Introduction to Chromatographic Separations

Size: px
Start display at page:

Download "Introduction to Chromatographic Separations"

Transcription

1 Introduction to Chromatographic Separations Analysis of complex samples usually involves previous separation prior to compound determination. Two main separation methods instrumentation are available: based on Chromatography Electrophoresis Chromatography is based on the interaction of chemical species with a mobile phase (MP) and a stationary phase (SP). The MP and the SP are immiscible. The sample is transported by the MP. The interaction of species with the MP and the SP separates chemical species in zones or bands. The relative chemical affinity of chemical species with the MP and the SP dictates the time the species remain in the SP. MP + sample SP Detector Two general types of chromatographic techniques exist: Planar: flat SP, MP moves through capillary action or gravity Column: tube of SP, MP moves through gravity or pressure. 151

2 Classification of Chromatographic Methods Chromatographic methods can be classified on the type of MP and SP and the kinds of equilibrium involved in the transfer of solutes between phases: Column 1: Type of MP Column 2: Type of MP and SP Column 3: SP Column 4: Type of equilibrium Concentration profiles of solute bands A and B at two different times in their migration down the column. 152

3 Migration Rates of Solutes Two-component chromatogram illustrating two methods for improving separation: (a) Original chromatogram with overlapping peaks; (b) improvement brought about an increase in band separation; (c) improvement brought about by a decrease in the widths. Distribution constant or partition ratio or partition coefficient: It describes the partition equilibrium of an analyte between the SP and the MP. If K = K c and SP = S and MP = M K c = c S / C M = n S / V S n M / V M Where V S and V M are the volumes of the two phases and n S and n M are the moles of A in SP and MP, respectively. 153

4 Retention Time Retention time is a measured quantity. From the figure: t M = time it takes a non-retained species (MP) to travel through the column = dead or void time. t R = retention time of analyte. The analyte has been retained because it spends a time t S in the SP. The retention time is then given by: t R = t S + t M The average migration rate (cm/s) of the solute through the column is: Where L is the length of the column. The average linear velocity of the MP molecules is: 154

5 Relationship Between Retention Time and Distribution Constant The Rate of Solute Migration: The Retention Factor Retention factor = capacity factor = k A = k A. However: k A K C or k A K A Where V S and V M are the volumes of SP and MP in the column. Knowing that: => An equation can be derived to obtain K C of A (K A ) as a function of experimental parameters. => 155

6 Band Broadening and Column Efficiency The shape of an analyte zone eluting from a chromatographic column follows a Gaussian profile. Some molecules travel faster than the average. The time it takes them to reach the detector is: t R τ. Some molecules travel slower than the average molecule. The time it takes them to reach the detector is: t R + t The selectivity factor can be measured from the chromatogram. Selectivity factors are always greater than unity, so B should be always the compound with higher affinity by the SP. Selectivity factors are useful parameters to calculate the resolving power of a column. So, the Gaussian provides an average retention time (most frequent time) and a time interval for the total elution of an analyte from the column. The magnitude of Dt depends on the width of the peak. 156

7 Considering that: v_ = L / t R => L = v_ x or L ± L = v_ x [t R ± t] The equation above correlates chromatographic peaks with Gaussian profiles to the length of the column. Both t and L correspond to the standard deviation of a Gaussian peak: t L σ If σ = t, σ units are in minutes. If σ = L, σ units are in cm. The width of a peak is a measure of the efficiency of a column. The narrower the peak, the more efficient is the column. => The efficiencies of chromatographic columns can be compared in terms of number of theoretical plates. 157

8 The Plate Theory The plate theory supposes that the chromatographic column contains a large number of separate layers, called theoretical plates. Separate equilibrations of the sample between the stationary and mobile phase occur in these "plates". The analyte moves down the column by transfer of equilibrated mobile phase from one plate to the next. It is important to remember that theoretical plates do not really exist. They are a figment of the imagination that helps us to understand the processes at work in the column. As previously mentioned, theoretical plates also serve as a figure of merit to measuring column efficiency, either by stating the number of theoretical plates in a column (N) or by stating the plate height (H); i.e. the Height Equivalent to a Theoretical Plate. The number of theoretical plates is given by: N = L / H If the length of the column is L, then the HETP is: H = σ 2 / L Note: For columns with the same length (same L): The smaller the H, the narrower the peak. The smaller the H, the larger the number of plates. => column efficiency is favored by small H and large N. It is always possible to using a longer column to improve separation efficiency. 158

9 Experimental Evaluation of H and N Calling σ in time units (minutes or seconds) as τ: => σ / τ = cm / s Considering that: v_ = L / t R = cm /s We can write: L / t R = σ / τ or τ = σ = σ L / t R v_ If the chromatographic peak is Gaussian, approximately 96% of its area is included within ± 2σ. This area corresponds to the area between the two tangents on the two sides of the chromatographic peak. The width of the peak at its base (W) is then equal to: W = 4τ in time units or W = 4σ in length units. Substituting τ = W / 4 in the equation above we obtain: σ = LW / 4t R Substituting σ = W / 4 in the same equation we obtain: τ = Wt R / 4L Substituting σ = LW / 4t R in the HEPT equation: H = LW 2 / 16t R 2 Substitution of this equation in N gives: N = 16 (t R / W) 2 These two equations allow one to estimate H and N from experimental parameters. If one considers the peak of the width at the half maximum (W 1/2 ): N = 5.54 (t R / W 1/2 ) 2 In comparing columns, N and H should be obtained with the same compound! 159

10 Kinetic Variables Affecting Column Efficiency The plate theory provides two figures of merit (N and H) for comparing column efficiency but it does not explain band broadening. Table 26-2 provides the variables that affect band broadening in a chromatographic column and, therefore, affect column efficiency. The effect of these variables in column efficiency is best explained by the theory of band broadening. This theory is best represented by the van Deemter equation: H = A + B / u+ C S. u + C M. U where H is in cm and u is the velocity of the mobile phase in cm.s -1. The other terms are explained in Table Table 26-3: f(k) and f (k) are functions of k λ and γ are constants that depend on the quality of the packing. B is the coefficient of longitudinal diffusion. C S and C M are coefficients of mass transfer in stationary and mobile phase, respectively. Before we try to understand the meaning of the van Deemter equation, a better understanding of chromatographic columns is needed. 160

11 Some Characteristics of Gas Chromatography (GC) Columns Two general types => Open Tubular Columns (OTC) or Capillary Columns => Packed Columns OTC: => Wall Coated Open Tubular (WCOT) Columns => Support Coated Open Tubular (SCOT) Columns => The most common inner diameters for capillary tubes are 0.32 and 0.25mm. Packed Columns: => Glass tubes with 2 to 4mm inner diameter. => Packed with a uniform, finely divided packing material of solid support, coated with a thin layer (005 to 1µm) of liquid stationary phase. Solid Support Material in OTC and Packed Columns Diatomaceous Earth: skeletons of species of single-celled plants that once inhabited ancient lakes and seas. 161

12 Some Characteristics of HPLC Columns Only packed columns are used in HPLC. Current packing consists of porous micro-particles with diameters ranging from 3 to 10µm. The particles are composed of silica, alumina, or an ion-exchange resin. Silica particles are the most common. Thin organic films are chemically or physically bonded to the silica particles. The chemical nature of the thin organic film determines the type of chromatography. SP for normal-phase chromatography Typical microparticle SP for partition chromatography 162

13 Another Look at the van Deemter Equation H = A + B/u + C S u + C M u The multi-path term A or Eddy-Diffusion: => This term accounts for the multitude of pathways by which a molecule (or ion) can find its way through a packed column. A = 2λd p where: λ is a geometrical factor that depends on the shape of the particle: 1 λ 2. d p is the diameter of the particle. Using packing with spherical particles of small diameters should reduce eddy -diffusion. Injection Detector 163

14 The Longitudinal Diffusion Term B/u: Longitudinal diffusion is the migration of solute from the concentrated center of the band to the more diluted regions on either side of the analyte zone. B/u = 2γD M /u where: γ is a constant that depends on the nature of the packing and it varies from 0.6 γ 0.8. D M is the diffusion coefficient in the mobile phase. D M α T / µ, where T is the temperature and µ is the viscosity of the mobile phase. As u infinite, B/u zero. So, the contribution of longitudinal diffusion in the total plate height is only significant at low MP flow rates. Its contribution is potentially more significant in GC than HPLC because of the relatively high column temperatures and low MP viscosity (gas). Initial band Diffusion of the band with time The initial part of the curve is predominantly due to the B/u term. Because the term B/u in GC is larger than HPLC, the overall H in GC is about 10x the overall H in HPLC. 164

15 The Stationary-Phase Mass Transfer Term C S u: C S = mass transfer coefficient in the SP. C S α d f 2 / D S where d f is the thickness of the SP film and D S is the diffusion coefficient in the SP. => Thin-film SP and low viscosity SP (large D S ) provide low mass transfer coefficients in the SP and improve column efficiency. The Mobile-Phase Mass Transfer Term C M u: C M = mass transfer coefficient in the MP. C M α d p 2 / D M where d p is the diameter of packing particles and D M is the diffusion coefficient in the MP. The contribution of mass transfer in the SP and MP on the overall late height depends on the flow velocity of the mobile phase. Both phenomena play a predominant role at high MP flow rates. Liquid SP coated on solid support Cartoon with example of SP mass-transfer in a liquid SP: different degrees of penetration of analyte molecules in the liquid layer of SP lead to band-broadening Porous in silica particle Cartoon with example of MP masstransfer: stagnant pools of MP retained in the porous of silica particles lead to bandbroadening. 165

16 Summary of Methods for Reducing Band Broadening Packed Columns: Most important parameter that affects band broadening is the particle diameter. If the SP is liquid, the thickness of the SP is the most important parameter. Capillary Columns: No packing, so there is no Eddy-diffusion term. Most important parameter that affects band broadening is the diameter of the capillary. Gaseous MP (GC): The rate of longitudinal diffusion can be reduced by lowering the temperature and thus the diffusion coefficient. The effect of temperature is mainly noted at low flow rate velocities where the term B/u is significant. Temperature has little effect on HPLC. Effect of particle diameter in GC Effect of particle diameter in HPLC Note: m = µm 166

17 Optimization of Column Performance Optimization experiments are aimed at either reducing zone broadening or altering relative migration rates of components. The time it takes for chromatographic analysis is also an important parameter that should be optimized without compromising chromatographic resolution. Column Resolution: It is a quantitative measure of the ability of the column to separate two analytes. It can be obtained from the chromatogram with the equation: In terms of retention factors k A and k B for the two solutes, the selectivity factor and the number of theoretical plates of the column: From the last equation we can obtain the number of theoretical plates needed to achieve a given resolution: 167

18 For compounds with similar capacity factors, i.e. k A k B : The time it takes to achieve a separation can be predicted with the formula: Where k = k A + k B / 2 168

19 The General Elution Problem The general elution problem occurs in the separation of mixtures containing compounds with widely different distribution constants. The best solution to the general elution problem is to optimize eluting conditions for each compound during the chromatographic run. In HPLC, this is best accomplished by changing the composition of the mobile phase (Gradient Elution Chromatography). In GC, this is best accomplished by changing the temperature of the column during the chromatographic run. 169

20 Qualitative and Quantitative Analysis in GC and HPLC Both are done with the help of standards. Qualitative analysis, i.e. compound identification is done via retention time. The retention time from the pure standard is compared to the retention time of the analyte in the sample. Note: retention times are experimental parameters and as such are prone to standard deviation. Quantitative analysis is done via the calibration curve method (or external standard method) or the internal standard method. Calibration curve or external standard method: the procedure is the same as usual. The calibration curve can be built plotting the peak height or the peak area versus standard concentration. The same volume of sample was injected in each case, but Sample B has a much smaller peak. Since the t R at the apex of both peaks is 2.85 minutes, this indicates that they are both the same compound, (in this example, acrylamide (ID)). The Area under the peak ( Peak Area Count ) indicates the concentration of the compound. This area value is calculated by the Computer Data Station. Notice the area under the Sample A peak is much larger. In this example, Sample A has 10 times the area of Sample B. Therefore, Sample A has 10 times the concentration, (10 picograms) as much acrylamide as Sample B, (1 picogram). Note, there is another peak, (not identified), that comes out at 1.8 min. in both samples. Since the area counts for both samples are about the same, it has the same concentration in both samples. 170

21 Internal Standards An internal standard is a known amount of a compound that is added to the unknown. The signal from analyte is compared to the signal from the standard to find out how much analyte is present. This method compensates for instrumental response that varies slightly from run to run and deteriorates reproducibility considerably. This is the case of mobile phase flow rate variations in chromatographic analysis. Internal standards are also desirable in cases where the possibility of loosing sample during analysis exists. This is the case of sample separation in the chromatographic column. The internal standard should be chosen according to the analyte. Their chemical behavior with regards to the SP and MP should be similar. How to use an internal standard?: a mixture with the same known amount of standard and analyte is prepared to measure the relative response of the detector for the two species. The factor (F) is obtained from the relative response of the detector. Once the relative response of the detector has been found, the analyte concentration is calculated according to the formula: Area of analyte signal Concentration of analyte = F x Area of standard signal Concentration of standard A known amount of standard is added to the unknown X. The relative response is measured to obtain the detector s response factor F. 171

22 Example of Internal Standards In a preliminary experiment, a solution containing M X and 0.066M S gave peak areas of A X = 423 and A S = 347. Note that areas are measured in arbitrary units by the instrument s computer. To analyze the unknown, 10.0mL of 0.146M S were added to 10.0mL of unknown, and the mixture was diluted to 25.0mL in a volumetric flask. This mixture gave a chromatogram with peak areas A X = 553 and A S = 582. Find the concentration of X in the unknown. First use the standard mixture to find the response factor: A X / [x] = F x {A S / [S]} Standard mixture: 423 / = F {347 / } => F = In the mixture of unknown plus standard, the concentration of S is: [S] = (0.146M)(10.0mL / 25.0mL) = M where: 10.0mL / 25.0mL is the dilution factor Using the known response factor and S concentration of the diluted sample in the equation above: 553 / [X] = (582 / ) =>[X] = M 172

23 Liquid Chromatography Size exclusion or gel: polystyrene-divinylbenzene Silica with various porous sizes 173

24 Instrumentation 174

25 Pumping Systems Pumping systems that allow to change the MP composition during the chromatographic run provide better separation of compounds with wide range of k factors. 175

26 Detectors UV-VIS absorption cell for HPLC 176

Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of

Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of Luminescence Spectroscopy Excitation is very rapid (10-15 s). Vibrational relaxation is a non-radiational process. It involves vibrational levels of the same electronic state. The excess of vibrational

More information

Introduction to Chromatography

Introduction to Chromatography Introduction to Chromatography Dr. Sana Mustafa Assistant Professor Department of Chemistry, Federal Urdu University of Arts, Science & Technology, Karachi. What is Chromatography? Derived from the Greek

More information

Analytical Chemistry

Analytical Chemistry Analytical Chemistry Chromatographic Separations KAM021 2016 Dr. A. Jesorka, 6112, aldo@chalmers.se Introduction to Chromatographic Separations Theory of Separations -Chromatography Terms Summary: Chromatography

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis

Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Introduction to Chromatographic Separations (Chapter 1) Many determinations involve separation followed by analysis chromatography electrophoresis Chromatography: sample transported by mobile phase electrostatic

More information

What is Chromatography?

What is Chromatography? What is Chromatography? Chromatography is a physico-chemical process that belongs to fractionation methods same as distillation, crystallization or fractionated extraction. It is believed that the separation

More information

Chemistry Instrumental Analysis Lecture 26. Chem 4631

Chemistry Instrumental Analysis Lecture 26. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 26 Rate Theory Focuses on the contributions of various kinetic factors to zone or band broadening. Column Dispensivity, H, is assumed to be the sum of the individual

More information

Information given in these slides are, either in part or all, recollection from the followings:

Information given in these slides are, either in part or all, recollection from the followings: Information given in these slides are, either in part or all, recollection from the followings: http://bionmr.unl.edu/courses/chem421-821/lectures/chapter-2... http://faculty.atu.edu/abhuiyan/course/chem

More information

HPLC Background Chem 250 F 2008 Page 1 of 24

HPLC Background Chem 250 F 2008 Page 1 of 24 HPLC Background Chem 250 F 2008 Page 1 of 24 Outline: General and descriptive aspects of chromatographic retention and separation: phenomenological k, efficiency, selectivity. Quantitative description

More information

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A.

Instrumental Analysis II Course Code: CH3109. Chromatographic &Thermal Methods of Analysis Part 1: General Introduction. Prof. Tarek A. Instrumental Analysis II Course Code: CH3109 Chromatographic &Thermal Methods of Analysis Part 1: General Introduction Prof. Tarek A. Fayed What is chemical analysis? Qualitative analysis (1) Chemical

More information

Chromatographic Separation

Chromatographic Separation What is? is the ability to separate molecules using partitioning characteristics of molecule to remain in a stationary phase versus a mobile phase. Once a molecule is separated from the mixture, it can

More information

Chromatography and other Separation Methods

Chromatography and other Separation Methods Chromatography and other Separation Methods Probably the most powerful class of modern analytical methods for analyzing mixture of components---and even for detecting a single component in a complex mixture!

More information

Separation Methods Based on Distributions in Discrete Stages (02/04/15)

Separation Methods Based on Distributions in Discrete Stages (02/04/15) Separation Methods Based on Distributions in Discrete Stages (02/04/15) 1. Chemical Separations: The Big Picture Classification and comparison of methods 2. Fundamentals of Distribution Separations 3.

More information

Chapter 26. An Introduction to Chromatographic Separations. Chromatography

Chapter 26. An Introduction to Chromatographic Separations. Chromatography Chapter 26 An Introduction to Chromatographic Separations Chromatography 1 Chromatography-Model as Extraction Chromatography-Model as Extraction 2 Chromatography Planar Chromatography-Types paper chromatography

More information

Separations---Chromatography and Electrophoresis

Separations---Chromatography and Electrophoresis Separations---Chromatography and Electrophoresis Chromatography--one of most diverse and important analytical methods-- Used initially primarily to purify species With advent of sensitive detectors---now

More information

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water.

Remember - Ions are more soluble in water than in organic solvents. - Neutrals are more soluble in organic solvents than in water. IN-CLASS PROBLEMS SEPARATION SCIENCE CROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set - Extraction 1. Devise a way to separate the materials in the following sample by performing an

More information

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments.

Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. Chromatography Primer Abstract: An minimalist overview of chromatography for the person who would conduct chromatographic experiments, but not design experiments. At its heart, chromatography is a technique

More information

Chromatographic Analysis

Chromatographic Analysis Chromatographic Analysis Distribution of Analytes between Phases An analyte is in equilibrium between the two phases [S 1 ] [S 2 ] (in phase 1) (in phase 2) AS [S2 ] K 2 A S [S1 ] 1 AS, A 1 S Activity

More information

Liquid Chromatography

Liquid Chromatography Liquid Chromatography 1. Introduction and Column Packing Material 2. Retention Mechanisms in Liquid Chromatography 3. Method Development 4. Column Preparation 5. General Instrumental aspects 6. Detectors

More information

Chapter 26: An Introduction to Chromatographic Separations

Chapter 26: An Introduction to Chromatographic Separations Chapter 26: An Introduction to Chromatographic Separations Column Chromatography Migration Rates Distribution Contstants Retention Times Selectivity Factor Zone Broadening & Column Efficiency Optimizing

More information

High Performance Liquid Chromatography

High Performance Liquid Chromatography High Performance Liquid Chromatography What is HPLC? It is a separation technique that involves: Injection of small volume of liquid sample Into a tube packed with a tiny particles (stationary phase).

More information

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction.

LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT. Thomas Wenzel, Bates College. In-class Problem Set Extraction. LEARNING OBJECTIVES CHEM 212: SEPARATION SCIENCE CHROMATOGRAPHY UNIT Thomas Wenzel, Bates College In-class Problem Set Extraction Problem #1 1. Devise a scheme to be able to isolate organic acids, bases

More information

CHEM 429 / 529 Chemical Separation Techniques

CHEM 429 / 529 Chemical Separation Techniques CHEM 429 / 529 Chemical Separation Techniques Robert E. Synovec, Professor Department of Chemistry University of Washington Lecture 1 Course Introduction Goal Chromatography and Related Techniques Obtain

More information

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic methods Lecture - 2 Basic Concepts in Chromatography

More information

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration

CHAPTER 1. Introduction, Chromatography Theory, and Instrument Calibration 1 1 1 1 1 1 CHAPTER 1 Introduction, Chromatography Theory, and Instrument Calibration 1.1 Introduction Analytical chemists have few tools as powerful as chromatography to measure distinct analytes in complex

More information

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for?

Chromatography- Separation of mixtures CHEM 212. What is solvent extraction and what is it commonly used for? Chromatography- Separation of mixtures CHEM 212 What is solvent extraction and what is it commonly used for? How does solvent extraction work? Write the partitioning coefficient for the following reaction:

More information

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography

Course goals: Course goals: Lecture 1 A brief introduction to chromatography. AM Quality parameters and optimization in Chromatography Emqal module: M0925 - Quality parameters and optimization in is a separation technique used for quantification of mixtures of analytes Svein.mjos@kj.uib.no Exercises and lectures can be found at www.chrombox.org/emq

More information

2] The plate height in chromatography is best described as 2

2] The plate height in chromatography is best described as 2 9 Chromatography. General Topics 1] Explain the three major components of the van Deemter equation. Sketch a clearly labeled diagram describing each effect. What is the salient point of the van Deemter

More information

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26

Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. CHAPTER 26 Skoog/Holler/Crouch Chapter 26 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTE 26 26-1. (a) Elution is a process in which species are washed through a chromatographic column by

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

Instrumental Chemical Analysis

Instrumental Chemical Analysis L2 Page1 Instrumental Chemical Analysis Chromatography (General aspects of chromatography) Dr. Ahmad Najjar Philadelphia University Faculty of Pharmacy Department of Pharmaceutical Sciences 2 nd semester,

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Luminescence transitions. Fluorescence spectroscopy

Luminescence transitions. Fluorescence spectroscopy Luminescence transitions Fluorescence spectroscopy Advantages: High sensitivity (single molecule detection!) Measuring increment in signal against a dark (zero) background Emission is proportional to excitation

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS

Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS Chem 230, Fall, 2014 Homework Set # 3 Short Answer SOLUTIONS 1. List two advantages of temperature programming in GC. a) Allows separation of solutes with widely varying retention factors in a reasonable

More information

Chapter 23 Introduction to Analytical Separations

Chapter 23 Introduction to Analytical Separations Chapter 23 Introduction to Analytical Separations Homework Due Monday April 24 Problems 23-1, 23-2, 23-7, 23-15, 23-27, 23-29, 23-32 Analytical Separations: Universal approach to analyzing complex mixtures

More information

Chromatography Outline

Chromatography Outline Chem 2001 Summer 2004 Outline What is? The Chromatogram Optimization of Column Performance Why Do Bands Spread? Gas High-Performance Liquid Ion-Exchange 2 What is? In chromatography, separation is achieved

More information

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC

Chromatography. Mrs. D. MEENA MPharm PA & QA KTPC Chromatography Mrs. D. MEENA MPharm PA & QA KTPC INTRODUCTION ANALYTICAL TECHNIQUES Analytical chemistry involves separating, identifying and determining the relative amount of the components in a sample

More information

An Introduction to Chromatographic Separations

An Introduction to Chromatographic Separations An Introduction to Chromatographic Separations Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry King Saud University P.O. Box 2455 Riyadh 11451

More information

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid

Gas Chromatography. Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Gas Chromatography Vaporization of sample Gas-solid Physical absorption Gas-liquid Liquid immobilized on inert solid Principles Instrumentation Applications 18-1 Retention Volumes Volumes rather than times

More information

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications

Chapter 27: Gas Chromatography. Principles Instrumentation Detectors Columns and Stationary Phases Applications Chapter 27: Gas Chromatography Principles Instrumentation Detectors Columns and Stationary Phases Applications GC-MS Schematic Interface less critical for capillary columns Several types of Mass Specs

More information

Theory and Instrumentation of GC. Chromatographic Parameters

Theory and Instrumentation of GC. Chromatographic Parameters Theory and Instrumentation of GC Chromatographic Parameters i Wherever you see this symbol, it is important to access the on-line course as there is interactive material that cannot be fully shown in this

More information

Volatile organic compounds (VOCs):

Volatile organic compounds (VOCs): Volatile organic compounds (VOCs): Organic chemicals with a high vapour pressure at room temperature. High vapour pressure results from a low boiling point. The World Health Organization (WHO) defined

More information

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets

Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Chemistry 3200 High Performance Liquid Chromatography: Quantitative Determination of Headache Tablets Liquid chromatography was developed by Tswett in early 1900 s and was shown to be a powerful separation

More information

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks

Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks Experiment UPHPLC: Separation and Quantification of Components in Diet Soft Drinks bjective: The purpose of this experiment is to quantify the caffeine content of a diet soda sample using Ultra-High Performance

More information

CHAPTER 6 GAS CHROMATOGRAPHY

CHAPTER 6 GAS CHROMATOGRAPHY CHAPTER 6 GAS CHROMATOGRAPHY Expected Outcomes Explain the principles of gas chromatography Able to state the function of each components of GC instrumentation Able to state the applications of GC 6.1

More information

[S016. CHROMATOGRAPHY]

[S016. CHROMATOGRAPHY] Phyto-Analysis Sheet Number : 16 Prof. Dr. Talal Aburjai Page 1 of 9 How to read the chromatogram? Comes from any automated chromatography. The chromatograms show the 0 t (t m ) which indicates the solvent

More information

High Pressure/Performance Liquid Chromatography (HPLC)

High Pressure/Performance Liquid Chromatography (HPLC) High Pressure/Performance Liquid Chromatography (HPLC) High Performance Liquid Chromatography (HPLC) is a form of column chromatography that pumps a sample mixture or analyte in a solvent (known as the

More information

Chapter content. Reference

Chapter content. Reference Chapter 7 HPLC Instrumental Analysis Rezaul Karim Environmental Science and Technology Jessore University of Science and Technology Chapter content Liquid Chromatography (LC); Scope; Principles Instrumentation;

More information

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY

ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY ERT320 BIOSEPARATION ENGINEERING CHROMATOGRAPHY CHROMATOGRAPHY Week 9-10 Reading Assignment: Chapter 7. Bioseparations Science & Engineering, Harrison, R; Todd, P; Rudge, S.C and Petrides, D,P CHROMATOGRAPHY

More information

Gas Chromatography. Introduction

Gas Chromatography. Introduction Gas Chromatography Introduction 1.) Gas Chromatography Mobile phase (carrier gas) is a gas - Usually N 2, He, Ar and maybe H 2 - Mobile phase in liquid chromatography is a liquid Requires analyte to be

More information

Introduction to Gas Chromatography

Introduction to Gas Chromatography Introduction to Gas Chromatography 31-1 Objectives To know what is chromatography To understand the mechanism of compound separation To know the basic of gas chromatography system 31-2 Chromatography Definition

More information

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC

Gas Chromatography. Presented By Mr. Venkateswarlu Mpharm KTPC Gas Chromatography Gas Chromatography Presented By Mr. Venkateswarlu Mpharm KTPC What is Gas Chromatography? It is also known as Gas-Liquid Chromatography (GLC) GAS CHROMATOGRAPHY Separation of gaseous

More information

j 1 1 General Concepts

j 1 1 General Concepts j 1 1 General Concepts 1.1 Introduction The concept of separating sample components in a column was first developed in 1903 by Mikhail Tswett, who introduced the term chromatography in 1906. Unfortunately,

More information

Course CHEM Chromatography

Course CHEM Chromatography Course CHEM 340 - Chromatography - Chromatographic Methods o Gas Chromatography (GC) o High performance Liquid Chromatography (HPLC) Terms Stationary phase A fixed place either in a column or on a planer

More information

Chromatographie Methods

Chromatographie Methods Chromatographie Methods Fifth Edition A. BRAITHWAITE Department of Physical Sciences Nottingham Trent University and F. J. SMITH Department of Chemistry and Chemical Engineering University of Paisley BLACKIE

More information

Determination of Caffeine by HPLC

Determination of Caffeine by HPLC Determination of Caffeine by HPLC Introduction It was a long history before real high performance liquid chromatography (HPLC) had evolved. The very first indication of a chromatographic separation was

More information

LC Technical Information

LC Technical Information LC Technical Information Method Transfer to Accucore.6 μm Columns Containing solid core particles, which are engineered to a diameter of.6μm and a very narrow particle size distribution; Accucore HPLC

More information

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers.

Fall 2012 Due In Class Friday, Oct. 19. Complete the following on separate paper. Show your work and clearly identify your answers. CHEM 322 Name Fall 2012 Due In Class Friday, Oct. 19 Complete the following on separate paper. Show your work and clearly identify your answers. General Separations 1. Describe the relative contributions

More information

Chemistry Gas Chromatography: Separation of Volatile Organics

Chemistry Gas Chromatography: Separation of Volatile Organics Chemistry 3200 Gas chromatography (GC) is an instrumental method for separating volatile compounds in a mixture. A small sample of the mixture is injected onto one end of a column housed in an oven. The

More information

CHAPTER 11: CHROMATOGRAPHY FROM A MOLECULAR VIEWPOINT

CHAPTER 11: CHROMATOGRAPHY FROM A MOLECULAR VIEWPOINT CHAPTER 11: CHROMATOGRAPHY FROM A MOLECULAR VIEWPOINT Contrasting approaches 1. bulk transport (e.g., c c = W ) t x + D c x goal: track concentration changes advantage: mathematical rigor (for simple models).

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography. Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography

Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography. Chemistry 311: Instrumental Analysis Topic 4: Basic Chromatography Introductory Theory, Basic Components, Qualitative and Quantitative applications. HPLC, GC, Ion Chromatography. Rouessac Ch. 1-7 Winter 2011 Page 1 Chromatography: The separation of analytes based on differences

More information

Chapter 27: Gas Chromatography

Chapter 27: Gas Chromatography Chapter 27: Gas Chromatography Gas Chromatography Mobile phase (carrier gas): gas (He, N 2, H 2 ) - do not interact with analytes - only transport the analyte through the column Analyte: volatile liquid

More information

Chromatographic Methods: Basics, Advanced HPLC Methods

Chromatographic Methods: Basics, Advanced HPLC Methods Chromatographic Methods: Basics, Advanced HPLC Methods Hendrik Küpper, Advanced Course on Bioinorganic Chemistry & Biophysics of Plants, summer semester 2018 Chromatography: Basics Chromatography a physical

More information

CHROMATOGRAPHY (I): BASIS OF ELEMENTAL CHROMATOGRAPHY

CHROMATOGRAPHY (I): BASIS OF ELEMENTAL CHROMATOGRAPHY Theme 06. CHROMATOGRAPHY (I): CHROMATOGRAPHY ELEMENTARY BASES 1599-ENVIRONMENTAL ANALYTIC METHODS Grade in Environmental Sciences Course 2013-14 Second Semester Professors: Miguel A Sogorb (msogorb@umh.es)

More information

3) In CE separation is based on what two properties of the solutes? (3 pts)

3) In CE separation is based on what two properties of the solutes? (3 pts) Final Exam Chem 311 Fall 2002 December 16 Name 1) (3 pts) In GC separation is based on the following two properties of the solutes a) polarity and size b) vapor pressure and molecular weight c) vapor pressure

More information

Chapter 12. Chromatographic and Electrophoretic Methods. Drawing from an arsenal of analytical techniques many of which were the subject of the

Chapter 12. Chromatographic and Electrophoretic Methods. Drawing from an arsenal of analytical techniques many of which were the subject of the Chapter 12 Chromatographic and Electrophoretic Methods Chapter Overview Section 12A Overview of Analytical Separations Section 12B General Theory of Column Chromatography Section 12C Optimizing Chromatographic

More information

Biochemistry. Biochemical Techniques HPLC

Biochemistry. Biochemical Techniques HPLC Description of Module Subject Name Paper Name 12 Module Name/Title 13 1. Objectives 1.1. To understand the basic concept and principle of 1.2. To understand the components and techniques of 1.3. To know

More information

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools

LECTURE 2. Advanced Separation Science Techniques Present and Future Separation Tools LECTURE 2 Advanced Separation Science Techniques Present and Future Separation Tools Jack Henion, Ph.D. Emeritus Professor, Analytical Toxicology Cornell University Ithaca, NY 14850 Lecture 2, Page 1 Contents

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 3 November 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #14 Chromatography: Theory (Skoog, Chapt. 26, pp.674-693) (Harris, Chapt. 23) (641-664) David Reckhow

More information

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents

Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS. Table of Contents No. 089 SEPARATION REPORT Packed Column for Ultra-Fast Reversed-Phase Liquid Chromatography, TSKgel Super-ODS Table of Contents 1. Introduction 1 2. Column Specification 1 3. Features of Packing Materials

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005

Gas Chromatography. Chromatography Laboratory Course. Dr. Christian Jungnickel Chromatography Course GC September 2005 Gas Chromatography Chromatography Laboratory Course The laboratory course experiments General Aim: Gain general experience using a GC Constant Injection technique Temperature variations Qualitative and

More information

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011

Introduction to Capillary GC. Page 1. Agilent Restricted February 2, 2011 ?? Kβ? Page 1 Typical GC System Gas supply Injector Detector Data handling GAS Column Oven Page 2 CARRIER GAS Carries the solutes down the column Selection and velocity influences efficiency and retention

More information

Chapter 12. Chromatographic and Electrophoretic Methods. Drawing from an arsenal of analytical techniques many of which were the subject of the

Chapter 12. Chromatographic and Electrophoretic Methods. Drawing from an arsenal of analytical techniques many of which were the subject of the Chapter 12 Chromatographic and Electrophoretic Methods Chapter Overview Section 12A Overview of Analytical Separations Section 12B General Theory of Column Chromatography Section 12C Optimizing Chromatographic

More information

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5

Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH Analysis Topic 5 Gas Chromatography (GC)! Environmental Organic Chemistry CEE-PUBH 5730-6730 Analysis Topic 5 Chromatography! Group of separation techniques based on partitioning (mobile phase/stationary phase). Two immiscible

More information

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography

The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Page 1 of 5 Return The Effects of Carrier Gas Viscosity and Diffusion on Column Efficiency in Capillary Gas Chromatography Stephanye D. Armstrong and Harold M. McNair Department of Chemistry, Virginia

More information

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography)

Ch.28 HPLC. Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) Ch.28 HPLC 28.1 Basic types of Liquid Chromatography Partition (LLC) Adsorption (LSC) Ion Exchange (IC) Size Exclusion (SEC or Gel Chromatography) High Performance (Pressure) LC Glass column st.steel (high

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 23: GAS CHROMATOGRAPHY Chapter 23. Gas Chromatography What did they eat in the year 1,000? GC of Cholesterol and other lipids extracted from

More information

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3)

Separation Sciences. 1. Introduction: Fundamentals of Distribution Equilibrium. 2. Gas Chromatography (Chapter 2 & 3) Separation Sciences 1. Introduction: Fundamentals of Distribution Equilibrium 2. Gas Chromatography (Chapter 2 & 3) 3. Liquid Chromatography (Chapter 4 & 5) 4. Other Analytical Separations (Chapter 6-8)

More information

2. a) R N and L N so R L or L R 2.

2. a) R N and L N so R L or L R 2. 1. Use the formulae on the Some Key Equations and Definitions for Chromatography sheet. a) 0.74 (remember that w b = 1.70 x w ½ ) b) 5 c) 0.893 (α always refers to two adjacent peaks) d) 1.0x10 3 e) 0.1

More information

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost

Disadvantage: Destructive Technique once analyzed by GC, the sample is lost Gas Chromatography Like other methods of chromatography, a partitioning of molecules must occur between the stationary phase and the mobile phases in order to achieve separation. This is the same equilibrium

More information

CHROMATOGRAPHIC SEPARATION TECHNIQUES SUPERCRITICAL FLUID CHROMATOGRAPHY

CHROMATOGRAPHIC SEPARATION TECHNIQUES SUPERCRITICAL FLUID CHROMATOGRAPHY 2.2.45. Supercritical fluid chromatography EUROPEAN PHARMACOPOEIA 7.0 Control solutions. In addition to the TOC water control, prepare suitable blank solutions or other solutions needed for establishing

More information

Introduction to Capillary GC

Introduction to Capillary GC Introduction to Capillary GC LC Columns and Consumables Simon Jones Chromatography Applications Engineer February 20, 2008 Page 1 Introduction to Capillary GC t r K c?? Kβ k = - tr t m? t m R s Page 2

More information

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology, Kharagpur Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 35 Chromatography I Welcome to the lesson 35 of industrial instrumentation.

More information

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25

HPLC. High Performance Liquid Chromatography (HPLC) Harris Chapter 25 High Performance Liquid Chromatography (HPLC) Harris Chapter 25 12/1/2005 Chem 253 - Chapter 25 1 HPLC Separation of nonvolatile or thermally unstable compounds. If the analyte/sample can be found to be

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION

RESOLUTION OENO 33/2004 DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION DETERMINATION OF SHIKIMIC ACID IN WINE BY HPLC AND UV-DETECTION The GENERAL ASSEMBLY, Considering Article paragraph iv of the agreement establishing the International organisation of vine and wine Upon

More information

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid

DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid NAME: AP CHEMISTRY DATES: LAB: Liquid Chromatography Separation of Grape Kool-Aid PURPOSE There are a number of analytical techniques used to separate components of a mixture, or solution. They include

More information

Gas Chromatography. A schematic diagram of a gas chromatograph

Gas Chromatography. A schematic diagram of a gas chromatograph Gas Chromatography In gas liquid chromatography (GLC) partition of solutes occurs between a mobile gas phase (the "carrier gas") and a stationary liquid phase present in the column. The gas-phase concentration

More information

M > ACN > > THF

M > ACN > > THF Method Development in HPLC Dr. Amitha Hewavitharana School of Pharmacy University of Queensland Method Development in HPLC References: D A Skoog Principles of instrumental analysis, 3 rd Edition Chapters

More information

https://www.chemicool.com/definition/chromatography.html

https://www.chemicool.com/definition/chromatography.html CHROMATOGRAPHY 1 Chromatography - a physical method of mixture separation in which the components to be separated are distributed between two phases, one of which is stationary (stationary phase) while

More information

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003

HPLC. GRATE Chromatography Lab Course. Dr. Johannes Ranke. September 2003 HPLC GRATE Chromatography Lab Course Dr. Johannes Ranke Organisation The groups Start at 9:00 am End at 18:00 pm at the latest Friday, 19th we will finish at 2:00 pm Thursday, 11th: Lecture at 08:15 am

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic Method Lecture - 1 Introduction and Basic

More information

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah

HPLC COLUMNS WILEY-VCH. Theory, Technology, and Practice. Uwe D. Neue with a contribution from M. Zoubair El Fallah HPLC COLUMNS Theory, Technology, and Practice Uwe D. Neue with a contribution from M. Zoubair El Fallah WILEY-VCH New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS Preface ix 1 Introduction

More information

Introductory Separations

Introductory Separations Introductory Separations General Figure Acknowledgements Colin F. Poole s- The Essence of Chromatography, Elsevier Science, 2003. C.F. Poole and S. A. Schuette, Contemporary Practice of Chromatography

More information

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Mark Langella WISTA The most modern and sophisticated methods of separating mixtures that the organic chemist has available

More information

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS.

School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS. School of Chemistry UNIVERSITY OF KWAZULU-NATAL, WESTVILLE CAMPUS JUNE 2009 EXAMINATION CHEM340: INSTRUMENTAL ANALYSIS DURATION: 3 HOURS TOTAL MARKS: 100 Internal Examiners: Professor A Kindness Dr T Msagati

More information