, driven by Gravitational Forces. Landslides - general term for rock or soil movement. In U.S., on average, mass wasting causes 1 to 2 billion dollars

More information

Module 4: Overview of the Fundamentals of Runoff and Erosion

Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4: Overview of the Fundamentals of Runoff and Erosion Module 4a Goal Once we can better understand the forces which cause erosion and runoff, only then can we begin to minimize the negative results.

More information

What are the different ways rocks can be weathered?

What are the different ways rocks can be weathered? Romano - 223 What are the different ways rocks can be weathered? Weathering - the breakdown of rocks and minerals at the Earth s surface 1. 2. PHYSICAL WEATHERING Rock is broken into smaller pieces with

More information

27. Running Water I (p ; )

27. Running Water I (p ; ) 27. Running Water I (p. 424-436; 440-444) Hydrosphere How much of the Earth s surface is covered by water? Earth's water is collectively called the and is stored in a number of so-called as follows: 1.

More information

Geography Notes for Plonk Meeting

Geography Notes for Plonk Meeting Geography Notes for Plonk Meeting Hydrologic Cycle 1. Rainfall Water falls as rain or snow if the air is cold enough. 2. Groundwater Water that seeps into the ground may be absorbed by plants or flow into

More information

EROSION AND DEPOSITION

EROSION AND DEPOSITION CHAPTER 8 EROSION AND DEPOSITION SECTION 8 1 Changing Earth s Surface (pages 252-255) This section explains how sediment is carried away and deposited elsewhere to wear down and build up Earth s surface.

More information

Chapter 10. Running Water aka Rivers. BFRB Pages

Chapter 10. Running Water aka Rivers. BFRB Pages Chapter 10 Running Water aka Rivers BFRB Pages 101-116 Stream Erosion and Transportation Running water is all precipitation (rain, snow, etc) that falls on Earth and is pulled downhill by gravity. Running

More information

Running Water: The Geology of Streams and Floods Running Water Chapter 14

Running Water: The Geology of Streams and Floods Running Water Chapter 14 Geology 800 Today Running Water: The Geology of Streams and Floods Running Water Chapter 14 Next Class Oceans and Coasts 15 Stream Flow Streams Ribbons of water that flow down channels. Runoff Water in

More information

6.11 Naas River Management Unit

6.11 Naas River Management Unit 6.11 Naas River Management Unit 6.11.1 Site 41 Issue: Bed and bank erosion Location: E 0685848 N 6058358 Waterway: Naas River Management Unit: Naas River Facing downstream from Bobeyan Rd bridge Facing

More information

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs.

Riparian Assessment. Steps in the right direction... Drainage Basin/Watershed: Start by Thinking Big. Riparian Assessment vs. Riparian Assessment vs. Monitoring Riparian Assessment What is a healthy stream? Determine stream/riparian health Determine change or trend, especially in response to mgmt Classification = designation

More information

Erosion and Sedimentation Basics

Erosion and Sedimentation Basics Erosion and Sedimentation Basics Coastal San Luis Resource Conservation District G.W. Bates, PE, CPESC Outline: 1. Terms & Concepts 2. Causes of Erosion 3. The Erosion/Sedimentation Process 4. Erosion

More information

Weathering, Erosion, Deposition, and Landscape Development

Weathering, Erosion, Deposition, and Landscape Development Weathering, Erosion, Deposition, and Landscape Development I. Weathering - the breakdown of rocks into smaller particles, also called sediments, by natural processes. Weathering is further divided into

More information

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson

Fluvial Systems Lab Environmental Geology Lab Dr. Johnson Fluvial Systems Lab Environmental Geology Lab Dr. Johnson *Introductory sections of this lab were adapted from Pidwirny, M. (2006). "Streamflow and Fluvial Processes". Fundamentals of Physical Geography,

More information

3/3/2013. The hydro cycle water returns from the sea. All "toilet to tap." Introduction to Environmental Geology, 5e

3/3/2013. The hydro cycle water returns from the sea. All toilet to tap. Introduction to Environmental Geology, 5e Introduction to Environmental Geology, 5e Running Water: summary in haiku form Edward A. Keller Chapter 9 Rivers and Flooding Lecture Presentation prepared by X. Mara Chen, Salisbury University The hydro

More information

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle

The Hydrologic Cycle STREAM SYSTEMS. Earth s Water and the Hydrologic Cycle. The Hydrologic Cycle. Hydrologic Cycle STREAM SYSTEMS Earth Science: Chapter 5 Reading pages 114-124 The Hydrologic Cycle Oceans not filling up Evaporation = precipitation System is balanced Earth s Water and the Hydrologic Cycle Earth s Water

More information

Water Erosion (pages )

Water Erosion (pages ) Water Erosion (pages 272 281) Runoff and Erosion (pages 273 274) Key Concept: Moving water is the major agent of the erosion that has shaped Earth s land surface. Falling raindrops can loosen and pick

More information

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy.

NATURE OF RIVERS B-1. Channel Function... ALLUVIAL FEATURES. ... to successfully carry sediment and water from the watershed. ...dissipate energy. 1 2 Function... Sevier River... to successfully carry sediment and water from the watershed....dissipate energy. 3 ALLUVIAL FEATURES 4 CHANNEL DIMENSION The purpose of a stream is to carry water and sediment

More information

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

Mass Wasting. Revisit: Erosion, Transportation, and Deposition Mass Wasting Revisit: Erosion, Transportation, and Deposition While landslides are a normal part of erosion and surface processes, they can be very destructive to life and property! - Mass wasting: downslope

More information

RIVERS, GROUNDWATER, AND GLACIERS

RIVERS, GROUNDWATER, AND GLACIERS RIVERS, GROUNDWATER, AND GLACIERS Delta A fan-shaped deposit that forms when a river flows into a quiet or large body of water, such as a lake, an ocean, or an inland sea. Alluvial Fan A sloping triangle

More information

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69

EROSION, DEPOSITION AND SEDIMENTARY ROCKS. Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages Chapter 3: pages 52-54, 61-69 EROSION, DEPOSITION AND SEDIMENTARY ROCKS Reading: Earth Science Tarbuck and Lutgens Chapter 5: pages 124-133 Chapter 3: pages 52-54, 61-69 Base Level Resistant bed Resistant bed creates a local base level

More information

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 5 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 5 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Overview of fluvial and geotechnical processes for TMDL assessment

Overview of fluvial and geotechnical processes for TMDL assessment Overview of fluvial and geotechnical processes for TMDL assessment Christian F Lenhart, Assistant Prof, MSU Research Assoc., U of M Biosystems Engineering Fluvial processes in a glaciated landscape Martin

More information

Rivers and Landslides

Rivers and Landslides Rivers and Landslides Path of desire or path of least resistance? Desire Path: A term in landscape architecture used to describe a path that isn t designed but rather is worn casually away by people finding

More information

Erosion and Deposition

Erosion and Deposition CHAPTER 3 LESSON 2 Erosion and Deposition Landforms Shaped by Water and Wind Key Concepts What are the stages of stream development? How do water erosion and deposition change Earth s surface? How do wind

More information

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s

In the space provided, write the letter of the description that best matches the term or phrase. a. any form of water that falls to Earth s Skills Worksheet Concept Review In the space provided, write the letter of the description that best matches the term or phrase. 1. condensation 2. floodplain 3. watershed 4. tributary 5. evapotranspiration

More information

Essential Questions. What is erosion? What is mass wasting?

Essential Questions. What is erosion? What is mass wasting? Erosion Essential Questions What is erosion? What is mass wasting? What is Erosion? Erosion The transportation of sediment from one area to another Caused mainly by running water but also caused by glaciers,

More information

12 10 8 6 4 2 0 40-50 50-60 60-70 70-80 80-90 90-100 Fresh Water What we will cover The Hydrologic Cycle River systems Floods Groundwater Caves and Karst Topography Hot springs Distribution of water in

More information

Surface Processes Focus on Mass Wasting (Chapter 10)

Surface Processes Focus on Mass Wasting (Chapter 10) Surface Processes Focus on Mass Wasting (Chapter 10) 1. What is the distinction between weathering, mass wasting, and erosion? 2. What is the controlling force in mass wasting? What force provides resistance?

More information

Chapter 3 Erosion and Deposition. The Big Question:

Chapter 3 Erosion and Deposition. The Big Question: Chapter 3 Erosion and Deposition The Big Question: 1 Design a way to represent and describe the 4 types of mass movement. You may use pictures, diagrams, list, web, chart, etc 2 Chapter 3: Erosion and

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Erosion Sediment natural forces move rock/soil from one place to another. gravity, water, wind, glaciers, waves are causes material moved by erosion Deposition when erosion lays

More information

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product

1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product Weathering 1. Any process that causes rock to crack or break into pieces is called physical weathering. Initial product = final product End Result of physical weathering is increased surface area. 2. Physical

More information

EARTH S CHANGING SURFACE

EARTH S CHANGING SURFACE EARTH S CHANGING SURFACE Weathering Together, weathering and erosion work continuously to wear down the material on Earth s surface. weathering process that breaks down rock and other substances of Earth

More information

True or False: The Earth s surface has stayed the same for thousands of years

True or False: The Earth s surface has stayed the same for thousands of years True or False: The Earth s surface has stayed the same for thousands of years True or False: The Earth s surface has stayed the same for thousands of years The Earth s surface is always changing! Weathering

More information

Science EOG Review: Landforms

Science EOG Review: Landforms Mathematician Science EOG Review: Landforms Vocabulary Definition Term canyon deep, large, V- shaped valley formed by a river over millions of years of erosion; sometimes called gorges (example: Linville

More information

What do you need for a Marathon?

What do you need for a Marathon? What do you need for a Marathon? Water and a snack? What about just a normal day? 1 flush = 3.5 gallons 1 flush = 3.5 gallons 10 minute shower = 20 gal 1 flush = 3.5 gallons 10 minute shower = 20 gal Jeans

More information

Deep Water Systems and Sequence Stratigraphy. By: Matt Kyrias, Chris Majerczyk, Nick Whitcomb, Wesley Vermillion

Deep Water Systems and Sequence Stratigraphy. By: Matt Kyrias, Chris Majerczyk, Nick Whitcomb, Wesley Vermillion Deep Water Systems and Sequence Stratigraphy By: Matt Kyrias, Chris Majerczyk, Nick Whitcomb, Wesley Vermillion Contents Gravity Flow Depositional Elements Defined References NOTE: Source uses seismic

More information

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur

Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Soil and Water Conservation Engineering Prof. Rajendra Singh Department of Agricultural and Food Engineering Indian Institute of Technology, Kharagpur Lecture 04 Soil Erosion - Mechanics Hello friends

More information

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING

Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p ) Workbook Chapter 4, 5 WEATHERING Topic 6: Weathering, Erosion and Erosional-Deposition Systems (workbook p. 95-125) Workbook Chapter 4, 5 THE BIG PICTURE: Weathering, erosion and deposition are processes that cause changes to rock material

More information

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer

ONE ROCK DAM ORD. capture more sediment. The original ORD becomes the splash apron for the new layer. STEP 4: When ORD fills in, add a new layer ONE ROCK DAM ORD A low grade control structure built with a single layer of rock on the bed of the channel. ORDs stabilize the bed of the channel by slowing the flow of water, increasing roughness, recruiting

More information

Running Water and the Development of Landforms

Running Water and the Development of Landforms Geography IGCSE Module One: River Environments Lesson Thirteen Running Water and the Development of Landforms Aims The aim of this lesson is for you to learn about: processes including o weathering and

More information

River/Stream Erosion Notes

River/Stream Erosion Notes Name Date ES per Mr. Williams River/Stream Erosion Notes Erosion: the of weathered material. FACT: Running water moves more sediment than ANY other type of erosion. 1. The Water Cycle What happens when

More information

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion

Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES. Introduction. The mechanics of gully erosion Gully Erosion Part 1 GULLY EROSION AND ITS CAUSES Gully erosion A complex of processes whereby the removal of soil is characterised by incised channels in the landscape. NSW Soil Conservation Service,

More information

Step 5: Channel Bed and Planform Changes

Step 5: Channel Bed and Planform Changes Step 5: Channel Bed and Planform Changes When disturbed, streams go through a series of adjustments to regain equilibrium with the flow and sediment supply of their watersheds. These adjustments often

More information

Bank Erosion and Morphology of the Kaskaskia River

Bank Erosion and Morphology of the Kaskaskia River Bank Erosion and Morphology of the Kaskaskia River US Army Corps Of Engineers St. Louis District Fayette County Soil and Water Conservation District Team Partners : Carlyle Lake Ecosystem Partnership Vicinity

More information

Instream Erosion Control General

Instream Erosion Control General Instream Erosion Control General EROSION CONTROL TECHNIQUES Revegetation Temperate Climates Short-Term Non Vegetation Wet Tropics Long-Term Weed Control [1] Semi-Arid Zones Permanent [1] Weed control attributes

More information

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each) Sedimentary Rocks & Surface Processes Quest Name: Earth Science 2013 Block: Date: Section I: Multiple Choice Select the best answer to each question. Mark your final answer on the answer sheet. (1 pt each)

More information

NATURAL RIVER. Karima Attia Nile Research Institute

NATURAL RIVER. Karima Attia Nile Research Institute NATURAL RIVER CHARACTERISTICS Karima Attia Nile Research Institute NATURAL RIVER DEFINITION NATURAL RIVER DEFINITION Is natural stream of water that flows in channels with ih more or less defined banks.

More information

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California

Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Upper Truckee River Restoration Lake Tahoe, California Presented by Brendan Belby Sacramento, California Mike Rudd (Project Manager), Charley Miller & Chad Krofta Declines in Tahoe s Water Clarity The

More information

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement)

1/6/ th Grade Earth s Surface. Chapter 3: Erosion and Deposition. Lesson 1 (Mass Movement) Lesson 1 (Mass Movement) 7 th Grade Earth s Surface Chapter 3: Erosion and Deposition Weathering the chemical and physical processes that break down rock at Earth s surface Mechanical weathering when rock

More information

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins.

Rivers and Streams. Streams. Hydrologic Cycle. Drainage Basins and Divides. Colorado River Drainage Basin. Colorado Drainage Basins. Chapter 14 Hydrologic Cycle Rivers and Streams Streams A stream is a body of water that is confined in a channel and moves downhill under the influence of gravity. This definition includes all sizes of

More information

UGRC 144 Science and Technology in Our Lives/Geohazards

UGRC 144 Science and Technology in Our Lives/Geohazards UGRC 144 Science and Technology in Our Lives/Geohazards Flood and Flood Hazards Dr. Patrick Asamoah Sakyi Department of Earth Science, UG, Legon College of Education School of Continuing and Distance Education

More information

Stream Classification

Stream Classification Stream Classification Why Classify Streams? Communication Tool Describe Existing Conditions & Trends Describe Restoration Goals Research Tool Morphologic Stream Classification Systems Schumm (1977) Alluvial

More information

Erosion and Deposition

Erosion and Deposition Erosion and Deposition Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Water erosion begins when runoff from rainfall flows in a thin layer over the land

More information

REVIEW. There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL. What is WEATHERING? The breakdown of rocks at or near Earth s surface

REVIEW. There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL. What is WEATHERING? The breakdown of rocks at or near Earth s surface REVIEW What is WEATHERING? Def: The breakdown of rocks at or near Earth s surface There are 2 types of WEATHERING: 1. CHEMICAL 2. PHYSICAL CHEMICAL WEATHERING EXAMPLES: 1. OXIDATION (rust) CHEMICAL WEATHERING

More information

1. Erosion by Running Water Most powerful cause of erosion

1. Erosion by Running Water Most powerful cause of erosion I. Destructive Forces Notes: Destructive force: a process in which land is destroyed or changed such as weathering and erosion. All landforms are a result of a combination of constructive and destructive

More information

Lab 13: Fluvial Processes and Landforms

Lab 13: Fluvial Processes and Landforms Name: Lab 13: Fluvial Processes and Landforms Geomorphology is the study of Earth s surface and of the processes acting to shape it. Streams, for example, are significant continental land-shaping agents.

More information

Tom Ballestero University of New Hampshire. 1 May 2013

Tom Ballestero University of New Hampshire. 1 May 2013 Tom Ballestero University of New Hampshire 1 May 2013 1 Hydrology 2 Basic Hydrology Low flows most common Flows that fill the stream to the banks and higher are much less common Filling the stream to the

More information

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material

River Processes. Learning Objective: Discover how a river erodes, transports and deposits material River Processes Learning Objective: Discover how a river erodes, transports and deposits material Learning Outcomes: Compare vertical and lateral erosion Describe how a river erodes, transports and deposits

More information

Surface Water Short Study Guide

Surface Water Short Study Guide Name: Class: Date: Surface Water Short Study Guide Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. The three ways in which a stream carries

More information

Environmental Geology Chapter 9 Rivers and Flooding

Environmental Geology Chapter 9 Rivers and Flooding Environmental Geology Chapter 9 Rivers and Flooding Flooding in Pakistan 2010-1600 killed/20000 affected The hydrologic cycle is powered by the Sun The cycle includes evaporation, precipitation, infiltration,

More information

Why Geomorphology for Fish Passage

Why Geomorphology for Fish Passage Channel Morphology - Stream Crossing Interactions An Overview Michael Love Michael Love & Associates mlove@h2odesigns.com (707) 476-8938 Why Geomorphology for Fish Passage 1. Understand the Scale of the

More information

Long Valley Meadow Restoration Project

Long Valley Meadow Restoration Project Long Valley Meadow Restoration Project USDA Forest Service Mogollon Rim Ranger District Coconino National Forest Coconino County, Arizona T13N, R9E, Section 12 and T13N, R10E, Sections 6 and 7 Gila and

More information

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area.

[1] Performance of the sediment trap depends on the type of outlet structure and the settling pond surface area. Sediment Trench SEDIMENT CONTROL TECHNIQUE Type 1 System Sheet Flow Sandy Soils Type 2 System [1] Concentrated Flow Clayey Soils Type 3 System [1] Supplementary Trap Dispersive Soils [1] Performance of

More information

Mass Wasting: The Work of Gravity

Mass Wasting: The Work of Gravity Chapter 15 Lecture Earth: An Introduction to Physical Geology Twelfth Edition Mass Wasting: The Work of Gravity Tarbuck and Lutgens Chapter 15 Mass Wasting The Importance of Mass Wasting Slopes are the

More information

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan

The effectiveness of check dams in controlling upstream channel stability in northeastern Taiwan Erosion, Debris Mows and Environment in Mountain Regions (Proceedings of the Chengdu Symposium, July 1992). IAHS Publ. no. 209, 1992. 423 The effectiveness of check dams in controlling upstream channel

More information

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS

SCOPE OF PRESENTATION STREAM DYNAMICS, CHANNEL RESTORATION PLANS, & SEDIMENT TRANSPORT ANALYSES IN RELATION TO RESTORATION PLANS DESIGN METHODS B: SEDIMENT TRANSPORT PROCESSES FOR STREAM RESTORATION DESIGN PETER KLINGEMAN OREGON STATE UNIVERSITY CIVIL ENGINEERING DEPT., CORVALLIS 2 ND ANNUAL NORTHWEST STREAM RESTORATION DESIGN SYMPOSIUM

More information

Read Across America. Listen as I read for facts about Volcanoes. In the Shadow of the Volcano

Read Across America. Listen as I read for facts about Volcanoes. In the Shadow of the Volcano Read Across America Listen as I read for facts about Volcanoes. In the Shadow of the Volcano Constructive & Destructive Processes Earth s surface is always changing. Blowing wind and flowing water causes

More information

A floodplain is the flat land immediately surrounding a stream channel and innundated at 5mes of high flow.

A floodplain is the flat land immediately surrounding a stream channel and innundated at 5mes of high flow. A floodplain is the flat land immediately surrounding a stream channel and innundated at 5mes of high flow. Aggrada5on occurs when deposi5on is greater than erosion. Aggrada&on of the Rivière des Ha! Ha!

More information

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN

ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN ADDRESSING GEOMORPHIC AND HYDRAULIC CONTROLS IN OFF-CHANNEL HABITAT DESIGN Conor Shea - Hydrologist U.S. Fish and Wildlife Service Conservation Partnerships Program Arcata, CA Learning Objectives Examine

More information

River floodplain regime and stratigraphy. Drs. Nanette C. Kingma.

River floodplain regime and stratigraphy. Drs. Nanette C. Kingma. River floodplain regime and stratigraphy. Drs. Nanette C. Kingma. Formation of floodplain. Formation of floodplains: lateral channel migration in channel deposition suspended-load fall out during higher

More information

What Is Water Erosion? Aren t they the same thing? What Is Sediment? What Is Sedimentation? How can Sediment Yields be Minimized?

What Is Water Erosion? Aren t they the same thing? What Is Sediment? What Is Sedimentation? How can Sediment Yields be Minimized? Jerald S. Fifield, Ph.D. CISEC HydroDynamics Incorporated Parker, CO 303-841-0377 Aren t they the same thing? What Is Sediment? Soil particles deposited or suspended in water or air The process of depositing

More information