Abstract. Introduction

Size: px
Start display at page:

Download "Abstract. Introduction"

Transcription

1 Investigating the Techniques of Solid- Liquid Extraction by isolating lycopene from tomato paste and Column Chromatography &Thin-Layer Chromatography (TLC)by purifying lycopene Mengying Li Department of Chemical Engineering, The Pennsylvania State University, PA Abstract The separation technique of solid-liquid extraction was used to isolate lycopene from tomato paste. Column chromatography was also used to purify lycopene from the other carotene compounds such as Gr beta-carotene in the crude product. TLC test was performed afterwards to show the effectiveness of purification. An UV/Vis spectrum of the purified lycopene was also performed and analyzed in the end of the lab. Introduction Lycopene [1] is a bright red C 40 carotenoid pigment found in tomatoes. The rich concentration of lycopene in tomato is proved to be helpful in bone health due to its outstanding antioxidant properties. (1) Figure 1. Structure of lycopene Lycopene can be isolated from tomato paste (baby food) through solid- liquid extraction. In solid- liquid extraction, a solvent that has distinct properties such as hydrophilic or hydrophobic is added to a solid compound. The soluble material is extracted into the solvent from the solid compound and insoluble material is left behind with the solid compound thus completes the separation. Lycopene, as an organic hydrophobic compound, will be extracted into the hydrophobic organic layer and separated from other water-soluble compounds and solid residue. Other hydrophilic substances, such as acetone, will be easily extracted into water and sodium chloride thus it purifies lycopene to some extent. Column chromatography is a great way to separate and purify compound from the impurities that have similar characteristic with the compound interested. While solid- liquid extraction can extract lycopene from tomato paste, it also extracts some impurities that are closely related in structure with lycopene. In this lab, we will use column chromatography to separate lycopene from other carotenoid compounds such as carotenes and xanthophylls. Column

2 chromatography separates compounds based on their polarity. In this lab, alumina will be used as the polar stationary phase and hexane as the nonpolar mobile phase. When the analytes are eluted with the mobile phase in the column, the more polar compound will be eluted slowly since it will have a stronger interaction with the stationary phase. The less polar compound will be eluted faster since it tends to stick with the nonpolar solvent due to like dissolves like principle. Different polarity and different retention time is the key of separation. Thin-layer-chromatography, or TLC, is often used to determine the effectiveness of the purification. (3) TLC has the same separation principles as the column chromatography, but it has a different set up. The stationary phase is usually a silica plate. The analytes are dipped onto the plate and mobile phase is gradually climbing upon the plate and causes the movement of the spots. The spots can be visualized by UV light or iodine chamber. The retention factor Rf can be calculated depends on distances that the spots traveled and the distance solvent travels. The best separation are usually achieved when the Rf values fall between 0.3 and 0.7 (3) Result and Discussion Solid- liquid extraction of lycopene The solid- liquid extraction was proved to be an effective method for isolating lycopene from tomato paste. Tomato paste was first extracted with 10ml acetone and then extracted 3 times with 10ml dichloromethane. The combined filtration was treated with water and sodium chloride to break the emulsions and remove acetone and other water-soluble component. (3) The water- insoluble, orange hydrocarbon carotenoid was then separated into the organic layer and dried over anhydrous calcium chloride. Dried carotenoid was dissolved in a few drops of dichloromethane and a TLC test was then performed on the mixture. The mobile phase of TLC consisted 8ml hexane and 2ml acetone. One spot was made of high concentration mixture by repeatedly touching the plate in the same location, and the other spot was made of diluted mixture by touching the plate only once. As the elution was completed, the spots were visualized by putting the plate into the iodine chamber since no spots were detected by eyes and UV lights. Align with the concentrated spot, there were two spots with Rf value of and Align with the diluted spot, only one spot was seen with Rf value of It can be concluded that there existed two components in the orange carotenoid solution. The reason that there was only one spot in the diluted one could be assumed that the amount of one of the component was too little in the diluted solution thus it was hard to detect its existence. After the TLC test, the rest of the dichloromethane solution was dried over a steam of nitrogen gas and stored in the dark place. Column Chromatography Column Chromatography was also proved to be a successful method for separation. In an 8 cm chromatography column, 3095mg alumina was prepared as the solid phase and hexane was prepared as the liquid phase. The dry carotenoid was dissolved in a few drops of dichloromethane. A TLC test was first

3 performed on the carotenoid solution before the column chromatography. Hexane was first washed down the inside of the chromatography column in order to consolidate the carotenoid mixture at the top of the column. (4) The column was then eluted with hexane. First two tubes of liquid that coming out of the column were colorless thus were discarded. The color of following tubes of liquid were yellow orange, orange and yellow. After this, the color of the liquid eluted was colorless. TLC test was performed on the liquid that had color. For each tube, two spots were made, one was the concentrated spot and the other was diluted spot. Spots were visualized by UV light and iodine chamber. The result of the TLC plate was shown in table 1. Table 1 Rf Values of the TCL Test on column chromatography. Concentrated spot Diluted spot Carotenoid Solution Tube #1 0.36, Tube # Tube # , , Tube # , The TLC test showed that the original carotenoid solution had an Rf value of Tube #1 mainly had one compound that had an R f values of Tube #2 and tube #3 all had the same major component that had an Rf value of In tube #4 the major compound had an Rf values of The solution from tube #2 and Tube # 3 were combined since they had the same major compound. The solution from Tube #1, Tube #2&3, and Tube #4 were concentrated to solid by nitrogen gas and stored in the dark place The TLC test showed that there were more than one spots in one plate. This situation can be assumed that two or more substances might co-elute at the similar time. Putting smaller amount of the solution eluted in the tubes might help with this problem. TLC plates also showed that there were more spots in one plate after the column than before. Before the column chromatography it had been confirmed that there were only two substances in the mixture. (after solid-liquid extraction) After the column chromatography, 4 different Rf values were observed. This circumstance might cause by the different concentration of the same substance in the original mixture. The original carotenoid mixture had not been mixed and shaken well and the same substance might have different concentration in different places in the beaker. Only one Rf value was seen for the original carotenoid solution. This can be assumed that the analyte analyzed on the TLC plate might be extracted from the same place where the substance s concentration was uniformed. UV/Vis spectrum 2-3 drops of ethanol was added to each 3 vials of dried carotenoid pigment and UV/ Vis spectrum was performed on these 3 samples. The result was showed in table 2.

4 Table 2 Result of UV/Vis Spectrum Wavelength (nm) Vial #1 464 Vial # Vial # Since in standard solution, β -carotene has the maxima absorbance of 448nm and lycopene has the maxima absorbance of 472nm and γ carotene has the maxima absorbance of 462nm.( Tan and Soderstom, 1989) It can be assumed that in vial #1 and #2 the carotenoid are mostly γ carotene and in vial #3 the carotenoid is mostly lycopene. This further confirmed the successful separation of lycopene from other impurities. Conclusion The solid- liquid extraction was proved to be effective when isolating lycopene from tomato paste since the TLC test showed that there were only two components in the colored organic layer. Column chromatography was also a great way to separate lycopene from other carotenoid compounds that have similar characteristics. The TLC test and the UV/ Vis spectrum confirmed that major component in the solution in the tube #4 and vial #3 were lycopene. In the future, when catching the solution eluded from the column, putting smaller amount of solution into each tube might help in separation better since the TLC plates showed that there were different compounds in the same tubes. Before doing the column chromatography and the TLC test it is also important to shake and mix the solution well in order to achieve the uniform concentration for the same substance in order to avoid the situation that more spots were observed in the TLC plates than the spots observed before the column in this lab. Experimental General Methods All compounds were purchased from Sigma- Aldrich and used without further purification Lycopene (1) Tomato paste (0.5310g) was extracted with 10ml acetone first and then 10ml dichloromethane for 3 times. The organic layer was dried over anhydrous calcium chloride. The stationary phase for TLC was silica and for column chromatography was alumina.. UV (EtOH) λmax 472.2nm. Acknowledgement I would like to sincerely and profusely thank my chemistry lab TA Steven Taylor for his guidance to the instrument usage and great support in completing my project.

5 Reference (1) The George Matelijan Foundation. Tomatoes [online] (accessed Mar 13, 2016) (2) Riley, J. S. Liquid-Solid Extraction. DSB Scientific Consulting [online] (accessed Mar 13, 2016) (3) Williamson, K,L; Masters, K, M. Macroscale and Microscale Organic Experiments, 6 th edition. Cengage learning, Inc, p165, p179 (4) Masters, K. M. Chem 213M: Food Science Module Lab Guide, Spring 2016 edition. (5) Tan, B. ; Soderstom, D. N. Qualitative aspects of UV-vis spectrophotometry of beta-carotene and lycopene B.N.J. Chem Ed, 1989, 66,258

Physical Separations and Chromatography

Physical Separations and Chromatography Lab #5A & B: Physical Separations and Chromatography Individual Objectives: At the end of these experiments you should be able to: Ø Distinguish between Rf and tr; chromatograph and chromatogram; adsorption

More information

Mengying Li.

Mengying Li. Investigating the Techniques of Acid- Base Extraction by separating three dye compounds & Recrystallization by purifying Methyl Orange Mengying Li Department of Chemical Engineering, The Pennsylvania State

More information

Chromatography Extraction and purification of Chlorophyll CHM 220

Chromatography Extraction and purification of Chlorophyll CHM 220 INTRODUCTION Extraction and purification of naturally occurring molecules is of the most common methods of obtaining organic molecules. Locating and identifying molecules found in flora and fauna can provide

More information

Experiment 1: Thin Layer Chromatography

Experiment 1: Thin Layer Chromatography Experiment 1: Thin Layer Chromatography Part A: understanding R f values Part B: R f values & solvent polarity Part C: R f values & compound functionality Part D: identification of commercial food dye

More information

LAB #6 Chromatography Techniques

LAB #6 Chromatography Techniques LAB #6 Chromatography Techniques Objectives: To learn how to story board a procedure Explain how a chromatograph of pigments is formed from both paper and thin layer chromatography. Isolate and identify

More information

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography

Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Chromatography: Thin-Layer Chromatography (TLC) & Column Chromatography Part 1, p. 184: Separation of spinach pigments by TLC. (4 th Ed. P. 180) Part 2, p. 192: Separation of Fluorene and Fluorenone by

More information

Photosynthesis. Introduction

Photosynthesis. Introduction Photosynthesis Learning Objectives: Explain the importance of photosynthetic pigments for transformation of light energy into chemical bond and the advantage of having more than one pigment in the same

More information

Experiment 1: Extraction and Thin Layer Chromatography

Experiment 1: Extraction and Thin Layer Chromatography Experiment 1: Extraction and Thin Layer Chromatography Introduction: Chromatography is a useful tool in chemistry and can be very helpful in determining the composition of an unknown sample. In chromatography

More information

Paper Chromatography Lab. Prepared for: Mrs. Freeman

Paper Chromatography Lab. Prepared for: Mrs. Freeman Paper Chromatography Lab Prepared for: Mrs. Freeman September 6, 2013 1 Introduction The separation of mixtures is an important part of chemistry. One such method of separation is called chromatography,

More information

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19

Prelab Reading Assignment: Laboratory Techniques in Organic Chemistry, 4 th Ed. Chapter 19 CHEM 213 Technique Experiments Experiment 5: Column Chromatography Number of labs - one Reactions performed None Chemicals used: Fluorene-fluorenone mixture, hexanes, methylene chloride, silica gel Supplies

More information

THIN LAYER CHROMATOGRAPHY

THIN LAYER CHROMATOGRAPHY THIN LAYER CHROMATOGRAPHY OBJECTIVE In this laboratory you will separate spinach pigments using thin layer chromatography (TLC). INTRODUCTION Mixtures of compounds are very common in Organic Chemistry.

More information

Experiment Nine Thin Layer Chromatography

Experiment Nine Thin Layer Chromatography Name: Lab Section: 09 Thin Layer Chromatography Experiment Nine Thin Layer Chromatography Introduction Objective Separation of compounds from a mixture is an incredibly important aspect of experimental

More information

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control

CfE Higher Chemistry. Unit 3: Chemistry in Society. Chemical Analysis as part of quality control CfE Higher Chemistry Unit 3: Chemistry in Society Chemical Analysis as part of quality control 06/12/2017 Composition and purity 06/12/2017 Learning Outcomes : I can explain the basic principle of how

More information

Laboratory Exercise: Chromatographic Separation

Laboratory Exercise: Chromatographic Separation CHEM 109 Introduction to Chemistry Revision 1.0 Laboratory Exercise: Chromatographic Separation As we have discussed, chromatographic separations employ a system with two phases of matter; a mobile phase

More information

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY

PHYSICAL CONSTANTS: MELTING POINTS, BOILING POINTS, DENSITY CRYSTALLIZATION: PURIFICATION OF SOLIDS ANSWERS TO PROBLEMS: 1. (a) (b) (c) (d) A plot similar to line A in Figure 5.1 on page 559 will be obtained. The line will be slightly curved. All of the substance

More information

Experimental techniques

Experimental techniques Experimental techniques 2.1 Measurement Apparatus used in the lab: Name Use Picture Beaker Used to hold liquids Burette Used to add accurate volumes of liquid Conical Flask Used to hold liquids Crystallizing

More information

Review Questions for the Chem 2315 Final Exam

Review Questions for the Chem 2315 Final Exam Review Questions for the Chem 2315 Final Exam These questions do not have to be turned in, and will not be graded. They are intended to help you review the material we have covered in the lab so far, and

More information

PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography.

PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography. LAB 1: CHROMATOGRAPHY OF SPINACH Thin Layer and Column Chromatography PURPOSE: To separate the pigments of spinach by Column Chromatography. To analyze Column Chromatography fractions by Thin Layer Chromatography.

More information

For Chromatography, you might want to remember Polar Dissolves More, not like dissolves like.

For Chromatography, you might want to remember Polar Dissolves More, not like dissolves like. Chromatography In General Separation of compounds based on the polarity of the compounds being separated Two potential phases for a compound to eist in: mobile (liquid or gas) and stationary Partitioning

More information

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS

EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS EXPERIMENT #1 SEPARATION AND RECOVERY OF ORGANIC COMPOUNDS, THIN LAYER CHROMATOGRAPHY, COLUMN CHROMATOGRAPHY, CRYSTALLIZATION AND MELTING POINTS Overview In the first few weeks of this semester you will

More information

18 Macroscale and Microscale Organic Experiments

18 Macroscale and Microscale Organic Experiments 360465-P01[01-024] 10/17/02 16:16 Page 18 Sahuja Ahuja_QXP_03:Desktop Folder:17/10/02: 18 Macroscale and Microscale Organic Experiments Preparing a Laboratory Record Use the following steps to prepare

More information

This method describes the identification of the following prohibited colorants in cosmetic products:

This method describes the identification of the following prohibited colorants in cosmetic products: A. IDENTIFICATION BY TLC 1. SCOPE AND FIELD OF APPLICATION This method describes the identification of the following prohibited colorants in cosmetic products: Names C I number Pigment Orange 5 12075 Metanil

More information

Thin Layer Chromatography

Thin Layer Chromatography Experiment: Thin Layer Chromatography Chromatography is a technique widely used by organic chemists to separate and identify components in a mixture. There are many types of chromatography, but all involve

More information

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco

Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen. Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco Ester Synthesis And Analysis: Aspirin and Oil of Wintergreen Vanessa Jones November 19, 2015 Thursday 8:30 Lab Section Lab Partner: Melissa Blanco INTRODUCTION For this lab, students attempted to synthesize

More information

LUMEFANTRINUM LUMEFANTRINE

LUMEFANTRINUM LUMEFANTRINE July 2008 LUMEFANTRINE: Final text for addition to The International Pharmacopoeia (July 2008) This monograph was adopted at the Forty-second WHO Expert Committee on Specifications for Pharmaceutical Preparations

More information

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol

Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Experiment 1: The Borohydride Reduction of 9-Fluorenone to 9-Fluorenol Background: In this week s experiment, a metal hydride will be used as a reducing agent. Metal hydrides can be quite reactive, and

More information

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5.

not to be republished NCERT THE technique of chromatography is vastly used for the separation, Chromatography UNIT-5 EXPERIMENT 5. UNIT-5 Chromatography THE technique of chromatography is vastly used for the separation, purification and identification of compounds. According to IUPAC, chromatography is a physical method of separation

More information

Chromatography Lab # 4

Chromatography Lab # 4 Chromatography Lab # 4 Chromatography is a method for separating mixtures based on differences in the speed at which they migrate over or through a stationary phase which means that a complex mixture will

More information

Exercise 4: Thin layer chromatography of organic compounds

Exercise 4: Thin layer chromatography of organic compounds Chemistry 162 Exercise 4: Thin layer chromatography of organic compounds Objective: Use thin layer chromatography to separate and characterize the polarity of a mixture of benzene derivatives. Introduction:

More information

Chromatography. What is Chromatography?

Chromatography. What is Chromatography? Chromatography What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify the mixture or components. Mixture

More information

SEPARATION TECHNIQUES

SEPARATION TECHNIQUES SEPARATION TECHNIQUES If a substance does not dissolve in a solvent, we say that it is insoluble. For example, sand does not dissolve in water it is insoluble. Filtration is a method for separating an

More information

IGCSE (9-1) Edexcel - Chemistry

IGCSE (9-1) Edexcel - Chemistry IGCSE (9-1) Edexcel - Chemistry Principles of Chemistry Element, Compounds and Mixtures NOTES 1.8: Understand how to classify a substance as an element, compound or mixture Classifications: S Class Element

More information

Thin Layer Chromatography

Thin Layer Chromatography Thin Layer Chromatography Thin-layer chromatography involves the same principles as column chromatography, it also is a form of solid-liquid adsorption chromatography. In this case, however, the solid

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 3 Chromatographic Method Lecture - 1 Introduction and Basic

More information

Elements, compounds, Mixtures

Elements, compounds, Mixtures Elements, compounds, Mixtures Model Answers 1 Level IGCSE(9-1) Subject Chemistry Exam Board Edexcel IGCSE Module Double Award (Paper 1C) Topic Principles of Chemistry Sub-Topic Booklet Elements, Compounds,

More information

Lab 10 Guide: Column Chromatography (Nov 3 9)

Lab 10 Guide: Column Chromatography (Nov 3 9) Lab 10 Guide: Column Chromatography (Nov 3 9) Column Chromatography/ Isolation of Caffeine from Tea, Exp. 7B, pages 67-72 in Taber After an organic reaction it s common to get a mixture of products. Usually

More information

CHEMICAL SEPARATION EXPERIMENT 2

CHEMICAL SEPARATION EXPERIMENT 2 CHEMICAL SEPARATION EXPERIMENT 2 INTRODUCTION The term analysis in chemistry usually refer to the quantitative and qualitative determination of the components of a sample. Qualitative refering to the identity

More information

IGCSE(A*-G) Edexcel - Chemistry

IGCSE(A*-G) Edexcel - Chemistry IGCSE(A*-G) Edexcel - Chemistry Principles of Chemistry Atoms NOTES 1.8 Describe and explain experiments to investigate the small size of particles and their movement including: Dilution of coloured solutions

More information

Name Period Date. Lab 10: Paper Chromatography

Name Period Date. Lab 10: Paper Chromatography Name Period Date Lab 10: Paper Chromatography Objectives Known and unknown solutions of the metal ions Fe +, Cu 2+ and Ni 2+ will be analyzed using paper chromatography. An unknown solution containing

More information

The Basis for Paper Chromatography

The Basis for Paper Chromatography APTER 4 Polarity The Basis for Paper hromatography bjectives The objectives of this laboratory are to: Use paper chromatography to determine the number of components in certain mixtures. lassify these

More information

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes.

Edexcel GCSE Chemistry. Topic 2: States of matter and mixtures. Methods of separating and purifying substances. Notes. Edexcel GCSE Chemistry Topic 2: States of matter and mixtures Methods of separating and purifying substances Notes 2.5 Explain the difference between the use of pure in chemistry compared with its everyday

More information

Chromatography 1 of 26 Boardworks Ltd 2016

Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 1 of 26 Boardworks Ltd 2016 Chromatography 2 of 26 Boardworks Ltd 2016 What is chromatography? 3 of 26 Boardworks Ltd 2016 Different instrumental methods can be used to analyse and identify

More information

Chromatography and Functional Group Analysis

Chromatography and Functional Group Analysis Chromatography Chromatography separates individual substances from a mixture. - to find out how many components there are - to match the components with known reference materials - to use additional analytical

More information

3. Separation of a Mixture into Pure Substances

3. Separation of a Mixture into Pure Substances 3. Separation of a Mixture into Pure Substances Paper Chromatography of Metal Cations What you will accomplish in this experiment This third experiment provides opportunities for you to learn and practice:

More information

Chapter No. 2 EXPERIMENTAL TECHNIQUES IN CHEMISTRY SHORT QUESTIONS WITH ANSWERS Q.1 Define analytical chemistry? The branch of chemistry which deals with the qualitative and quantitative analyses of sample

More information

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography

36B-BioOrganic Modifications for Technique Experiments. Technique of Thin-Layer Chromatography 36B-BioOrganic Modifications for Technique Experiments Technique of Thin-Layer Chromatography Experiment Title: Applying TLC As A Method to Monitor the Multistep Synthesis of Aspirin You will be using

More information

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE

CYCLOSERINE Final text for addition to The International Pharmacopoeia. (November 2008) CYCLOSERINUM CYCLOSERINE December 2008 CYCLOSERINE Final text for addition to The International Pharmacopoeia (November 2008) This monograph was adopted at the Forty-third WHO Expert Committee on Specifications for Pharmaceutical

More information

Thin Layer Chromatography

Thin Layer Chromatography Introduction Thin Layer Chromatography Chromatography is an effective and very useful method for separation and purification of organic compounds that can be used even for complex mixtures. Chromatography

More information

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4

EXPERIMENTS. Testing products of combustion: Reducing Copper(III) Oxide to Copper. Page 4 APPARATUS Page 2 APPARATUS Page 3 Reducing Copper(III) Oxide to Copper EXPERIMENTS Page 4 Testing products of combustion: EXPERIMENTS Showing that oxygen and water is needed for rusting iron Page 5 Showing

More information

Chromatography & instrumentation in Organic Chemistry

Chromatography & instrumentation in Organic Chemistry Chromatography & instrumentation in Organic Chemistry What is Chromatography? Chromatography is a technique for separating mixtures into their components in order to analyze, identify, purify, and/or quantify

More information

CHROMATOGRAPHY. The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments.

CHROMATOGRAPHY. The term chromatography is derived from the original use of this method for separating yellow and green plant pigments. CHROMATOGRAPHY The term "chromatography" is derived from the original use of this method for separating yellow and green plant pigments. THEORY OF CHROMATOGRAPHY: Separation of two sample components in

More information

States of matter. Particles in a gas are widely spread out and can both vibrate and move around freely. They have the most energy of the three states.

States of matter. Particles in a gas are widely spread out and can both vibrate and move around freely. They have the most energy of the three states. States of matter Particles in a solid are closely packed and can vibrate but cannot move around, they have low energies. Particles in a liquid are still closely packed, but can both vibrate and move around

More information

ARTEMETHER AND LUMEFANTRINE ORAL SUSPENSION:Final text for addition to The International Pharmacopoeia (November 2008)

ARTEMETHER AND LUMEFANTRINE ORAL SUSPENSION:Final text for addition to The International Pharmacopoeia (November 2008) November 2008 ` ARTEMETER AND LUMEFANTRINE RAL SUSPENSIN:Final text for addition to The International Pharmacopoeia (November 2008) Category. Antimalarial. Storage. Artemether and lumefantrine oral suspension

More information

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 )

SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) SYNTHESIS OF 1-BROMOBUTANE Experimental procedure at macroscale (adapted from Williamson, Minard & Masters 1 ) Introduction 1-bromobutane is a primary alkyl halide (primary alkyl) and therefore it is produced

More information

Paper Chromatography. Identifying the components of a mixture

Paper Chromatography. Identifying the components of a mixture Paper Chromatography Identifying the components of a mixture QUIZ TIME! Take out a blank piece of paper Put your name and your lab day/time at the top Paper Chromatography Identifying the components of

More information

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione

Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione Multistep Synthesis of 5-isopropyl-1,3-cyclohexanedione The purpose of this experiment was to synthesize 5-isopropyl-1,3-cyclohexanedione from commercially available compounds. To do this, acetone and

More information

Synthesis of Tetraphenylcyclopentadienone. Becky Ortiz

Synthesis of Tetraphenylcyclopentadienone. Becky Ortiz Synthesis of Tetraphenylcyclopentadienone Becky Ortiz Introduction An aldol reaction is a reaction in which aldehydes or ketones undergo a base- catalyzed carbonyl condensation reaction to form a beta-

More information

Ondansetron Hydrochloride Tablets

Ondansetron Hydrochloride Tablets Ondansetron Hydrochloride Tablets Dissolution Perform the test with 1 tablet of Ondansetron Hydrochloride Tablets at 50 revolutions per minute according to the Paddle method, using 900 ml of water

More information

THE LABORATORY NOTEBOOK

THE LABORATORY NOTEBOOK THE LABORATORY NOTEBOOK Courtesy of Dr. Jon Griffiths Introduction A laboratory notebook serves several purposes. The first is for your own reference. To avoid forgetting any important information, the

More information

Lab 3: Solubility of Organic Compounds

Lab 3: Solubility of Organic Compounds Lab 3: Solubility of rganic Compounds bjectives: - Understanding the relative solubility of organic compounds in various solvents. - Exploration of the effect of polar groups on a nonpolar hydrocarbon

More information

Rule 2. Rule 1. Rule 4. Rule 3. Rule 5. Rule 6. Rule 7. Rule 8

Rule 2. Rule 1. Rule 4. Rule 3. Rule 5. Rule 6. Rule 7. Rule 8 Rule 1 Follow the directions in your course reader, of your teaching assistant and of your instructor. They are usually much more experienced doing chemistry. Rule 3 When in doubt, ask. This will make

More information

Principles of Thin Layer Chromatography

Principles of Thin Layer Chromatography REVISED & UPDATED Edvo-Kit #113 Principles of Thin Layer Chromatography Experiment Objective: The objective of this experiment is to gain an understanding of the theory and methods of thin layer chromatography.

More information

Sodium Borohydride Reduction of Benzoin

Sodium Borohydride Reduction of Benzoin Sodium Borohydride Reduction of Benzoin Introduction The most common and useful reducing agents for reducing aldehydes, ketones, and other functional groups are metal hydride reagents. The two most common

More information

Lab #3 Reduction of 3-Nitroacetophenone

Lab #3 Reduction of 3-Nitroacetophenone Lab #3 Reduction of 3-Nitroacetophenone Introduction: Extraction: This method uses a different technique in which the two chemical compounds being separated are in immiscible solvents, also known as phases.

More information

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing)

Chromatography. Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Chromatography Chromatography is a combination of two words; * Chromo Meaning color * Graphy representation of something on paper (writing) Invention of Chromatography Mikhail Tswett invented chromatography

More information

RediSep Rf C18 Flash Column Loading Techniques

RediSep Rf C18 Flash Column Loading Techniques RediSep Rf C18 Flash Column Loading Techniques Chromatography Application Note AN88 Abstract There are several techniques for loading samples onto reusable RediSep Rf C18 flash columns. The techniques

More information

MIXTURES, COMPOUNDS, & SOLUTIONS

MIXTURES, COMPOUNDS, & SOLUTIONS MIXTURES, COMPOUNDS, & SOLUTIONS As with elements, few compounds are found pure in nature and usually found as mixtures with other compounds. A mixture is a combination of two or more substances that are

More information

Photosynthesis Lab. Table 1: Comparison of the two parts of photosynthesis.

Photosynthesis Lab. Table 1: Comparison of the two parts of photosynthesis. Revised Fall 2016 Photosynthesis Lab **Lab coat, eye goggles and gloves (nitrile or latex) are required for this lab. You will not be allowed to participate without this equipment. Before coming to lab:

More information

ARTEMETHER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008)

ARTEMETHER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008) July 2008 ARTEMETER AND LUMEFANTRINE TABLETS: Final text for addition to The International Pharmacopoeia (July 2008) This monograph was adopted at the Forty-second W Expert Committee on Specifications

More information

Lab.2. Thin layer chromatography

Lab.2. Thin layer chromatography Key words: Separation techniques, compounds and their physicochemical properties (molecular volume/size, polarity, molecular interactions), mobile phase, stationary phase, liquid chromatography, thin layer

More information

NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009)

NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009) February 2009. NEVIRAPINE ORAL SUSPENSION Final text for addition to The International Pharmacopoeia (February 2009) This monograph was adopted at the Forty-third WHO Expert Committee on Specifications

More information

Chromatography. writing in color

Chromatography. writing in color Chromatography writing in color Outlines of Lecture Chromatographic analysis» Principles and theory.» Definition.» Mechanism.» Types of chromatography.» Uses of Chromatography. In 1906 Mikhail Tswett used

More information

EFAVIRENZ Final text for addition to The International Pharmacopoeia

EFAVIRENZ Final text for addition to The International Pharmacopoeia Document QAS/05.145/FIAL March 07 EFAVIREZ Final text for addition to The International Pharmacopoeia This monograph was adopted at the Fortieth W Expert ommittee on Specifications for Pharmaceutical Preparations

More information

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC

PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY. Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC PRINCIPLES AND APPLICATION OF CHROMATOGRAPHY Dr. P. Jayachandra Reddy Mpharm PhD Principal & professor KTPC CHROMATOGRAPHY Laboratory technique for the Separation of mixtures Chroma -"color" and graphein

More information

Isolation Of Chlorophyll And Carotenoid Pigments From Spinach

Isolation Of Chlorophyll And Carotenoid Pigments From Spinach Isolation Of Chlorophyll And Carotenoid Pigments From Spinach 1 / 7 2 / 7 3 / 7 Isolation Of Chlorophyll And Carotenoid The structures of the major components are given below. Note that the -carotene,

More information

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College PURPOSE In this experiment, the photosynthetic pigments common to all flowering plants will be extracted by liquidliquid extraction.

More information

A. GENERAL NOTICES. Ninth Edition, which may be abbreviated as JSFA-IX.

A. GENERAL NOTICES. Ninth Edition, which may be abbreviated as JSFA-IX. A. GENERAL NOTICES A. GENERAL NOTICES 1. The title of this book is Japan s Specifications and Standards for Food Additives, Ninth Edition, which may be abbreviated as JSFA-IX. 2. Unless otherwise specified,

More information

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014

Methods of Separation. Vacuum Filtration. Distillation. The Physical Separation of Matter Chemistry 11 2/17/2014 The Physical Separation of Matter Chemistry 11 Methods of Separation n Depending upon the physical properties of the substances involved, various methods of separation can be used. n Hand separation: A

More information

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain

Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain rganic Lett. (Supporting Information) 1 Synthetic Studies on Norissolide; Enantioselective Synthesis of the Norrisane Side Chain Charles Kim, Richard Hoang and Emmanuel A. Theodorakis* Department of Chemistry

More information

Open Column Chromatography, GC, TLC, and HPLC

Open Column Chromatography, GC, TLC, and HPLC Open Column Chromatography, GC, TLC, and HPLC Murphy, B. (2017). Introduction to Chromatography: Lecture 1. Lecture presented at PHAR 423 Lecture in UIC College of Pharmacy, Chicago. USES OF CHROMATOGRAPHY

More information

CHROMATOGRAPHY A PROJECT IN CEHMISTRY. Chromatography includes various experimental techniques Designed to separate mixture of

CHROMATOGRAPHY A PROJECT IN CEHMISTRY. Chromatography includes various experimental techniques Designed to separate mixture of CHROMATOGRAPHY A PROJECT IN CEHMISTRY Chromatography includes various experimental techniques Designed to separate mixture of compounds. Chromatography involves a stationary and a mobile phase. Separation

More information

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools

Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Column Liquid Chromatography Experiment Adapted for Use in Secondary Schools Mark Langella WISTA The most modern and sophisticated methods of separating mixtures that the organic chemist has available

More information

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus

CHROMATOGRAPHY, AND MASS SPECTRAL. FRACTIONS OF Lasianthus f^ l^ltt^^p^^* V^ COLUMN CHROMATOGRAPHY, HPLC AND MASS SPECTRAL ANALYSIS OF SOME FRACTIONS OF Lasianthus lucldus Biume 8.1 Column Chromatography 8.2 HPLC 8.3 Preparatory TLC 8.4 Mass Spectral Analysis

More information

Separations: Chromatography of M&M and Ink Dyes

Separations: Chromatography of M&M and Ink Dyes Separations: Chromatography o M&M and Ink Dyes Almost all substances we come into contact with on a daily basis are impure; that is, they are mixtures. Similarly, compounds synthesized in the chemical

More information

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP))

12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) 12 Nicarbazin Nicarbazin (4,4 -dinitro carbanilid (DNC) and 2-hydroxy-4,6-dimethyl pyrimidine (HDP)) O - O - O N + O N + O N NH N H N H O 1,3-bis(4-nitrophenyl)urea, 4,6-dimethyl-1H-pyrimidin-2-one C 13

More information

solution, Concentrated HNO 3

solution, Concentrated HNO 3 Exercise 21 Aim: To detect the presence of proteins. Principle: Proteins respond to some colour reactions due to the presence of one or more radicals or groups of the complex protein molecule. All proteins

More information

Egualen Sodium Granules

Egualen Sodium Granules Egualen Sodium Granules Dissolution Weigh accurately an amount of Egualen Sodium Granules, equivalent to about 5 mg of egualen sodium (C 15 H 17 NaO 3 S 1/3 H2O) according to the labeled amount,

More information

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques

General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques General Chemistry I CHEM-1030 Laboratory Experiment No. 2 Physical Separation Techniques Introduction When two or more substances that do not react chemically are blended together, the components of the

More information

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits)

SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) SYNTHESIS OF AN AZO DYE revisited (1 or 2 credits) This lab you can revisit the fist experiment of this quarter and synthesize more azo dyes of your choice. The old procedure is given below followed by

More information

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION

CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION CHEM51LC PROJECT DETERMINATION OF DIASTEREOSELCTIVITY USING THERMODYNAMIC VERSUS KINETIC CONTROLLED REDUCTION PROCEDURES: A REDUCTION of 4-tert-BUTYLCYCLOHEXANONE REACTION: Oxidation of an Alcohol, Reductions

More information

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure.

Liquid storage: Holds the solvent which is going to act as the mobile phase. Pump: Pushes the solvent through to the column at high pressure. High performance liquid chromatography (HPLC) is a much more sensitive and useful technique than paper and thin layer chromatography. The instrument used for HPLC is called a high performance liquid chromatograph.

More information

Supporting Information

Supporting Information Supporting Information ACA: A Family of Fluorescent Probes that Bind and Stain Amyloid Plaques in Human Tissue Willy M. Chang, a Marianna Dakanali, a Christina C. Capule, a Christina J. Sigurdson, b Jerry

More information

PLANT PIGMENTS AND PHOTOSYNTHESIS LAB

PLANT PIGMENTS AND PHOTOSYNTHESIS LAB AP BIOLOGY CELLULAR ENERGETICS ACTIVITY #6 NAME DATE HOUR PLANT PIGMENTS AND PHOTOSYNTHESIS LAB OBJECTIVES: After completing this lab you should be able to: 1. separate pigments and calculate their R f

More information

Chromatography. Gas Chromatography

Chromatography. Gas Chromatography Chromatography Chromatography is essentially the separation of a mixture into its component parts for qualitative and quantitative analysis. The basis of separation is the partitioning of the analyte mixture

More information

Experiment 8: Chlorination of 1-Chlorobutane

Experiment 8: Chlorination of 1-Chlorobutane 1 Experiment 8: Chlorination of 1-Chlorobutane Alkanes contain only nonpolar carbon-hydrogen and carbon-carbon single bonds, which makes them unreactive toward most acidic and basic reagents. They can,

More information

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction

Chlorobenzene from Aniline via the Sandmeyer Reaction. August 21, By ParadoxChem126. Introduction Chlorobenzene from Aniline via the Sandmeyer Reaction August 21, 2014 By ParadoxChem126 Introduction Chlorobenzene is a useful chemical in organic syntheses. It dissolves a wide range of organic compounds,

More information

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2012 Subcellular Localization and Activity of Gambogic Acid Gianni Guizzunti,* [b] Ayse Batova, [a] Oraphin Chantarasriwong,

More information

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY

5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY 5072 CHEMISTRY (NEW PAPERS WITH SPA) TOPIC 1: EXPERIMENTAL CHEMISTRY 5067 CHEMISTRY (NEW PAPERS WITH PRACTICAL EXAM) TOPIC 1: EXPERIMENTAL CHEMISTRY SUB-TOPIC 1.2 METHODS OF PURIFICATION AND ANALYSIS LEARNING

More information

Chemistry 151 Lab 4: Chromatography

Chemistry 151 Lab 4: Chromatography Chemistry 151 Lab 4: Chromatography Last updated Dec. 2013 Introduction Mixtures, both homo- and heterogeneous, can be separated (or resolved) into substances by physical means. Common examples of physical

More information

Chromatography What is it?

Chromatography What is it? Chromatography Most things that are colored are mixtures of different substances of various colors. In a mixture you have several different kinds of chemicals that are all next to each other but not reacting.

More information