PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

Size: px
Start display at page:

Download "PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY"

Transcription

1 CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance A would dissolve at 80 C. A solubility of 17.0 g in 100 ml of water is equivalent to a solubility of 0.17 g in 1 ml of water. This is a greater solubility than is required. Crystals of A should appear around 56 OC. The recovery of A would amount to g. A solubility of 1.5g in 100 ml of water at 0 OC is equivalent to a solubility of g in 1 ml of water. Therefore, g of A would remain dissolved in the water, with the remainder being formed as crystals. 2. If a saturated hot solution was filtered by vacuum filtration, the cooling which occurred as the solvent was drawn through the filter paper would cause the solute to precipitate in the form of crystals. The result would be that the filter paper would become clogged with crystals, and impurities would not be removed successfully from the solution being filtered. PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY ANSWERS TO PROBLEMS: 1. A mixed-melting-point could be used. Equal quantities of A and B are intimately mixed using a mortar and pestle. The mixture is placed in a melting point capillary tube, and the melting point determined. If the melting point is identical to that of pure A (and pure B) without depression or expansion, then A and B are identical. 2. Curve 2 would be an ideal heating rate. 8. Perform a mixture-melting-point with the unknown and each of the other substances independently. The mixture that gives no depression or expansion of the melting point reveals the identity of the compound.

2 EXTRACTIONS, SEPARATIONS, AND DRYING AGENTS ANSWERS TO PROBLEMS: 4. Following the method given in Section 7.2, we obtain: (50-x mg) K = 1.0 = C 2 C 1 = (0.25 ml ether) (x mg) (1.0 ml H 2 O) 1.0 = (50-x)(1.0) 0.25x 0.25x = 40-x 1.25x = 40 x = 32 mg remaining in aqueous phase 50-x = 18 mg extracted into ether phase For one 0.50 ml extraction: (50-x mg) K = 1.0 = (0.50 ml ether) (x mg) (1.0 ml H 2 O) 1.0 = (50-x)(1.0) 0.50x 0.50x = 50-x 1.5x = 50 x = 33.3 mg remaining in aqueous phase 50-x = 16.7 mg extracted into ether phase

3 2. RCOO - Na + + HCl Ar-O - Na + + HC1 R-NH + 3 CI - + NaOH RCOOH + NaCl Ar-OH + NaC1 R-NH 2 + H 2 O + NaC1 3. One could extract the mixture with hydrochloric acid at any point in the separation procedure. However the sodium becarbonate extraction must be done before the sodium hydroxide extraction. 4.

4 8. The washing procedure involves adding 1 ml of aqueous sodium bicarbonate to an organic mixture and shaking the mixture vigorously. When this procedure is followed, any acidic substances are removed into the sodium bicarbonate as their sodium salts. Extracting an aqueous layer three times with methylene chloride involves adding a volume of methylene chloride to an aqueous layer, shaking it vigorously, allowing the layers to separate and removing the lower (methylene chloride) layer while leaving the aqueous layer behind. Save the methylene chloride layer in another container. Then add another portion of methylene chloride to the aqueous layer and repeat the above procedure. Each time save the methylene chloride layer and leave the aqueous layer in the original container. The procedure involves a total of three extractions with methylene chloride. 9. You should not add drying agent at this point. First, transfer the organic layer with a dry Pasteur pipet to a dry container and then add drying agent to the organic layer. SIMPLE DISTILLATION 1. (a) Approximately 92% A, 8% B. (b) Approximately 18% A, 82% B. 3 The line connects the compositions of the boiling liquid (lower curve) and its equilibrium vapor (upper curve) at the same temperature. Using line xy in Figure 8.3, if the boiling liquid has composition W, its vapor has composition Z. 4. It would boil at about 110 C. 7. A good separation can be achieved in a simple distillation only if thereis a large ( >100 C) difference in the boiling points of the liquids to be separated. FRACTIONAL DISTILLATION, AZEOTROPES 1. (a) 3.9 g = 0.05 mole benzene; 4.6 g = 0.05 mole toluene N benzene = = 0.5; N toluene = 0.5 (b) (e) Partial vapor pressure of benzene = (270 mm)(0.5) = 135 mm At 90, P total = (1010 mm)(o.5) + (405 mm)(o.5) = 707 mm at 100, P total = (1340 mm)(o.5) + (560 mm)(o.5) = 950 mm The boiling point is greater than 90, but less than 100. Assume a linear relationship between the vapor pressure of each substance and the temperature from 90 to 100.

5 2 For benzene; ( ) = mm change in vapor10 pressure for each 2 change in temperature 2 For toluene; ( ) = mm change in vapor pressure for each 2 change in temperature The following approximate vapor pressures are obtained at certain temperatures: benzene toluene At 92 ; P total = (1076)(0.5) + (436)(0.5) = 756mm Thus, the boiling point is approximately 92. (d) Partial vapor pressure of benzene at 92 = (1076)(0.5) = 538 mm Partial vapor pressure of toluene at 92 = (436)(0.5) = 218 mm Vapor composition: = 0.71 benzene, 0.29 toluene (e) 0.71 mole = 55.4 g benzene; 0.29 mole = 26.7 g toluene 55.4 g g X 100 = 67.5% benzene; 32.5% toluene

6 COLUMN CHROMATOGRAPHY 1. If the components of the mixture all passed through the column, the solvent must have been too polar. In that case, repeat the chromatography using a less polar solvent, such as petroleum ether. If all of the mixture stayed on the column too long, the solvent was probably not polar enough. Switch to a more polar solvent, such as methanol or ethanol. Other parameters which might be adjusted include the length of the column and the column packing. 3. Order of elution: Biphenyl (elutes first) > benzyl alcohol > benzoic acid (elutes last). 4 The person forgot to allow the column to drain until the surface of the liquid containing the orange compound had passed the upper surface of the adsorbent. Then a small amount of solvent should have been added, and that solvent should have been allowed to drain below the upper surface of the adsorbent. Only then would it be permissible to fill the solvent reservoir. The solvent reservoir should not be filled until the sample has been completely applied to the adsorbent. 5 Clearly, petroleum ether is not sufficiently polar to elute this sample. A more polar solvent, such as methanol or ethanol, should be selected.

7 THIN-LAYER CHROMATOGRAPHY 1. The presence of only one, highly-mobile spot does not necessarily indicatethat the unknown material contains one pure compound. It is possible that the material is a mixture, but that all of the components travel all the way up the TLC plate because the solvent is too polar. The experiment should be repeated with a less polar solvent, such as petroleum ether or cyclohexane. If only one spot appears in this experiment, it is safer to conclude that the unknown is a single, pure compound. 2. Owing to differences in adsorbent thickness, it is not safe to conclude that the two samples are identical. The experiment should be repeated with both samples applied to the same TLC plate. If they both have the same Rf value on the same plate, one may conclude that they are identical. 3. Relative Rf values: biphenyl > benzyl alcohol > benzoic acid. 5. This is the reverse situation of that described in Problem 1. In this case, the solvent is not sufficiently polar to move the components down the plate. The experiment should be repeated in a more polar solvent. If only one spot is observed in this second experiment, one may conclude that the sample is pure. GAS CHROMATOGRAPHY 1. (a) I-Chloroproane would have the shorter retention time (elutes first). The elution order is according to boiling point. (b) The retention times would not be identical because it is impossibleto duplicate exactly all the factors affecting retention times. However, the order of elution would be the same. 2. Area Peak A = 66 x 8 = 528 mm 2 Area Peak B = 43 x 8 = 344 mm2 Total area= 872 mm2 528 %A= x 100 = 60.6% %B = x 100 = 39.4% (a) Retention time would increase. (b) Retention time would decrease. (c) Retention time would increase.

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture

Universal Indicator turns green. Which method is used to obtain pure solid X from an aqueous solution? A. mixture 1 The results of some tests on a colourless liquid X are shown. oiling point = 102 Universal Indicator turns green What is X? ethanol hydrochloric acid pure water sodium chloride (salt) solution 2 blue

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

Experimental techniques

Experimental techniques Experimental techniques 2.1 Measurement Apparatus used in the lab: Name Use Picture Beaker Used to hold liquids Burette Used to add accurate volumes of liquid Conical Flask Used to hold liquids Crystallizing

More information

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction

Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction Lab 2. Go Their Separate Ways: Separation of an Acid, Base, and Neutral Substance by Acid-Base Extraction How can I use an acid-base reaction to separate an acid-base-neutral mixture? Objectives 1. use

More information

Chapter No. 2 EXPERIMENTAL TECHNIQUES IN CHEMISTRY SHORT QUESTIONS WITH ANSWERS Q.1 Define analytical chemistry? The branch of chemistry which deals with the qualitative and quantitative analyses of sample

More information

SEPARATION TECHNIQUES

SEPARATION TECHNIQUES SEPARATION TECHNIQUES If a substance does not dissolve in a solvent, we say that it is insoluble. For example, sand does not dissolve in water it is insoluble. Filtration is a method for separating an

More information

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43

Extraction. weak base pk a = 4.63 (of ammonium ion) weak acid pk a = 4.8. weaker acid pk a = 9.9. not acidic or basic pk a = 43 Extraction Background Extraction is a technique that separates compounds (usually solids) based on solubility. Depending on the phases involved, extractions are either liquid-solid or liquid-liquid. If

More information

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes.

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes. Edexcel GCSE Chemistry Topic 2: States of matter and mixtures Methods of separating and purifying substances Notes 2.5 Explain the difference between the use of pure in chemistry compared with its everyday

More information

Methods of purification

Methods of purification Methods of purification Question Paper 1 Level IGSE Subject hemistry (0620/0971) Exam oard ambridge International Examinations (IE) Topic Experimental techniques Sub-Topic Methods of purification ooklet

More information

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

IGCSE(A*-G) Edexcel - Chemistry

IGCSE(A*-G) Edexcel - Chemistry IGCSE(A*-G) Edexcel - Chemistry Principles of Chemistry Atoms NOTES 1.8 Describe and explain experiments to investigate the small size of particles and their movement including: Dilution of coloured solutions

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5.

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5. UNIT-5 Chromatography THE technique of chromatography is vastly used for the separation, purification and identification of compounds. According to IUPAC, chromatography is a physical method of separation

More information

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Background: In this week s experiment, a metal hydride will be used as a reducing agent. Metal hydrides can be quite reactive, and

More information

Review Questions for the Chem 2315 Final Exam

Review Questions for the Chem 2315 Final Exam Review Questions for the Chem 2315 Final Exam These questions do not have to be turned in, and will not be graded. They are intended to help you review the material we have covered in the lab so far, and

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014 The Physical Separation of Matter Chemistry 11 Methods of Separation n Depending upon the physical properties of the substances involved, various methods of separation can be used. n Hand separation: A

More information

LESSON 11. Glossary: Solutions. Boiling-point elevation

LESSON 11. Glossary: Solutions. Boiling-point elevation LESSON 11 Glossary: Solutions Boiling-point elevation Colligative properties Freezing-point depression Molality Molarity (M) Mole (mol) Mole fraction Saturated solution a colligative property of a solution

More information

12A Lab Activity Notes

12A Lab Activity Notes 12A Lab Activity Notes Lab Activity 12 In this experiment, RX reacts with a base. The methoxide ion (CH 3 O - ) is a small, strong base. The tert-butoxide ion ((CH 3 ) 3 CO - ) is a large, strong base.

More information

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Part 1, p. 184: Separation of spinach pigments by TLC. (4 th Ed. P. 180) Part 2, p. 192: Separation of Fluorene and Fluorenone by

More information

Experiment 1 SOLUBILITY. TIME ESTIMATE: Parts A-D (3 hours); Part E (1 hour); Part F (1 hour) CHEMICALS AND SUPPLIES PER 10 STUDENTS:

Experiment 1 SOLUBILITY. TIME ESTIMATE: Parts A-D (3 hours); Part E (1 hour); Part F (1 hour) CHEMICALS AND SUPPLIES PER 10 STUDENTS: Experiment 1 SOLUBILITY TIME ESTIMATE: Parts A-D (3 hours); Part E (1 hour); Part F (1 hour) CHEMICALS AND SUPPLIES PER 10 STUDENTS: Part A Benzophenone (Grind up the flakes into a powder) Malonic acid

More information

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation

CHEMISTRY Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation CHEMISTRY 244 - Organic Chemistry Laboratory II Spring 2019 Lab #3: Friedel-Crafts Acylation Purpose: In this lab you will predict and experimentally test the directing effects of substituent groups in

More information

216 S10-Exam #1 Page 2. Name

216 S10-Exam #1 Page 2. Name 216 S10-Exam #1 Page 2. Name I. (3 points) Arrange the following four compounds in order of their R f values when analyzed by thinlayer chromatography (TLC) on silica gel-coated plates using C 2 Cl 2 as

More information

THIN LAYER CHROMATOGRAPHY

THIN LAYER CHROMATOGRAPHY THIN LAYER CHROMATOGRAPHY OBJECTIVE In this laboratory you will separate spinach pigments using thin layer chromatography (TLC). INTRODUCTION Mixtures of compounds are very common in Organic Chemistry.

More information

States of matter. Particles in a gas are widely spread out and can both vibrate and move around freely. They have the most energy of the three states.

States of matter. Particles in a gas are widely spread out and can both vibrate and move around freely. They have the most energy of the three states. States of matter Particles in a solid are closely packed and can vibrate but cannot move around, they have low energies. Particles in a liquid are still closely packed, but can both vibrate and move around

More information

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents 6. Extraction A. Background Extraction is a frequently used technique to selectively transfer a compound of interested from one solvent to another. Extraction is based on solubility characteristics of

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

Review Experiments Formation of Polymers Reduction of Vanillin

Review Experiments Formation of Polymers Reduction of Vanillin Review Experiments Formation of Polymers What is a polymer? What is polymerization? What is the difference between an addition polymerization and a condensation polymerization? Which type of polymerization

More information

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C?

Name Date. 9. Which substance shows the least change in solubility (grams of solute) from 0 C to 100 C? Solubility Curve Practice Problems Directions: Use the graph to answer the questions below. Assume you will be using 100g of water unless otherwise stated. 1. How many grams of potassium chloride (KCl)

More information

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Which particle diagram represents molecules of only one compound in the gaseous phase?

Which particle diagram represents molecules of only one compound in the gaseous phase? Name: 1) Which species represents a chemical compound? 9114-1 - Page 1 NaHCO3 NH4 + Na N2 2) 3) 4) Which substance represents a compound? Co(s) O2(g) CO(g) C(s) Which terms are used to identify pure substances?

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

Solutions Solubility. Chapter 14

Solutions Solubility. Chapter 14 Copyright 2004 by Houghton Mifflin Company. Solutions Chapter 14 All rights reserved. 1 Solutions Solutions are homogeneous mixtures Solvent substance present in the largest amount Solute is the dissolved

More information

Milwaukie HS Chemistry Linman. Period Date / /

Milwaukie HS Chemistry Linman. Period Date / / Milwaukie HS Chemistry Linman A701 Name Solutions Classify the following mixtures as homogeneous or heterogeneous: A: Freshly squeezed orange juice B: Tap water C: Human Blood D: Sand 1. Does a solution

More information

Extraction. A useful technique for purification of mixture. Dr. Zerong Wang at UHCL. Separation processes

Extraction. A useful technique for purification of mixture. Dr. Zerong Wang at UHCL. Separation processes Extraction A useful technique for purification of mixture Separation processes Liquid-liquid extraction Adsorption Filtration Solid-liquid extraction (leaching) Elution chromatography Membrane separation

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

The ratio of the concentrations of a substance in the two solvents at equilibrium is called its distribution coefficient, K D :

The ratio of the concentrations of a substance in the two solvents at equilibrium is called its distribution coefficient, K D : CHM 147 Advanced Chemistry II Lab Extraction: A Separation and Isolation Technique Adapted from Extraction: A Separation and isolation Technique, Hart, Harold; Craine, Leslie; Hart, David; Organic Chemistry,

More information

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco INTRODUCTION For this lab, students attempted to synthesize

More information

CHAPTER 9 SOLUTIONS SHORT QUESTIONS WITH ANSWER Q.1 Binary solution can be homogenous or heterogeneous explain? The solutions which contain two components only are called as binary solution. If binary

More information

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A

THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A THE CATHOLIC UNIVERSITY OF EASTERN AFRICA A. M. E. C. E. A MAIN EXAMINATION P.O. Box 62157 00200 Nairobi - KENYA Telephone: 891601-6 Fax: 254-20-891084 E-mail:academics@cuea.edu JANUARY APRIL 2014 TRIMESTER

More information

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered.

(2) After dissolving a solid in a solvent at high temperature, the solution is not filtered. Name Key 216 W13-Exam No. 1 Page 2 I. (10 points) The goal of recrystallization is to obtain purified material with a maximized recovery. For each of the following cases, indicate as to which of the two

More information

3. Two unknown samples are found to have the same R f value under identical TLC conditions. Are they the same compound? Explain.

3. Two unknown samples are found to have the same R f value under identical TLC conditions. Are they the same compound? Explain. I. Techniques in Organic Lab and TLC Analysis a. Thin-Layer Chromatography 2. A TLC plate displays the compound spot approximately 3.2 cm above the base line upon visualization; the solvent ran 4.1 cm

More information

Unit 6 Solids, Liquids and Solutions

Unit 6 Solids, Liquids and Solutions Unit 6 Solids, Liquids and Solutions 12-1 Liquids I. Properties of Liquids and the Kinetic Molecular Theory A. Fluids 1. Substances that can flow and therefore take the shape of their container B. Relative

More information

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents

6. Extraction. A. Background. (a) (b) (c) Figure 1. Mixing of Solvents 6. Extraction A. Background Extraction is a frequently used technique to selectively transfer a compound of interested from one solvent to another. Extraction is based on solubility characteristics of

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

Review Topic 8: Phases of Matter and Mixtures

Review Topic 8: Phases of Matter and Mixtures Name: Score: 24 / 24 points (100%) Review Topic 8: Phases of Matter and Mixtures Multiple Choice Identify the choice that best completes the statement or answers the question. C 1. Soda water is a solution

More information

Mixtures 1 of 38 Boardworks Ltd 2016

Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 1 of 38 Boardworks Ltd 2016 Mixtures 2 of 38 Boardworks Ltd 2016 Pure and impure substances 3 of 38 Boardworks Ltd 2016 All materials can be classified as either a pure substance or an impure

More information

EXPERIMENT THREE THE CANNIZARO REACTION: THE DISPROPORTIONATION OF BENZALDEHYDE

EXPERIMENT THREE THE CANNIZARO REACTION: THE DISPROPORTIONATION OF BENZALDEHYDE EXPERIMENT THREE THE CANNIZARO REACTION: THE DISPROPORTIONATION OF BENZALDEHYDE H C O HO C O H H C OH KOH 2x + DISCUSSION In planning the laboratory schedule, it should be observed that this experiment

More information

Synthesis of Benzoic Acid

Synthesis of Benzoic Acid E x p e r i m e n t 5 Synthesis of Benzoic Acid Objectives To use the Grignard reagent in a water free environment. To react the Grignard reagent with dry ice, CO 2(s). To assess the purity of the product

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY 5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY SUB-TOPIC 1.2 METHODS OF PURIFICATION AND ANALYSIS LEARNING

More information

NaBr, H2SO4 CH3CH2CH2CH2Br + NaHSO4 + H2O. 1-Bromobutane bp C den MW n 1.439

NaBr, H2SO4 CH3CH2CH2CH2Br + NaHSO4 + H2O. 1-Bromobutane bp C den MW n 1.439 Exp t 140 The SN2 Reaction: 1-Bromobutane from K. L. Williamson, Macroscale and Microscale Organic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p247; revised 2/22/02 Prelab Exercise: Review the

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

1. A solution that is 9% by mass glucose contains 9 g of glucose in every g of solution.

1. A solution that is 9% by mass glucose contains 9 g of glucose in every g of solution. Solutions molarity (Homework) For answers, send email to: admin@tutor-homework.com. Include file name: Chemistry_Worksheet_0144 Price: $3 (c) 2012 www.tutor-homework.com: Tutoring, homework help, help

More information

Experiment Nine Thin Layer Chromatography

Experiment Nine Thin Layer Chromatography Name: Lab Section: 09 Thin Layer Chromatography Experiment Nine Thin Layer Chromatography Introduction Objective Separation of compounds from a mixture is an incredibly important aspect of experimental

More information

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control CfE Higher Chemistry Unit 3: Chemistry in Society Chemical Analysis as part of quality control 06/12/2017 Composition and purity 06/12/2017 Learning Outcomes : I can explain the basic principle of how

More information

Chromatography 1 of 26 Boardworks Ltd 2016

Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 2 of 26 Boardworks Ltd 2016 What is chromatography? 3 of 26 Boardworks Ltd 2016 Different instrumental methods can be used to analyse and identify

More information

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved. 16.3 Colligative of Solutions > 16.3 Colligative of Solutions > CHEMISTRY & YOU Chapter 16 Solutions 16.1 of Solutions 16.2 Concentrations of Solutions 16.3 Colligative of Solutions 16.4 Calculations Involving

More information

Exercise 4: Thin layer chromatography of organic compounds

Exercise 4: Thin layer chromatography of organic compounds Chemistry 162 Exercise 4: Thin layer chromatography of organic compounds Objective: Use thin layer chromatography to separate and characterize the polarity of a mixture of benzene derivatives. Introduction:

More information

Abstract. Introduction

Abstract. Introduction Investigating the Techniques of Solid- Liquid Extraction by isolating lycopene from tomato paste and Column Chromatography &Thin-Layer Chromatography (TLC)by purifying lycopene Mengying Li Department of

More information

Elements, compounds, Mixtures

Elements, compounds, Mixtures Elements, compounds, Mixtures Model Answers 1 Level IGCSE(9-1) Subject Chemistry Exam Board Edexcel IGCSE Module Double Award (Paper 1C) Topic Principles of Chemistry Sub-Topic Booklet Elements, Compounds,

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES

HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES Experiment 4 Name: 15 P HYSICAL AND CHEMICAL PROPERTIES AND PHYSIC AND CHEMICAL CHANGES 13 Al e In this experiment, you will also observe physical and chemical properties and physical and chemical changes.

More information

OH [H + ] KMnO 4 DME OH

OH [H + ] KMnO 4 DME OH 1.a. Reaction 1 is an elimination reaction which includes a rearrangement via a hydride shift. Reaction 2 is an oxidation reaction that leads to a cis-diol. This reaction was used to qualitatively confirm

More information

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. Like Dissolves Like Solutions Homogeneous Mixtures Solutions: Mixtures that contain two or more substances called the solute and the solvent where the solute dissolves in the solvent so the solute and solvent are not distinguishable

More information

Lab 3: Solubility of Organic Compounds

Lab 3: Solubility of Organic Compounds Lab 3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009

General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chem 1046 General Chemistry by Ebbing and Gammon, 9th Edition George W.J. Kenney, Jr, Professor of Chemistry Last Update: 15-May-2009 Chapter 12 SOLUTIONS These Notes are to SUPPLIMENT the Text, They do

More information

Physical Properties of Solutions

Physical Properties of Solutions Physical Properties of Solutions Chapter 12 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 12.1- Types of solutions A solution is a homogenous mixture of 2 or

More information

Mixtures and Solutions

Mixtures and Solutions Mixtures and Solutions Section 14.1 Heterogeneous and Homogeneous Mixtures In your textbook, read about suspensions and colloids. For each statement below, write true or false. 1. A solution is a mixture

More information

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES

INTRODUCTION TO MATTER: CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES Experiment 3 Name: INTRODUCTION TO MATTER: 9 4 CLASSI F ICATION OF MATTER, PHYSICAL AND C He MICAL e PROPERTIES, AND PHYSICAL AND CHEMICAL CHANGES In this experiment, you will encounter various classification

More information

Part A Answer all questions in this part.

Part A Answer all questions in this part. Part A Directions (1-24): For each statement or question, record on your separate answer sheet the number of the word or expression that, of those given, best completes the statement or answers the question.

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

Experiment 12: Grignard Synthesis of Triphenylmethanol

Experiment 12: Grignard Synthesis of Triphenylmethanol 1 Experiment 12: Grignard Synthesis of Triphenylmethanol Reactions that form carbon-carbon bonds are among the most useful to the synthetic organic chemist. In 1912, Victor Grignard received the Nobel

More information

Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances

Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances Experiment 3: Acid/base Extraction and Separation of Acidic and Neutral Substances Introduction Your task in this lab is to separate two compounds by taking advantage of differences in their acidity, and

More information

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS

CHAPTER CHROMATOGRAPHIC METHODS OF SEPARATIONS Islamic University in Madinah Department of Chemistry CHAPTER - ----- CHROMATOGRAPHIC METHODS OF SEPARATIONS Prepared By Dr. Khalid Ahmad Shadid Chemistry Department Islamic University in Madinah TRADITIONAL

More information

EXPERIMENT 7 - Distillation Separation of a Mixture

EXPERIMENT 7 - Distillation Separation of a Mixture EXPERIMENT 7 - Distillation Separation of a Mixture Purpose: a) To purify a compound by separating it from a non-volatile or less-volatile material. b) To separate a mixture of two miscible liquids (liquids

More information

SOLUTIONS CHAPTER 9 TEXT BOOK EXERCISE Q1. Choose the correct answer for the given ones. (i) Morality of pure water is (a) 1. (b) 18. (c) 55.5 (d) 6. Hint: Morality of pure water Consider 1 dm 3 (-1000cm

More information

Exp t 111 Structure Determination of a Natural Product

Exp t 111 Structure Determination of a Natural Product Exp t 111 Adapted by R. Minard, K. Smereczniak and Jon Landis (Penn State Univ.) from a microscale procedure used by the University of California, Irvine, in its undergraduate labs. The procedure is based

More information

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS

EXPERIMENT 4 THE EFFECT OF CONCENTRATION CHANGES ON EQUILIBRIUM SYSTEMS PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

ACID-BASE EXTRACTION

ACID-BASE EXTRACTION ACID-BASE EXTRACTION An acid-base extraction is a type of liquid-liquid extraction. It typically involves different solubility levels in water and an organic solvent. The organic solvent may be any carbon-based

More information

Coimisiún na Scrúduithe Stáit State Examinations Commission

Coimisiún na Scrúduithe Stáit State Examinations Commission Coimisiún na Scrúduithe Stáit State Examinations Commission M. 33 LEAVING CERTIFICATE EXAMINATION, 2006 CHEMISTRY - ORDINARY LEVEL TUESDAY, 20 JUNE AFTERNOON 2.00 TO 5.00 400 MARKS Answer eight questions

More information

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question.

Name Class Date. In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. Assessment Chapter Test A Chapter: Solutions In the space provided, write the letter of the term or phrase that best completes each statement or best answers each question. 1. Agitation prevents settling

More information

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid

The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid The Friedel-Crafts Reaction: 2-(4-methylbenzoyl)benzoic acid Exp t 63 from K. L. Williamson, Macroscale and Microscale rganic Experiments, 2nd Ed. 1994, Houghton Mifflin, Boston. p449 revised 10/13/98

More information

CP Chapter 15/16 Solutions What Are Solutions?

CP Chapter 15/16 Solutions What Are Solutions? CP Chapter 15/16 Solutions What Are Solutions? What is a solution? A solution is uniform that may contain solids, liquids, or gases. Known as a mixture Solution = + o Solvent The substance in abundance

More information

Honors Cup Synthetic Proposal

Honors Cup Synthetic Proposal onors Cup Synthetic Proposal Section: 270-V Group Members: Azhar Carim, Ian Cross, Albert Tang Title: Synthesis of indigo from -(2-bromoethyl)-2-nitrobenzamide Introduction: Indigo has been used as a dye

More information

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated?

How can homogeneous and heterogeneous mixtures be. 1. classified? 2. separated? How can homogeneous and heterogeneous mixtures be 1. classified? 2. separated? 1. HETEROGENEOUS MIXTURE 2. COLLOID 3. EMULSION 4. SUSPENSION 5. FILTRATION 6. TYNDALL EFFECT 7. HOMOGENEOUS MIXTURE 8. SOLUTION

More information

Part I: Solubility!!!

Part I: Solubility!!! Name: Period: Date: KIPP NYC College Prep General Chemistry UNIT 12: Solutions Do Now Review Day Concepts/Definitions (1) A solution is made by completely dissolving 40 grams of KCl(s) in 100 grams of

More information

2011, Robert Ayton. All rights reserved.

2011, Robert Ayton. All rights reserved. Solutions Outline 1. Solubility 2. Concentration Calculations 3. Colligative Properties 4. Freezing Point Depression or Boiling Point Elevation Problems 5. Graphs of Colligative Properties Review 1. Solubility

More information

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene

Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene Experiment 7 - Preparation of 1,4-diphenyl-1,3-butadiene OBJECTIVE To provide experience with the Wittig Reaction, one of the most versatile reactions available for the synthesis of an alkene. INTRODUCTION

More information

Experiment 5 Equilibrium Systems

Experiment 5 Equilibrium Systems PURPOSE In this experiment, you will look at different equilibria, observe how addition or removal of components affects those equilibria and see if the results are consistent with Le Chatelier's principle.

More information

MIXTURES, COMPOUNDS, & SOLUTIONS

MIXTURES, COMPOUNDS, & SOLUTIONS MIXTURES, COMPOUNDS, & SOLUTIONS As with elements, few compounds are found pure in nature and usually found as mixtures with other compounds. A mixture is a combination of two or more substances that are

More information

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility

Solutions. Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Solutions Solutions Solution Formation - Types of Solutions - Solubility and the Solution Process - Effects of Temperature and Pressure on Solubility Colligative Properties - Ways of Expressing Concentration

More information

18 Macroscale and Microscale Organic Experiments

18 Macroscale and Microscale Organic Experiments 360465-P01[01-024] 10/17/02 16:16 Page 18 Sahuja Ahuja_QXP_03:Desktop Folder:17/10/02: 18 Macroscale and Microscale Organic Experiments Preparing a Laboratory Record Use the following steps to prepare

More information

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts Pre-lab Assignment: Reading: 1. Chapter sections 3.3, 3.4, 3.7 and 4.2 in your course text. 2. This lab handout. Questions:

More information

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions)

1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Chemistry 12 Solubility Equilibrium II Name: Date: Block: 1. Forming a Precipitate 2. Solubility Product Constant (One Source of Ions) Forming a Precipitate Example: A solution may contain the ions Ca

More information

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions

Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions Bushra Javed Valencia College CHM 1046 Chapter 12 - Solutions 1 Chapter 12 :Solutions Tentative Outline 1. Introduction to solutions. 2. Types of Solutions 3. Solubility and the Solution Process: Saturated,

More information

Paper Reference. Wednesday 18 January 2006 Morning Time: 1 hour

Paper Reference. Wednesday 18 January 2006 Morning Time: 1 hour Centre No. Candidate No. Paper Reference(s) 643/0 Edexcel GCE Chemistry Advanced Subsidiary Unit Test 3B Wednesday 18 January 006 Morning Time: 1 hour Materials required for examination Nil Paper Reference

More information

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name:

Test Booklet. Subject: SC, Grade: HS CST High School Chemistry Part 2. Student name: Test Booklet Subject: SC, Grade: HS Student name: Author: California District: California Released Tests Printed: Thursday January 16, 2014 1 Theoretically, when an ideal gas in a closed container cools,

More information

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources 16 SOLUTIONS Chapter Test B A. Matching Match each term in Column B to the correct description in Column A. Write the letter of the correct term on the line. Column A Column B 1. the number of moles of

More information

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques Introduction When two or more substances that do not react chemically are blended together, the components of the

More information