(In the name of GOD) HIGH PERFORMANCE THIN LAYER CHROMATOGARPHY(HPTLC) Dr. A.R.Bekhradnia

Size: px
Start display at page:

Download "(In the name of GOD) HIGH PERFORMANCE THIN LAYER CHROMATOGARPHY(HPTLC) Dr. A.R.Bekhradnia"

Transcription

1 (In the name of GOD) HIGH PERFORMANCE THIN LAYER CHROMATOGARPHY(HPTLC) 1

2 HIGH PERFORMANCE THIN LAYER CHROMATOGARPHY (HPTLC) 2

3 THIN LAYER CHROMATOGRAPHY (TLC) 3

4 Chromatography is a physical process of separation in which the components to be separated are distributed between 2 immiscible phases a stationary phase which has a large surface area and mobile phase which is in constant motion through the stationary phase. 4

5 THIN LAYER CHROMATOGRAPHY (TLC) 5

6 Mikhail Tsvet Born 14 May 1872 Asti, Italy Died 26 June 1919 (age 47) Nationality Fields botany Russia Mikhail Semyonovich Tsvet (Михаи л Семёнович Цвет, also spelled Tsvett, Tswett, Tswet, Zwet, and Cvet) ( ) was a Russian-Italian botanist who invented adsorption chromatography. 6

7 Invention of Chromatography by M. Tswett Ether Chromatography Chlorophyll Colors CaCO 3 LAAQ-B-LC001B 7

8 Comparing Chromatography to the Flow of a River... Light leaf Heavy stone Water flow Base LAAQ-B-LC001B 8

9 Chromato-graphy / -graph / -gram / -grapher Chromatography: Chromatograph: Chromatogram: Chromatographer: Analytical technique Instrument Obtained picture Person LAAQ-B-LC001B 9

10 Three States of Matter and Chromatography Types Mobile phase Gas Liquid Solid Gas Stationary phase Liquid Solid Gas chromatography Liquid chromatography LAAQ-B-LC001B 10

11 Liquid Chromatography Chromatography in which the mobile phase is a liquid. The liquid used as the mobile phase is called the eluent. The stationary phase is usually a solid or a liquid. In general, it is possible to analyze any substance that can be stably dissolved in the mobile phase. LAAQ-B-LC001B 11

12 Interaction Between Solutes, Stationary Phase, and Mobile Phase Differences in the interactions between the solutes and stationary and mobile phases enable separation. Solute Degree of adsorption, solubility, ionicity, etc. Stationary phase Mobile phase LAAQ-B-LC001B 12

13 Classification According to the force of separation: Adsorption chromatography Partition chromatography Ion exchange chromatography Gel filtration chromatography Affinity chromatography LAAQ-B-LC001B 13

14 Column Chromatography and Planar Chromatography Separation column Paper or a substrate coated with particles Packing material Column Chromatography Paper Chromatography Thin Layer Chromatography (TLC) LAAQ-B-LC001B 14

15 Output concentration Chromatogram Time 15

16 Intensity of detector signal t 0 t R h Peak A t R : Retention time t 0 : Non-retention time A : Peak area h : Peak height Time 16

17 Separation Process and Chromatogram for Column Chromatography Output concentration Chromatogram Time LAAQ-B-LC001B 17

18 THIN LAYER CHROMATOGRAPHY Once the solvent is within ~1-2 cm of the top of the TLC sheet, the TLC is removed from the developing chamber and the farthest extent of the solvent (the solvent front) is marked with a pencil. The solvent is allowed to evaporate from the TLC sheet in the hood. The spots are visualized using a UV lamp. A fluorescent compound, usually Manganeseactivated Zinc Silicate, is added to the adsorbent that allows the visualization of spots under a blacklight (UV254). The adsorbent layer will fluoresce light green by itself, but spots of analyte quench this fluorescence and appear as a dark spot. 18

19 THIN LAYER CHROMATOGRAPHY - Visualization As the chemicals being separated may be colorless, several methods exist to visualize the spots: Visualization of spots under a UV 254 lamp. The adsorbent layer will thus fluoresce light green by itself, but spots of analyte quench this fluorescence. Iodine vapors are a general unspecific color. Chromatogram of 10 essential oils, Stained with vanillin reagent. Specific color reagents exist into which the TLC plate is dipped or which are sprayed onto the plate. Once visible, the R f value of each spot can be determined 19

20 THIN LAYER CHROMATOGRAPHY Calculation of Rf s R f (A) = 2.0 cm 5.0 cm = 0.40 Solvent Front Distance solvent migrated = 5.0 cm Distance A migrated = 3.0 cm 4.0 cm R f (B) = R f (C) = 3.0 cm 5.0 cm 0.8 cm 5.0 cm = 0.60 = 0.16 Distance B migrated = 2.0 cm 3.0 cm R f (D) = 4.0 cm = cm Origen Distance C migrated = 0.8 cm x x x x A B U C The R f is defined as the distance the center of the spot moved divided by the distance the solvent front moved (both measured from the origin) x D 0.8 cm R f (U 1 ) = 3.0 cm 5.0 cm 0.8 cm R f (U 2 ) = 5.0 cm = 0.60 =

21 THIN LAYER CHROMATOGRAPHY Calculation of Rf s R f (A) = 2.0 cm 5.0 cm = 0.40 Solvent Front Distance solvent migrated = 5.0 cm Distance A migrated = 3.0 cm 4.0 cm R f (B) = R f (C) = 3.0 cm 5.0 cm 0.8 cm 5.0 cm = 0.60 = 0.16 Distance B migrated = 2.0 cm 3.0 cm R f (D) = 4.0 cm = cm Origen Distance C migrated = 0.8 cm x x x x A B U C x D The R f is defined as the distance the center of the spot moved divided by the distance the solvent front moved (both measured from the origin) 0.8 cm R f (U 1 ) = 3.0 cm 5.0 cm 0.8 cm R f (U 2 ) = 5.0 cm = 0.60 =

22 THIN LAYER CHROMATOGRAPHY R f s R f values can be used to aid in the identification of a substance by comparison to standards. The R f value is not a physical constant, and comparison should be made only between spots on the same sheet, run at the same time. Two substances that have the same R f value may be identical; those with different R f values are not identical. 22

23 Absorption of Solutes THIN LAYER CHROMATOGRAPHY R f s The adsorption strength of compounds increases with increasing polarity of functional groups, as shown below: -CH=CH 2, -X, -OR, -CHO, -CO 2 R, -NR 2, -NH 2, -OH, -CONR 2, -CO 2 H. (weakly adsorbed) (strongly adsorbed) (nonpolar) (more polar) Elution Strength of Mobile Phase (ε) Elution strength is generally considered to be equivalent to polarity. A solvents elution strength depends on Intermolecular Forces between the solvent and the analytes and between the solvent and the stationary phase. A more polar (or more strongly eluting solvent) will move all of the analytes to a greater extent, than a less polar, weakly elution solvent. For example, the elution strength of hexane is very low; ε = the elution strength of ethyl acetate is higher; ε = 0.45 the elution strength of ethanol is even higher; ε =

24 Solvent Properties and Elution Strengths Solvent Hexane CH 3 (CH 2 ) 4 CH 3 MF MW C 6 H Bp ( o C) Density (g/ml) Hazards* Dipole Elution Stength (ε) Flammable Toxic Toluene C 6 H 5 CH 3 C 7 H Flammable Toxic Diethyl ether CH 3 CH 2 OCH 2 CH 3 C 4 H 10 O Flammable Toxic, CNS Depressant Dichloromethane CH 2 Cl 2 CH 2 Cl Toxic, Irritant Cancer suspect Ethyl Acetate CH 3 CO 2 CH 2 CH 3 C 4 H 8 O Flammable Irritant Acetone CH 3 COCH 3 C 3 H 6 O Flammable Irritant Butanone CH 3 CH 2 COCH 3 C 4 H 8 O Flammable Irritant Butanol CH 3 CH 2 CH 2 CH 2 OH C 4 H 10 O Flammable Irritant Propanol CH 3 CH 2 CH 2 OH C 3 H 8 O Flammable Irritant Ethanol CH 3 CH 2 OH C 2 H 6 O Flammable Irritant Methanol CH 3 OH Water HOH CH 4 O H 2 O Flammable Toxic >1 24

25 Elution Strength of Mixed Solvents The elution strength of the mixture is assumed to be the weighted average of the elution strengths of the components: ε o net = ε o A (mole % A) + ε o B (mole % B) where: mole % A = (moles A) / (moles A + moles B) Thus, to determine the ε o net of a solvent mixture, the molar ratio of the solvents must first be calculated. For example, the ε o net of a solvent mixture prepared from 1.0 ml of ethyl acetate plus 9.0 ml of hexanes is calculated as shown below: ε o net = ε o EtOAc [(moles EtOAc)/(moles EtOAc+moles hexane)] + ε o hexane [(moles hexane)/(moles EtOAc+moles hexane)] where: moles EtOAc = [(volume EtOAc) (density EtOAc)] / [molecular weight of EtOAc] thus: ε o net = {0.45[(1.0mLEtOAc)(0.902g/mL)/(88.11g/mole)]+0.01[(9.0mLhexane)(0.659g/mL)/86.18g/mole)]} {(1.0 mletoac)(0.902g/ml)/88.11g/mole) + (9.0 mlhexane)(0.659g/ml)/86.18g/mole)} and ε o net =

26 Resolution The separation between two analytes on a chromatogram can be expressed as the resolution, Rs and can be determined using the following equation: Rs = (distance between center of spots) (average diameter of spots) In TLC, if the Rs value is greater than 1.0, the analytes are considered to be resolved. x x 26

27 Improving Resolution: For two closely migrating components, optimum resolutions are usually obtained when the R f s of both compounds are between 0.2 and 0.5 * To Improve Rs, change the elution strength of the solvent to optimize R f s change ε o net, all compounds will be effected similarly. Alter the composition of the solvent system so that the components affinity for the mobile phase vs. the solid phase are differentially changed (= change in selectivity). Changing the chemical nature of the solvent system, such as changing a hydrogen bonding solvent to a solvent which cannot hydrogen bond to the analyte, is often the most effective. ** Improve Rs by decreasing the diameter of the analyte spots. This can be achieved by applying smaller and less concentrated spots. TLC/TLCprocedure.html 27

28 HIGH PERFORMANCE THIN LAYER CHROMATOGARPHY (HPTLC) 28

29 Introduction of HPTLC HPTLC is the improved method of TLC which utilizes the conventional technique of TLC in more optimized way. HPTLC takes place in highspeed capillary flow range of the mobile phase. There are three main steps HPTLC procedure, they are 1] Sample preparation, volume precision and exact position are achieved by use of suitable instrument. 2] Solvent (mobile phase) migrates the planned distance in layer (stationary phase) by capillary action. In this process sample separated into it s components. 3] Separation tracks are scanned in densitometer with light beams in visible or uv region 29

30 Steps Involving in HPTLC Sample Preparation Application of sample Selection of chromatography layer Pre-washing Pre-conditioning Chromatography development Detection of spots Scanning & documentation 30

31 Sample preparation Normal phase chromatography: non polar solvent Reversed phase chromatography: polar solvent Selection of chromatography layer Depends on nature of material to be separated Commonly used(silica gel, alumina) 31

32 Pre-washing It is purification step Mainly methanol is used Essential for quantitative evaluation 32

33 Linomat lv applicator 33

34 34

35 Selection of HPTLC plates Previously hand made plates is used in TLC for both qualitative and quantitative work. Certain drawbacks with that is nonuniform layer, formation of thick layer, paved for advent of precoated plates. Nowadays precoated plates are available in different format and thickness by various manufactures. Precaoted plates can be used for both qualitative and quantitative work in HPTLC, they are GLASS PLATES POLY ESTER/POLYETHYLYNE ALUMINIUM PLATES 35

36 Glass Plates: Offers superior flat and smooth surface. - fragile - high weight - higher production cost Polyester/polyethylene plates: Thickness of plate is 0.2mm. - It can be produced in roll forms. - Unbreakable. - Less packing material is required. - Development of plate cann t be above temperature c loses its shape. 36

37 Aluminium plates: Thickness of plate is 0.1mm. - It can be produced in roll forms. - Unbreakable. - Less packaging material is required. 37

38 SORBENTS USED IN HPTLC PLATES: sorbents which are used in convential TLC are also used in HPTLC with or without modification. - silica gel 65F - highly purified silicagel 60 - aluminium oxide - cellulose microcrystalline - silica gel - reversed stationary phase 38

39 The layer thickness in HPTLC is around cm,in conventional it is 250mm. Layer prewashing: Ascending method - Dipping method - Continuous method 39

40 The plates are activated by placing in an oven at C for 30 min, this step will removes water that has been physically absorbed on surface at solvent layer. Freshly opened box of HPTLC plates usually does not require activation. Activation at higher temp and for longer time is avoided which leads to very active layer and there is risk of sample being decomposed 40

41 - Methanol (commonly used) - Chloroform:methanol:ammonia(90:10:1) - Chloroform:methanol(1:1) - Methylene chloride:methanol(1:1) - Ammonia(1%)solution 41

42 Usual concentration range is 0.1-1µg / µl,above this causes poor separation. Linomat IV (automatic applicator) - nitrogen gas sprays sample and standard from syringe on TLC plates as bands. Band wise application - better separation - high response to densitometer. 42

43 Processes in the Developing Chamber The «classical» way of developing a chromatogram is to place the plate in a chamber, which contains a sufficient amount of developing solvent. The lower end of the plate should be immersed several millimeters. Driven by capillary action the developing solvent moves up the layer until the desired running distance is reached and chromatography is stopped. The following considerations primarily concern silica gel as stationary phase and developments, which can be described as adsorption chromatography. 43

44 Provided the chamber is closed, four partially competing processes occur: Between the components of the developing solvent and their vapor, an equilibrium will be established eventually (1). This equilibrium is called chamber saturation. Depending on the vapor pressure of the individual components the composition of the gas phase can differ significantly from that of the developing solvent. While still dry, the stationary phase adsorbs molecules from the gas phase. This process, adsorptive saturation, is also approaching an equilibrium in which the polar components will be withdrawn from the gas phase and loaded onto the surface of the stationary phase (2). Simultaneously the part of the layer which is already wetted with mobile phase interacts with the gas phase. Thereby especially the less polar components of the liquid are released into in the gas phase (3). Unlike (1) this process is not as much governed by vapor pressure as by adsorption forces. During migration, the components of the mobile phase can be separated by the stationary phase under certain conditions, causing the formation of secondary fronts. 44

45 45

46 46

47 47

48 48

49 49

50 Also called Chamber Saturation Low polarity mob. Phase:- no need High polar mob. Phase:- desirable For reverse phase saturate chamber with polar solvent 50

51 51

52 LOW SOLVENT CONSUMPTION pre-equilibration with solvent vapor 52

53 CAMAG Twin Trough Chambers offer several ways to improve the results of TLC/HPTLC developing techniques. It allows low solvent consumption, reproducible pre-equilibration with solvent vapor, equilibration performed with any liquid and for any period of time, and development is started only when developing solvent is introduced into the trough with the plate. Twin Trough Chambers are available with stainless steel lid or as a Light-Weight Twin Trough Chamber made from highly transparent sheet glass with a glass lid. Start of development 53

54 After development, remove the plate and mobile phase is removed from the plate - to avoid contamination of lab atmosphere. Dry in vacuum desiccator - avoid hair drier because essential oil components may evaporate. 54

55 55

56 Detection under UV light is first choice - non destructive. Spots of fluorescent compounds can be seen at 254 nm (short wave length) or at 366 nm (long wave length). Spots of non fluorescent compounds can be seen - fluorescent stationary phase is used - silica gel GF. 56

57 57

58 58

59 59

60 CATS STANDARD PROGRAM. CATS PROGRAM OPTIONS 60

61 61

62 Non UV absorbing compounds like ethambutol, dicylomine etc - dipping the plates in 0.1% iodine solution. When individual component does not respond to UV - derivatisation required for detection. 62

63 HPTLC 100µm High due to smaller particle size generated 3-5 cm Shorter migration distance and the analysis time is greatly reduced Wide choice of stationary phases like silica gel for normal phase and C8, C18 for reversed phase modes New type that require less amount of mobile phase Auto sampler Use of UV/ Visible/ Fluorescence scanner scans the entire chromatogram qualitatively and quantitatively and the scanner is an advanced type of densitometer TLC 250µm Less cm Slower Silica gel, Alumina More amount Manual spotting Not possible 63

64 Pharmaceutical Researches Biomedical Analysis Clinical Analysis Environmental Analysis Food Industry Therapeutic drug monitoring to determine concentration of drug and it s metabolite in blood, urine etc Analysis of environmental pollutions levels Quantitative determination of prostaglandin s and thromboxanes in plasma Analysis of nitrosoamines in food and body fluids Determination of sorbic acid in wine Characterization of hazards in industrial waste 64

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Chromatography. writing in color

Chromatography. writing in color Chromatography writing in color Outlines of Lecture Chromatographic analysis» Principles and theory.» Definition.» Mechanism.» Types of chromatography.» Uses of Chromatography. In 1906 Mikhail Tswett used

More information

Chromatographic Methods of Analysis Section 2: Planar Chromatography. Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section 2: Planar Chromatography. Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section 2: Planar Chromatography Prof. Tarek A. Fayed Planar chromatography includes two types: 1- Thin Layer Chromatography (TLC). 2- Paper Chromatography (PC). Thin

More information

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC)

PAPER AND THIN LAYER CHROMATOGRAPHY (TLC) PAPER AND THIN LAYER CHROMATOGRAPHY (TLC) Objectives Understand the principle of Paper and Thin Layer Chromatography (TLC). Diagnose two samples of urine for Phenylketonuria and Cystinuria, using paper

More information

THIN LAYER CHROMATOGRAPHY

THIN LAYER CHROMATOGRAPHY THIN LAYER CHROMATOGRAPHY OBJECTIVE In this laboratory you will separate spinach pigments using thin layer chromatography (TLC). INTRODUCTION Mixtures of compounds are very common in Organic Chemistry.

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Lab.2. Thin layer chromatography

Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic Method Lecture - 1 Introduction and Basic

More information

Thin Layer Chromatography

Thin Layer Chromatography Experiment: Thin Layer Chromatography Chromatography is a technique widely used by organic chemists to separate and identify components in a mixture. There are many types of chromatography, but all involve

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

Experiment Nine Thin Layer Chromatography

Experiment Nine Thin Layer Chromatography Name: Lab Section: 09 Thin Layer Chromatography Experiment Nine Thin Layer Chromatography Introduction Objective Separation of compounds from a mixture is an incredibly important aspect of experimental

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

Thin Layer Chromatography

Thin Layer Chromatography Thin Layer Chromatography Thin-layer chromatography involves the same principles as column chromatography, it also is a form of solid-liquid adsorption chromatography. In this case, however, the solid

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Chromatography. What is Chromatography?

Chromatography. What is Chromatography? Chromatography What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components. Mixture

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Part 1, p. 184: Separation of spinach pigments by TLC. (4 th Ed. P. 180) Part 2, p. 192: Separation of Fluorene and Fluorenone by

More information

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5.

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5. UNIT-5 Chromatography THE technique of chromatography is vastly used for the separation, purification and identification of compounds. According to IUPAC, chromatography is a physical method of separation

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Mark Langella WISTA The most modern and sophisticated methods of separating mixtures that the organic chemist has available

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

CHEMICAL SEPARATION EXPERIMENT 2

CHEMICAL SEPARATION EXPERIMENT 2 CHEMICAL SEPARATION EXPERIMENT 2 INTRODUCTION The term analysis in chemistry usually refer to the quantitative and qualitative determination of the components of a sample. Qualitative refering to the identity

More information

DEFINITION CHROMATOGRAPHY

DEFINITION CHROMATOGRAPHY Chromatography DEFINITION CHROMATOGRAPHY The separation of a mixture by distribution of its components between a mobile and stationary phase over time mobile phase = solvent stationary phase = column packing

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

á1064ñ IDENTIFICATION OF ARTICLES OF BOTANICAL ORIGIN BY HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY PROCEDURE

á1064ñ IDENTIFICATION OF ARTICLES OF BOTANICAL ORIGIN BY HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY PROCEDURE USP 40 General Information / á1064ñ Identification of Articles of Botanical Origin 1 á1064ñ IDENTIFICATION OF ARTICLES OF BOTANICAL ORIGIN BY HIGH-PERFORMANCE THIN-LAYER CHROMATOGRAPHY PROCEDURE INTRODUCTION

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

Stationary phase: Non-moving phase that provides support for mixture to move.

Stationary phase: Non-moving phase that provides support for mixture to move. Chromatography For S. Y. B. Sc. Sem-IV By: Dr Vipul B. Kataria The technique was invented by Russian botanist Mikhail tswett in 1906. The word Chromatography is derived from latin language and in this

More information

LUMEFANTRINUM LUMEFANTRINE

LUMEFANTRINUM LUMEFANTRINE July 2008 LUMEFANTRINE: Final text for addition to The International Pharmacopoeia (July 2008) This monograph was adopted at the Forty-second WHO Expert Committee on Specifications for Pharmaceutical Preparations

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

x Contents 3 The Stationary Phase in Thin-Layer Chromatography Activating and Deactivating Stationary Phases Snyder s Adsorption M

x Contents 3 The Stationary Phase in Thin-Layer Chromatography Activating and Deactivating Stationary Phases Snyder s Adsorption M Contents 1 History of Planar Chromatography... 1 1.1 History of Paper Chromatography (PC)... 1 1.2 History of Thin-Layer Chromatography... 7 1.3 The History of Quantitative Planar Chromatography... 8 References.....

More information

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

3. Separation of a Mixture into Pure Substances

3. Separation of a Mixture into Pure Substances 3. Separation of a Mixture into Pure Substances Paper Chromatography of Metal Cations What you will accomplish in this experiment This third experiment provides opportunities for you to learn and practice:

More information

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control CfE Higher Chemistry Unit 3: Chemistry in Society Chemical Analysis as part of quality control 06/12/2017 Composition and purity 06/12/2017 Learning Outcomes : I can explain the basic principle of how

More information

For Chromatography, you might want to remember Polar Dissolves More, not like dissolves like.

For Chromatography, you might want to remember Polar Dissolves More, not like dissolves like. Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Chemistry Instrumental Analysis Lecture 28. Chem 4631

Chemistry Instrumental Analysis Lecture 28. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 28 High Performance Liquid Chromatography () Instrumentation Normal Phase Chromatography Normal Phase - a polar stationary phase with a less polar mobile phase.

More information

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC Chromatography Mrs. D. MEENA MPharm PA & QA KTPC INTRODUCTION ANALYTICAL TECHNIQUES Analytical chemistry involves separating, identifying and determining the relative amount of the components in a sample

More information

Principles of Thin Layer Chromatography

Principles of Thin Layer Chromatography REVISED & UPDATED Edvo-Kit #113 Principles of Thin Layer Chromatography Experiment Objective: The objective of this experiment is to gain an understanding of the theory and methods of thin layer chromatography.

More information

Name Period Date. Lab 10: Paper Chromatography

Name Period Date. Lab 10: Paper Chromatography Name Period Date Lab 10: Paper Chromatography Objectives Known and unknown solutions of the metal ions Fe +, Cu 2+ and Ni 2+ will be analyzed using paper chromatography. An unknown solution containing

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

Volumetric Analysis. Quantitative analysis answers the second question

Volumetric Analysis. Quantitative analysis answers the second question Volumetric Analysis Volumetric analysis is a form of quantitative analysis involving the measuring of volumes of reacting solutions, it involves the use of titrations. When buying food we often have two

More information

Chromatography What is it?

Chromatography What is it? Chromatography Most things that are colored are mixtures of different substances of various colors. In a mixture you have several different kinds of chemicals that are all next to each other but not reacting.

More information

PROGRAMMING THE RINSE ROBOT INTRODUCTION

PROGRAMMING THE RINSE ROBOT INTRODUCTION PROGRAMMING THE RINSE ROBOT INTRODUCTION Description During the initial part of this exercise, students will attach a chemical group to a solid material inside a reaction tube. Not all of this chemical

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

Abstract. Introduction

Abstract. Introduction Investigating the Techniques of Solid- Liquid Extraction by isolating lycopene from tomato paste and Column Chromatography &Thin-Layer Chromatography (TLC)by purifying lycopene Mengying Li Department of

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

INTRODUCTION. Amino acids occurring in nature have the general structure shown below:

INTRODUCTION. Amino acids occurring in nature have the general structure shown below: Biochemistry I Laboratory Amino Acid Thin Layer Chromatography INTRODUCTION The primary importance of amino acids in cell structure and metabolism lies in the fact that they serve as building blocks for

More information

Exercise 4: Thin layer chromatography of organic compounds

Exercise 4: Thin layer chromatography of organic compounds Chemistry 162 Exercise 4: Thin layer chromatography of organic compounds Objective: Use thin layer chromatography to separate and characterize the polarity of a mixture of benzene derivatives. Introduction:

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS Islamic University in Madinah Department of Chemistry CHAPTER - ----- CHROMATOGRAPHIC METHODS OF SEPARATIONS Prepared By Dr. Khalid Ahmad Shadid Chemistry Department Islamic University in Madinah TRADITIONAL

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Pharmacognosy Lab. Senna s Advantages : Used for patients who aren t responsive for milder laxatives Senna s Disadvantages :

Pharmacognosy Lab. Senna s Advantages : Used for patients who aren t responsive for milder laxatives Senna s Disadvantages : Pharmacognosy Lab Lab1,2,3 Comparative determination of glycosides in Senna using different methods of extraction ( Soxhlet, Maceration, & Ultrasonic bath ) Senna s Advantages : I. Used as Stimulant Laxative

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

TLC Introduction. tlc Choose Stationary Phase. Select Visualization Technique. Choose a Mobile Phase

TLC Introduction. tlc Choose Stationary Phase. Select Visualization Technique. Choose a Mobile Phase TLC Introduction Thin Layer Chromatography to Preparative Chromatography One of the first steps in scale-up of preparative liquid chromatography separations is selection of an appropriate mobile phase.

More information

Paper Chromatography. Identifying the components of a mixture

Paper Chromatography. Identifying the components of a mixture Paper Chromatography Identifying the components of a mixture QUIZ TIME! Take out a blank piece of paper Put your name and your lab day/time at the top Paper Chromatography Identifying the components of

More information

Laboratory Exercise: Chromatographic Separation

Laboratory Exercise: Chromatographic Separation CHEM 109 Introduction to Chemistry Revision 1.0 Laboratory Exercise: Chromatographic Separation As we have discussed, chromatographic separations employ a system with two phases of matter; a mobile phase

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography.

PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography. LAB 1: CHROMATOGRAPHY OF SPINACH Thin Layer and Column Chromatography PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography.

More information

Chapter 23 Introduction to Analytical Separations

Chapter 23 Introduction to Analytical Separations Chapter 23 Introduction to Analytical Separations Homework Due Monday April 24 Problems 23-1, 23-2, 23-7, 23-15, 23-27, 23-29, 23-32 Analytical Separations: Universal approach to analyzing complex mixtures

More information

HPLC Workshop 16 June 2009 What does this do? Chromatography Theory Review Several chromatographic techniques Even though each method utilizes different techniques to separate compounds, the principles

More information

Sample Preparation TLC Plates

Sample Preparation TLC Plates TLC PLATES TLC Plates Economical separation method High sample throughput Pilot procedure for HPLC and flash chromatography Versatile range of ready-to-use layers Thin layer chromatography (TLC) is a simple,

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

Separation Techniques and Extraction methods of Phytochemicals

Separation Techniques and Extraction methods of Phytochemicals Separation Techniques and Extraction methods of Phytochemicals Introduction herbal medicines and the products derived from them are traditionally used for their benefits in prevention and treatment of

More information

Introduction to Chromatographic Separations

Introduction to Chromatographic Separations Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available:

More information

Chapter No. 2 EXPERIMENTAL TECHNIQUES IN CHEMISTRY SHORT QUESTIONS WITH ANSWERS Q.1 Define analytical chemistry? The branch of chemistry which deals with the qualitative and quantitative analyses of sample

More information

TLC Densitometric Quantification of Vasicine, Vasicinone and Embelin from Adhatoda zeylanica leaves and Embelia ribes fruits

TLC Densitometric Quantification of Vasicine, Vasicinone and Embelin from Adhatoda zeylanica leaves and Embelia ribes fruits Chapter 8 TLC Densitometric Quantification of Vasicine, Vasicinone and Embelin from Adhatoda zeylanica leaves and Embelia ribes fruits 8.1 INTRODUCTION With the global increase in the demand for plant

More information

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE December 2008 CYCLOSERINE Final text for addition to The International Pharmacopoeia (November 2008) This monograph was adopted at the Forty-third WHO Expert Committee on Specifications for Pharmaceutical

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

ARTEMETHER AND LUMEFANTRINE ORAL SUSPENSION:Final text for addition to The International Pharmacopoeia (November 2008)

ARTEMETHER AND LUMEFANTRINE ORAL SUSPENSION:Final text for addition to The International Pharmacopoeia (November 2008) November 2008 ` ARTEMETER AND LUMEFANTRINE RAL SUSPENSIN:Final text for addition to The International Pharmacopoeia (November 2008) Category. Antimalarial. Storage. Artemether and lumefantrine oral suspension

More information

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC

IDENTIFICATION AND DETERMINATION OF HYDROQUINONE IN COSMETIC PRODUCTS 2 14/11/17 ACM 003 BY TLC AND HPLC A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION The method describes the identification of hydroquinone in cosmetic products. 2. PRINCIPLE Hydroquinone is identified by thin layer chromatography

More information

ARTEMETHER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008)

ARTEMETHER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008) July 2008 ARTEMETER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008) This monograph was adopted at the Forty-second W Expert Committee on Specifications

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

Chromatography and its applications

Chromatography and its applications Chromatography and its applications Reference Introduction to chromatography theory and practice Instrumental methods of chemical analysis by H.Kaur INTRODUCTION There are many methods which have been

More information

Experiment 1 & 2 PURPOSE OF THE EXPERIMENT

Experiment 1 & 2 PURPOSE OF THE EXPERIMENT Experiment 1 & 2 Separating a Mixture of Anthracene, Benzil and Triphenylmethanol by Thin-Layer Chromatography & Isolation of (-)-Menthol from Peppermint Oil and Its Conversion to (-)-Menthyl Acetate prepared

More information

INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE. Chromatography. in biochemistry

INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE. Chromatography. in biochemistry INSTITUTE OF MEDICAL BIOCHEMISTRY FIRST FACULTY OF MEDICINE, CHARLES UNIVERSITY IN PRAGUE Chromatography in biochemistry Prof. RNDr. Věra Pacáková, CSc. Faculty of Natural Sciences, Charles University

More information

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY

CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY CHIRAL SEPARATION USING THIN LAYER CHROMATOGRAPHY Chiral Chromatography Chiral - adjective: not superimposable on its mirror image: used to describe a molecule whose arrangement of atoms is such that it

More information

SIMULTANEOUS ESTIMATION OF CILOSTAZOL AND ASPIRIN IN SYNTHETIC MIXTURE USING HPTLC METHOD

SIMULTANEOUS ESTIMATION OF CILOSTAZOL AND ASPIRIN IN SYNTHETIC MIXTURE USING HPTLC METHOD Int. J. Chem. Sci.: 6(3), 2008, 1377-1384 SIMULTANEOUS ESTIMATION OF CILOSTAZOL AND ASPIRIN IN SYNTHETIC MIXTURE USING HPTLC METHOD JAYESH V. PATEL, C. N. PATEL, P. U. PATEL a PANKAJ H. PRAJAPATI, I. S.

More information

Paper Chromatography Lab. Prepared for: Mrs. Freeman

Paper Chromatography Lab. Prepared for: Mrs. Freeman Paper Chromatography Lab Prepared for: Mrs. Freeman September 6, 2013 1 Introduction The separation of mixtures is an important part of chemistry. One such method of separation is called chromatography,

More information

Practical 1 Procedure Iron by Titrimetry

Practical 1 Procedure Iron by Titrimetry Practical 1 Procedure Iron by Titrimetry Introduction This experiment quantifies Fe 2+, ferrous iron, by reacting it with ceric sulphate in a 1:1 reaction, i.e. one mole of ferrous iron reacts with one

More information

The Basis for Paper Chromatography

The Basis for Paper Chromatography APTER 4 Polarity The Basis for Paper hromatography bjectives The objectives of this laboratory are to: Use paper chromatography to determine the number of components in certain mixtures. lassify these

More information

Separations: Chromatography of M&M and Ink Dyes

Separations: Chromatography of M&M and Ink Dyes Separations: Chromatography o M&M and Ink Dyes Almost all substances we come into contact with on a daily basis are impure; that is, they are mixtures. Similarly, compounds synthesized in the chemical

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

Shodex TM ODP2 HP series columns

Shodex TM ODP2 HP series columns HPLC Columns Shodex TM ODP2 HP series columns Better retention of highly polar substances Technical notebook No. 6 Contents 1. Introduction 1-1. Specifications 1-2. Eluent Compatibility of ODP2 HP Series

More information

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation

What type of samples are common? Time spent on different operations during LC analyses. Number of samples? Aims. Sources of error. Sample preparation What type of samples are common? Sample preparation 1 2 Number of samples? Time spent on different operations during LC analyses 3 4 Sources of error Aims Sample has to be representative Sample has to

More information

Spectroscopy and Chromatography

Spectroscopy and Chromatography Spectroscopy and Chromatography Introduction Visible light is one very small part of the electromagnetic spectrum. The different properties of the various types of radiation depend upon their wavelength.

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Structural characterization begins with a purity check!

Structural characterization begins with a purity check! Structural characterization begins with a purity check! Refractive Index Melting Point Elemental Analysis (EA) Thin Layer Chromatography (TLC) High Performance Liquid Chromatography (HPLC) Course: 59-320

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid NAME: AP CHEMISTRY DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid PURPOSE There are a number of analytical techniques used to separate components of a mixture, or solution. They include

More information

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Background: In this week s experiment, a metal hydride will be used as a reducing agent. Metal hydrides can be quite reactive, and

More information

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed

Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Chromatographic Methods of Analysis Section: 5 Gas Chromatography (GC) Prof. Tarek A. Fayed Gas Chromatography (GC) In gas chromatography, the sample is vaporized and injected onto the head of a chromatographic

More information

Chemical Analysis Problem

Chemical Analysis Problem Chemical Analysis Problem Hair analysis is frequently used for the long-term monitoring of drug and alcohol users. You are working at a forensics laboratory and have been given the task of developing a

More information