On Testing Satisfiability of Tree Pattern Queries

Size: px
Start display at page:

Download "On Testing Satisfiability of Tree Pattern Queries"

Transcription

1 On Tsting Stisfiility of Tr Pttrn Quris Lks V.S. Lkshmnn, Gnsh Rmsh, Hui (wny) Wng, Zhng (Jssic) Zho Dprtmnt of Computr Scinc Univrsity of ritish Columi strct XPth n XQury (which inclus XPth s sulngug) r th mjor qury lngugs for XML. n importnt issu rising in fficint vlution of quris xprss in ths lngugs is stisfiility, i.., whthr thr xists ts, consistnt with th schm if on is vill, on which th qury hs non-mpty nswr. Our xprinc shows stisfiility chck cn ffct sustntil svings in qury vlution. W systmticlly stuy stisfiility of tr pttrn quris (which cptur usful frgmnt of XPth) togthr with itionl constrints, with or without schm. W intify css in which this prolm cn solv in polynomil tim n vlop novl fficint lgorithms for this purpos. W lso show tht in svrl css, th prolm is NP-complt. W rn comprhnsiv st of xprimnts to vrify th utility of stisfiility chck s prprocssing stp in qury procssing. Our rsults show tht this chck tks ngligil frction of th tim n for procssing th qury whil oftn yiling sustntil svings. Introuction With XML coming th stnr for t xchng, sustntil work hs n on on XML storg, n qury procssing n optimiztion [7, 6, 9, 7, 5,, 8, 2, 23, 3]. Howvr, rltivly littl work hs n on on tcting whthr givn qury is stisfil, i.., whthr thr is ny ts stisfying th qury. This is n importnt prolm for th following rsons. () Formulting quris ginst XML tss cn mor chllnging thn for rltionl tss. s prviw, w will show y xmpl, how vry similr quris cn grtly vry in trms Prmission to copy without f ll or prt of this mtril is grnt provi tht th copis r not m or istriut for irct commrcil vntg, th VLD copyright notic n th titl of th puliction n its t ppr, n notic is givn tht copying is y prmission of th Vry Lrg Dt s Enowmnt. To copy othrwis, or to rpulish, rquirs f n/or spcil prmission from th Enowmnt. Procings of th 30th VLD Confrnc, Toronto, Cn, 2004 of stisfiility. In, vn in th contxt of rltionl tss, Lvy t l. [8] stui stisfiility for vrious frgmnts of th tlog qury lngug n stlish complxity n ciility rsults. Hirs [5] is th only work on XPth stisfiility w r wr of. til comprison with our work pprs in Sction 6. (2) XML is intn to ctr for situtions whr no priori schm is vill for t. Qurying n XML ts in th snc of ny schm knowlg cn tricky. Th intrction twn vrious structurl constrints, tht rstrict structurl rltionships mong lmnts, n vlus constrints, tht constrin th contnts of lmnts or thir ttriut vlus, cn intrict. (3) Evn whn schm is known, gtting th qury right cn still non-trivil for th usr. For, th schm imposs structurl constrints on its own which tn to intrct with structurl n vlu-s constrints in th qury in sutl wys n my mk th qury unstisfil. Our xprinc shows tht chcking stisfiility of quris cn py sustntil ivins in sving consirl tim in qury vlution, whil ing ngligil ovrh to th ovrll qury vlution. sis, givn th consirl similrity twn stisfil qury n n unstisfil on, it woul usful to hv th systm ssist th usr in gtting thir quris right. Stisfiility tsting is ncssry first stp in uiling ny such tool. This ws th motivtion hin our work. Nxt, w shll illustrt ths points with xmpls. XQury [3] is th fcto stnr qury lngug for XML n inclus XPth [3] s sulngug. oth ths lngugs r s on sic prigm of fining inings of vrils y mtching tr pttrns ginst ts. nikt t l. [9] stuy th xprssiv powr of tr pttrn quris in rltion to XPth n xistntil first-orr logic. E.g., consir th XPth xprssion //[/// = /c//]. It corrspons to th tr pttrn qury (TPQ) Q 4 in Figur (ignor sh lins for now). Singl (oul) lins rprsnt prnt-chil (ncstor-scnnt) rltionship twn nos. s nothr xmpl, consir th XQury sttmnt: FOR $ IN ocumnt( oc.xml )//, TPQs r formlly fin in Sction 2. 20

2 Q D $6 $5 Q3 C D C C $5 $6 Q4 Q2 E $5 C D D C E F $6 D F $7 $5 $6 $7 Q5 C D D Figur : Exmpls in th snc of Schm $ IN $///, $f IN $///f, $c IN $//c, $ IN $c//, $f IN $c//f WHERE $ = $ ND $f = $f RETURN{$} This corrspons to th TPQ Q 2 in Figur. In, ch TPQ in th figur corrspons to n XPth xprssion, or n XQury qury. Ech qury is unstisfil, ut whn th sh lins r (i.., whn crtin prnt-chil rltionships r rlx to ncstor-scnnt), th quris com stisfil. W xplin this low. First, consir Q 3. It sks for nos tht hv no tht is oth chil n is scnnt vi n intrmit no C. This is clrly unstisfil in ny tr. Howvr, rlxing th chil to scnnt mks it stisfil. Nxt, consir Q 4, which sks for nos which hv scnnt D vi chil s wll s vi C chil. Sinc ch lmnt hs uniqu tg, this is unstisfil. gin, rlxing on of th chil constrints to scnnt rnrs th qury stisfil. Q 5 is unstisfil, ut for sutlr rson. If th two D nos r th sm, th C scnnt of must scnnt of th chil. Th scnnt D of th C no must thus t istnc 3 or mor whrs th D chil of is t istnc 2 from, which is impossil. Onc gin, rlxing ny of th chil constrints to scnnt rnrs th qury stisfil. Nxt, consir Q 2. Th constrint tht th two E lvs must inticl rquirs nos,, C n th two E nos to li on th sm (root-to-lf) pth. Similrly, th intity of th two F nos rquirs nos,, C n th two F nos to li on th sm pth. This is impossil, sinc C, hving iffrnt tg thn th two chilrn of, is forc to scnnt of oth, whrs n D cnnot li on th sm pth. Rlxing th chil constrint on, D,.g., to scnnt mks th qury stisfil. Finlly, consir Q. ll gs xcpt on, D r scnnt constrints. Th qury is unstisfil cus th two nos r th sm no, sy v, n v hs chil D, which is scnnt of scnnt C no of v. contriction riss cus of th inconsistncy in th rquir istnc twn v n th D no. gin, rlxing th only chil constrint in th qury to scnnt rnrs it stisfil. gnrl rmrk out ll quris is inst of rlxing chil constrint, ropping ny othr constrint in th qury (.g., intity of two nos) lso rnrs it stisfil. Th xmpls show tht rsoning out stisfiility is intrsting n non-trivil. W mk th following contriutions in this ppr. Rsoning out stisfiility cn ruc to mking infrncs out rltionships twn nos n/or thir contnts or ttriut vlus. W vlop infrnc ruls for ucing itionl structurl rltionships twn qury nos from thos stt in th qury (Sctions 3 n 4). W propos constrint grph for tr pttrn qury. It consists of structurl prt tht cpturs structurl constrints in th qury n vlu-s prt tht cpturs vlu-s constrints. Using our infrnc ruls, w vlop chs procur for closing th constrint grph w.r.t. ll constrints impli y givn ons. W show th chs is complt whn th qury contins no wilcrs: qury is stisfil iff its constrint grph, whn chs, os not rsult in ny violtions, in prcisly fin sns. Our infrnc ruls n chs r vlop for oth whn no schm is known n whn schm is givn (Sctions 3 n 4). W intify conitions unr which tsting stisfiility is NP-complt (Sctions 3.3 n 4.2.) n whn it cn on in polynomil tim. For th lttr css, w vlop fficint lgorithms for stisfiility tsting (Sctions 3.2 n 4.2). Finlly, w rn comprhnsiv st of xprimnts on synthticlly gnrt t st on svrl wll-known DTDs incluing uction.t n protin.t, tst vrious kins of stisfil n unstisfil quris, n msur oth th itionl ovrh incurr on stisfil quris n th mount of svings on unstisfil quris. Whil th svings r mor thn n orr of mgnitu, our rsults show tht th ovrh is smll frction of ovrll qury vlution tim (Sction 5). Som sic finitions n prolm sttmnt r givn in Sction 2. Rlt work pprs in Sction 6, whil Sction 7 summrizs th ppr n iscusss futur work. 2 ckgroun n Prolms Stui (n XML) ts is finit root orr tr D = (N, E, r, λ), whr N rprsnts lmnt nos, E rprsnts prnt-chil rltionship, λ, th lling 2

3 function, ssigns tg with ch no, n r is th root. ssocit with ch no is st of ttriutvlu pirs. In this ppr, w o not consir orr ny furthr. Fig. 2() shows n xmpl ts D. Tr pttrn quris, introuc in [], cptur usful frgmnt of XPth. tr pttrn qury (TPQ) is tripl Q = (V, E, F), whr (V, E) is root tr, with nos V ll y vrils, n with E = E c E consisting of two kins of gs, cll pc- (E c ) n -gs (E ), corrsponing to th chil n scnnt xs of XPth. istinguish no in V (shown ox in Figur ) 2 corrspons to th nswr lmnt. F is conjunction of tg constrints (TCs), vlu-s constrints (VCs), n no intity constrints (NICs). TCs r of th form $x.tg = t, whr t is tg nm. VCs inclu slction constrints $x.vl rlop c, $x.ttr rlop c, n join constrints $x.ttr rlop $y.ttr, n $x.vl rlop $y.vl, whr rlop {=,, >,,, <}, ttr, ttr r ttriuts, vl rprsnts contnt, n c is constnt. With fw clrly intifi xcptions, w ssum no isjunctions ppr in VCs, throughout th ppr. Whn w o llow isjunctions, thy r confin to slction conitions. NICs r $x iop $y, whr iop {, }. 3 W opt th trm structurl constrints to rfr to NICs n pricts of th form pc($x, $y), ($x, $y), rprsnting pc- n -gs. Figur 2() shows n xmpl TPQ Q. n xmpl us of isjunction in slction constrints is th constrint.typ = pprck.typ = spirloun on no in plc of th xisting constrint thr. nswrs for TPQs r formliz using mtchings. mtching of TPQ Q to ts D is function h : Q D tht mps nos of Q to nos of D such tht: (i) structurl rltionships r prsrv whnvr (x, y) E c h(y) is chil of h(x) in D n whnvr (x, y) E, thr is pth from h(x) to h(y) in D; n (ii) th formul F is stisfi. W sy tht ts D stisfis qury Q provi thr is mtching h : Q D. mtching of th qury Q in Figur 2() to th ts D of Figur 2() is schmticlly illustrt with numrs sis ts nos. qury Q is stisfil provi thr is ts D tht stisfis Q. For rility, whnvr th tg constrint $x.tg = t pprs in TPQ Q = (V, E, F), w rop tht constrint from th formul prt F, n writ t right nxt to no $x in Q. If no $x is not tgg, w ssocit wilcr nxt to no $x in Q. This is illustrt for qury Q in Figur 2()-(c). This corrspons to th XPth xprssion /i[///txt()= Rymon Smullyn ]/[@typ=pprck]/uthor[txt()=. Russl ]. If th constrint.typ pprck wr rplc y.typ = pprck in Q, ts D in Figur 2() wouln t stisfy it, s no mtching 2 Sinc istinguish nos o not ply ny rol in stisfiility, w o not consir thm furthr. 3 Th constrints $x $y n $x $y sy nos $x n $y r (not) th sm. ook typ: pprck i titl uthor yr titl uthor uthor "Wht is th nm of this ook?" "Rymon Smullyn" (2) () "986" ().tg=i &.vl="rymon Smullyn" &.typ!=pprck &.tg=uthor &.vl=".russl" () ook (3) typ: hroun "Principi ".N. Mthmtic" ". Russl" Whith" (4) i uthor (c).vl="rymon Smullyn" &.typ!=pprck &.vl=".russl" Figur 2: n xmpl: () ts D n: () TPQ Q, (c) Q m mor rl. is possil. In th squl, w writ lmnt tgs or wilcrs nxt to qury nos s pproprit. Thus, qury Q is si to hv wilcrs if on or mor nos o not hv thir tgs constrin y TC. Othrwis it wilcr-fr. Q is join-fr if it contins no join constrints n no NICs. W strct th schm of ts (in our ppr, w only consir DTDs) s grph with nos corrsponing to tgs n gs ll y on of th quntifirs?,,, + with thir stnr mning of optionl, on, zro or mor, n on or mor rspctivly. n xmpl of schm grph pprs in Figur 8. It sys,.g., tht ctgoris consists of ctgory lmnts, ch of which hs uniqu scription. Prolms Stui: W consir tsting stisfiility of vrious clsss of TPQs (with/without VCs, with/without isjunction in VCs, with/without join n no intity constrints, with/without wilcrs) oth in th snc of schm n in th prsnc of schm without isjunction (i.., choic) n cycls. 3 Stisfiility without Schm Givn TPQ Q, trmining whthr Q is stisfil in th snc of schm, solly pns on th structurl constrints n ny VCs prsnt in Q. In ition, it my ncssry to consir isjunctions n wilcrs in th qury, if prsnt. W systmticlly stuy th prolm for vrious TPQ clsss. 3. Join-fr TPQs with Wilcrs Rcll tht join-fr TPQs o not contin join or no intity constrints. Not tht Q my still involv 22

4 vlu-s slction constrints. In th spcil cs tht Q hs no VCs, it is lwys stisfil. In, stisfying instnc D for Q cn construct s follows. D is tr isomorphic to th qury tr Q xcpt ll gs r pc-gs. For vry qury no tht is tgg, th corrsponing no in D hs th sm tg; if th qury no is wilcr, th corrsponing no in D my hv n ritrry tg. It is sy to s tht D lwys stisfis Q. Suppos Q = (V, E, F) os contin VCs. Sinc it os not contin ny join constrints, vry VC constrins uniqu no in Q. Lt F x th mximl suformul of F tht constrins no x. To vrify tht Q is stisfil, it thn suffics to vrify if F x is stisfil for ch no x. Th following proposition summrizs th sitution for join-fr TPQs. Proposition 3. For join-fr tr pttrn qury Q, possily contining wilcrs, th following hols:. If Q contins no VCs ssocit with ny no, thn Q is stisfil. 2. If Q contins vlu-s slction constrints (ut is join-fr), thn Q is stisfil iff for vry no, th ssocit st of VCs is consistnt. Th complxity of vrifying stisfiility thus pns on th kins of formuls F x constrining ch no x. If no isjunction occurs, consistncy of F x n hnc of F cn vrifi in polynomil tim using th soun n complt xiom systm givn in [2]. If VCs F x ssocit with no x cn involv ritrry isjunctions, tsting consistncy of F x coms quivlnt to ST n hnc is NP-complt. If F x is isjunction of conjunctions, thn th mtho propos in [2] cn sily xtn to yil polynomil tim tst for stisfiility of Q. 3.2 Wilcr-fr TPQs with Joins Lt Q TPQ contining join n/or no intity constrints, ut no wilcrs n no isjunction. W rlx th lttr rstrictions in Sction 3.3. Th prsnc of join n no intity constrints intrcts in n intrict wy with th structurl constrints. E.g., th constrint x y implis ny ncstors of x n y in th qury Q must li on th sm pth in stisfying ts. low, w sprt th rsoning into structur n vlu-s prts n pin own xctly how thy hnshk Rsoning out Structur In this sction, w consir quris with just NICs. Th ffct of VCs of th form $x.vl rlop $y.vl tc. r rss in Sction Som issus involv in rsoning out stisfiility r illustrt y th following xmpl. Exmpl 3. [Structurl rsoning] Consir th qury in Figur 3, which is inticl to qury Q2 in Figur. s iscuss in th introuction, it is unstisfil. Th rsoning involvs infrring tht no pirs n must li on th sm root-to-lf pth s wll s tht thy must cousins of ch othr, ling to contriction. Th xmpl illustrts svrl points.. Tsting stisfiility involvs infrring rltionships twn pirs of nos s on structurl constrints stt in th qury. Thus, w n infrnc ruls. 2. Som of th intrmit rltionships infrr ov cnnot irctly rprsnt in th lngug of TPQs (.g., x n y must li on th sm pth ). Thus, th lngug is not clos w.r.t. stisfiility rsoning. W coul rprsnt th nw rltionships y prmitting isjunction in structur. E.g., x n y li on th sm pth iff (x y (x, y) (y, x)). Howvr, prmitting ritrry isjunctions cn l to high complxity. W show tht ll w n to o is th following pricts: s(x, y) mning x y or (x, y), OTSP(x, y) mning s(x, y) or (y, x), COUS(x, y) mning OTSP(x, y). Not tht th pricts OTSP, COUS,, r symmtric whil pc,, s r not. This xpn st of pricts is in clos w.r.t. stisfiility rsoning. Q: c r $5 $6 $7 $8 $5 $6 & $7 $8 & Mrg Nos $5 n $6 Mrg Nos $7 n $8 Q is ST if (r,) is inst of pc Infrncs:. (2,5), (3,6) > OTSP(2,3) 2. (4,8), (3,7) > OTSP(4,3) 3. pc(,2), pc(,4), (2!=4) > COUS(2,4) 4. pc(,2), (,3), OTSP(2,3) > s(2,3) 5. pc(,4), (,3), OTSP(4,3) > s(4,3) 6. s(2,3), s(4,3) > OTSP(2,4) >VIOLTION: OTSP(2,4), COUS(2,4)< Figur 3: Infrring Structurl Pricts Dtrmining stisfiility of qury works s follows. First, w us infrnc ruls to otin th closur of structurl pricts. Thn, w chck th rsulting st of pricts for violtions (fin low). Th qury is stisfil iff th st of pricts is violtionfr (consistnt). Structurl Constrint Grph: In orr to fficintly implmnt procur for stisfiility chcking, w construct (structurl) constrint grph G Q for th qury Q s follows. G Q contins on no for ch qury no. For ch prict φ(x, y) in Q, G Q contins irct g ll φ from x to y. For symmtric pricts, th g is iirct. Infrnc Ruls n Chs: Nw structurl pricts r infrr from xisting ons in th qury y using st of infrnc ruls. n infrnc rul is of th form P,... P k R n sys if pricts P,..., P k r tru, thn R is tru. Infrnc ruls r us for chiving closur of structurl pricts n thus for ctching inconsistncis cus y conflicting pirs of pricts. For th structurl pricts, w hv - 23

5 vlop totl of 22 infrnc ruls. 4 For rvity, w show only som intrsting ruls in Figur 4 n xplin som slct ons. Th complt tils cn foun in []. W xplin thr of th ruls. Rul 2 sys whnvr x lis on th sm pth s ch of pir of cousins y n z, thn x must thir ncstor 5. Rul 3 sys two unqul nos x, y t n qul istnc from no z must cousins. Th qul istnc implis th pths from z to x n y must involv only pc-gs. Rul 7 sys whnvr x n y r on th sm pth, x is chil of n ncstor of y, thn y must slf or scnnt of x, i.., s(x, y). Th chs procur is to simply pply th infrnc ruls until no nw infrncs r possil. If violtion, fin nxt, is tct t ny point, w cn xit from chs rly. W will iscuss mor fficint implmnttion of chs shortly.. s(x, z), s(y, z) OTSP(x, y) 2. OTSP(x, y), OTSP(x, z), COUS(y, z) (x, y) 3. x y COUS(x, y), whnvr x, y r t th sm istnc from thir lst common qury ncstor z. 4. pc(x, z), pc(y, z) x y. 5. pc(z, x), pc(z, y), OTSP(x, y) x y. 6. (x, z), pc(y, z) s(x, y). 7. pc(z, x), (z, y), OTSP(x, y) s(x, y). Figur 4: Slct Infrnc Ruls (no schm). Violtions: violtion is pir of conflicting pricts twn pir of nos. Exmpls of conflicting pirs of pricts r x y, x y; (x, y), s(y, x); n OTSP(x, y), COUS(x, y). In, ths thr pirs cptur ll possil violtions, sinc othr violtions r susum y thm. For instnc, pc(x, y) conflicts with COUS(x, y). ut sinc pc(x, y) implis OTSP(x, y) this conflict is covr y th pir OTSP(x, y), COUS(x, y). Violtions mk th qury unstisfil. Figur 3 monstrts th chs s logicl infrncs. t th n of stp 6, w fin violtion cus of th conflicting pricts OTSP() n COUS(). To implmnt th chs mor fficintly, w mploy th constrint grph. Spcificlly, givn TPQ Q, w initiliz its constrint grph CG Q. For vry pir of nos $i, $j, whnvr thir tgs r iffrnt, w iirct g ll twn $i n $j. W pply th infrnc ruls rptly. Whnvr prict p($i, $j) is riv, (irct) g from $i to $j ll p if p is on of, s n mk it iirct if p is on of, OTSP, COUS. Whn $i $j is riv, w mrg nos $j n $j. W rpt until no nw infrncs r m or violtion is tct. constrint grph, with chs ppli on it, is chs constrint grph. Hr is n xmpl. Th qury of Figur 3 coms stisfil if th pc-g from to is chng to n -g (shown ott in th figur). Figur 5() shows th constrint grph 4 Incluing trivil ons such s pc(x, y) (x, y). 5 Not tht th rul is symmtric for this qury n Figur 5(c) shows th chs constrint grph. Figur 5() shows stisfying instnc of th qury. c Constrint Grph $5 pc $6 r $7 () Constrint Grph Chs Constrint Grph c L $5,$6 r COUSIN forc L = {pc,,s,otsp, } $8 $7,$8 r c () Instnc = {,s,otsp, } (c) Chs Constrint Grph Figur 5: Dtrmining Stisfiility Th min rsult of this sction is th following: Thorm 3. (Compltnss of Chs) : Lt Q tr pttrn qury contining no intity constrints ut no wilcrs. It is stisfil iff th chs constrint grph of Q is violtion-fr. W rfr th rr to [] for th proof. Hr, w giv th ky intuition. Th If irction is sy to s sinc vry infrnc rul is soun n thrfor prsrvs stisfiility. For th Only If irction, suppos G is th chs constrint grph of qury Q n G is violtion-fr. W construct stisfying tr instnc s follows. Procur FstChs(CGrph CG) fin ll -clsss of nos; for ch quivlnc clss E, fin th mximl OTSP st s pr(x) x E in G, whr pr(x) is th st of prcssors of x in G; for ll x, y s.t. x y G, pply th istnc rul (#3) to riv COUS(x, y); propgt COUS() ownwr using infrnc ruls; if COUS(x, y) is riv, x y to G; if violtion is foun rturn unstisfil ; if x y is riv, mrg x n y; whil thr is no chng { pply ruls for infrring,, s; if nos r qut, mrg thm; if violtion is foun rturn unstisfil ; } rturn tru; Figur 6: pply Chs in CGrph 24

6 Cll st S of nos in Q n OTSP st provi x, y S: OTSP(x, y) G. OTSP sts r upwr clos, i.., whn x S, n s(y, x) G, thn y S. Hncforth, w consir mximl OTSP sts, i.., OTSP sts whos propr suprsts r not OTSP sts. Th i is to forc rltionships twn pirs of nos until G coms complt st, i.., nos x, y G n for ny prict p, ithr p(x, y) or p(x, y) hols in G. In prticulr, ll nos in mximl OTSP sts r totlly orr using topologicl sort. Diffrnt mximl OTSP sts r incorport in iffrnt rnchs of th tr. W nxt rifly commnt on n fficint implmnttion of th chs. niv implmnttion woul tk tim O(n 5 ), whr n is th numr of nos in th qury. This is cus ch rul involvs 3 nos n thr r O(n 2 ) itrtions possil in th worst cs for no nw infrncs r m. mor fficint implmnttion is suggst in Figur 6. Th i is to xploit th upwr closur (ownwr closur) of OTSP (COUS) prict. It cn shown tht mximl OTSP sts cn comput stticlly s on th constrints givn in th qury. Similrly, w cn infr COUS gs fficintly. Infrnc ruls for th rmining pricts n to ppli rptly until ithr violtion is foun or no nw infrncs r possil. Th worst-cs complxity of this lgorithm rmins th sm. Howvr, in prctic it is much ttr thn th niv lgorithm Intrction with VCs Up to this point, w hv not consir VCs. Evn whn qury is stisfil w.r.t. its structurl constrints, th VCs my rnr it unstisfil. s mntion rlir, consistncy of conjunction of VCs cn chck in polynomil tim using th soun n complt xiom systm provi in [2]. Th chcking lgorithm cn implmnt fficintly using sprt vlu-s constrint grph using is similr to th structurl constrint grph. Th tils r similr n r omitt. Wht out intrctions twn structurl constrints n VCs? It cn shown tht th intrction hppns vi two min links: (i) Th structurl constrints my imply x y for nos x, y. ll VCs pplicl to x r pplicl to y. This is utomticlly cptur y mrging x n y. (ii) VCs cn imply x y for nos x, y. This cn in turn triggr infrncs of structurl pricts. Th procur for tsting stisfiility of qury Q with structurl constrints n VCs is thn s follows: (i) Chs th VCs (using sprt vlus constrint grph); if ny violtion is foun rturn unstisfil. (ii) Construct th (structurl) constrint grph G of Q; propgt ll constrints x y riv from VC chs to G n chs it; (iii) Q is stisfil iff th chs trmints with no violtion. W cn show: Thorm 3.2 (TPQs with VCs) : Lt Q tr pttrn qury with structurl constrints n Disjunction NICs/join constrints Wilcrs Complxity X PTIME X PTIME X X NP-Complt X X NP-complt Figur 7: Complxity of chcking Stisfiility without Schm VCs n no wilcrs. Thn tsting stisfiility of Q cn on in polynomil tim using th procur ov. 3.3 TPQs with Wilcrs, Joins, n Disjunction W rlx th rstrictions on TPQs w.r.t. wilcrs n isjunctions in this sction. Th first osrvtion is tht whn wilcrs r llow, stisfiility tsting coms NP-complt, vn whn thr is no isjunction. This follows from th following rsult, prov y Hirs [5]. Thorm 3.3 ([5]) : Suppos Q is tr pttrn qury with wilcrs n only constrints, whr th qury uss only pc- n s-gs. Thn tsting whthr Q is stisfil is NP-complt. Whil Hirs rsult is couch in trms of syntcticlly iffrnt lngug, th frgmnt for which this rsult pplis corrspons to tr pttrn quris with wilcrs n constrints, whr th ntir qury rucs to singl mximl OTSP st. It is trivil to pt his proof for tr pttrn quris with rgulr pc- n -gs. Nxt, wht if w isllow wilcrs ut llow isjunction in VCs. Th prolm gin coms NPcomplt. Thorm 3.4 (TPQs with isjunction) : Lt Q tr pttrn qury contining VCs, with isjunction llow in slction constrints ssocit with nos. Thn tsting stisfiility of Q is NP-complt. Th proof is y ruction from 3ST, n only mks us of pc-gs, isjunctiv vlu-s slction constrints, n constrints. It continus to hol whn constrints r rplc y join constrints. Th complxity rsults for th schmlss cs r summriz in Figur 7. 4 Stisfiility in th Prsnc of cyclic Schm schm provis itionl knowlg for infrring structurl pricts in qury. E.g, consir th schm n qury Q4 in Figur 8. It is not stisfil. Th qury Q4 sks for txt which is oth chil of scription n scnnt of prlist, ut th schm os not prmit this. Howvr, if txt is chng to scnnt of prlist, Q4 coms stisfil. Suppos Q4 is ccoringly chng. In th snc of 25

7 schm, th st w cn conclu out scription n txt thn is tht thy must li on th sm pth ut using th schm, w cn conclu tht scription is th ncstor of txt. schm (uction.t) togthr with st of unstisfil quris s wll s minor vrints which r stisfil r givn in Figur 8. Th rr is ncourg to rson out thir stisfiility. In th rst of this sction, w consir cyclic (DG) schm. Extnsions to cyclic schms will ppr in th full ppr. 4. TPQs without VCs DTD sit rgions ctgoris + si fric ctgory itm scription Q3 prlist ctgory scription txt scription Q4 Q scription sit ctgory txt ctgoris prlist Q2 itm Q5 si sit txt txt txt txt sit ctogry fric Figur 8: Exmpls in th Prsnc of Schm Whn no VCs r prsnt, for qury to stisfil with rspct to schm, its structurl constrints n to consistnt with th schm. n ming of qury into schm, fin low, prcisly cpturs this consistncy. Dfinition 4. [Eming] n ming of qury Q into schm is function f : Q stisfying th following conitions: (i) f mps ch tgg no to no with th sm tg; (ii) whnvr (x, y) is pc-g (-g) in Q, thr is n g (pth) from f(x) to f(y) in. Consir qury Q4 in Figur 8, ut without th join conition. Th rr cn vrify th xistnc of n ming into th schm in Figur 8. In th snc of wilcrs, th tsting th xistnc of n ming rucs to tsting for ch g (x, y) in Q with tg(x) =, tg(y) = (sy), whthr n g or pth from to xists in, which cn sily tst. Th following rsult is strightforwr: Proposition 4. Lt schm n lt Q tr pttrn qury with no wilcrs or VCs. Thn Q is stisfil with rspct to iff thr is n ming f from Q into. 4.. With Wilcrs Consir th xmpls in Figur 9. Qury Q is not stisfil cus no vli instnc of th schm cn hv pth from to of lngth 2. On th othr hn, qury Q2 is stisfil cus thr xists vli instnc of th schm which hs pth of lngth t lst 2 from to. For ch of th quris, th possil schm nos it coul m to r illustrt s st, right nxt to th no in Figur 9. For th no in qury Q, th st of schm nos it cn m to is mpty. Not tht if th qury contins only wilcr nos, chcking stisfiility trivilly rucs to chcking if th schm is of givn pth. Schm + c Q {} {,c,,} {} {} Q2 {} {} {,c,,} {} Figur 9: Quris with Wilcrs Whn wilcrs r prsnt, smnticlly w cn ssign ny tgs to th wilcrs n chck for th xistnc of n ming. This pproch tks xponntil tim. Wht w n is mrly confirm th xistnc of n ming. This cn ccomplish y ssociting with ch qury no x ll st L(x). For ch tgg no x, w initiliz L(x) to th uniqu schm no with tht tg. For wilcr no x, w initiliz L(x) to th st of ll tgs in th schm. W nxt prun L(x) s follows. First, in ottom-up phs, w mrk ll lvs. Whnvr ll chilrn y,..., y k of no x r mrk, w lt tg t from L(x) provi for som y i, r(x, y i ) hols ccoring to th qury Q, whr r is pc or, ut thr is no tg u L(y i ) such tht contins n g or pth to vrify r(t, u). Thn mrk no x. If t ny stg ny ll st coms mpty, w know th qury is unstisfil. Onc th root is mrk, w o top-own swp s follows. First unmrk th root. For ny no x whos prnt y is unmrk, lt from L(x) ny tg t if thr is no tg u L(y) such tht r(y, x) ccoring to Q, n contins n g or pth vrifying this. Thn unmrk x. Th procur trmints whn n mpty ll st is tct or whn ll nos r unmrk. Th psuoco for this lgorithm is shown in Figur 0. W cn show: Thorm 4. (Lling) : Lt Q TPQ contining wilcrs ut no VCs n no NICs. Thn Q is stisfil with rspct to schm iff for ch x Q, L(x), whr L(x) is th st of schm lls comput y th procur in Figur 0. y prcomputing rchility on, givn t, t, w cn tst if vrifis r(t, t ), whr r {pc, }, in constnt tim. W visit ch qury no n ch qury g t most twic. During ch visit, w my 26

8 ChckLl(Q, ) For ch no x tgg t in Q, L(x) = {t} For ch wilcr lf l in Q, L(l) = {tgs of } Mrk ll lf nos. Lt r {pc, } Rpt { // ottom-up Phs nos x Q whos chilrn y,... y k r ll mrk For ch chil y i of x { Initiliz S i = {}; For ch u L(y i ) { S i = S i {t r(t, u) }; } k L(x) = S i; } i= Mrk x; If L(x) is mpty, rturn(q is not ST); } Until ll nos r mrk. Unmrk th root; Rpt { // Top-own Phs For ch x whos qury prnt y is unmrk { For ch u L(x) { If t L(y) s.t. r(t, u) rmov u from L(x); } Unmrk x; if L(x) is mpty, rturn(q is not ST); } Until ll nos r unmrk. rturn(q is ST) Figur 0: Chck Wilcr Eming n to compr ll pirs of tgs in th ll sts of th two nos in th g. Thus, th worst-cs tim complxity is O(m 3 +n m 2 ), whr m is th numr of nos in n n is th numr of nos in Q. 4.2 Rsoning in th prsnc of No Intity Constrints Lt us consir th clss of TPQs tht contin no wilcrs ut my contin NICs (, ), n VCs (without isjunctions). prt from th intrction twn structurl pricts n VCs, thr is intrction twn schm n th structurl constrints impos y th qury. Exmpl 4. [Impct of Schm] Consir th xmpls in Figur. Qury Q is stisfil with rspct to th schm. Th rsoning hin this is s follows. Sinc nos n $5 r inticl, nos n must li on th sm pth. From th schm, w cn thn conclu tht is n ncstor of. In, n instnc cn otin from th chs constrint grph tht stisfis th qury. Qury Q2 is not stisfil with rspct to th schm. Hr is why. From th schm, vry occurrnc of ncssrily hs grnchil f, which is uniqu. Th qury sks for two istinct scnnts of tgg f, on s grnchil n on s ny scnnt. Howvr, from th schm, w cn conclu tht nos n $5 r inticl i.., $5 which contricts th qury constrint $5. Th xmpl illustrts svrl points.. Th qury contins no wilcrs. Thus, for two nos if ithr s or OTSP prict hols, thn from th schm, it is possil to conclu strict pc or rltionship twn thm. Hnc, th pricts s n OTSP which w us in th snc of schm, now com runnt. 2. W cn us th schm to trmin whn two qury nos r inticl. In th schm of Figur, thr is uniqu pth from no to f, with ll g lls ithr or?. Hnc ny two scnnts f of in th instnc shoul inticl. 3. Following th sm rgumnt, using th schm it is lso possil to infr tht two nos must cousins, y trmining whn th nos li on istinct pths. Schm + + f c Q $5 $5 Q2 f Figur : Infrnc from Schm Dtrmining stisfiility of qury works s follows. W us th schm to infr structurl pricts twn ny pir of qury nos (which r tgg). W us infrnc ruls to comput th closur of structurl pricts n chck th rsulting st for violtions. Th qury is stisfil iff th rsulting st is violtion-fr. s for, w us constrint grph n st of infrnc ruls to comput th closur, with som iffrncs in th infrnc ruls us. Infrnc Ruls n Chs: Th st of infrnc ruls r pt from thos vlop for th schmlss cs. Ruls involving s or OTSP r ropp, sinc th schm llows us to riv n unmiguous rltionship whnvr s or OTSP hols. itionlly, w n to infr rltionships twn lmnt typs from th schm. Th schm cn tll us tht two tgs t, t r rlt y pc-/-rltionship, or tht two qury nos must inticl or tht thy must cousins. This sttic nlysis of th schm cn prform using th ruls shown in Figur 2, xplin nxt. Th complt st of infrnc ruls cn foun in []. Rul corrspons to isjoint nos. Lt x, y ny nos in qury Q n suppos z is thir lst common ncstor in Q. Lt givn schm. Suppos (z, u,..., u k, x) n (z, v,..., v m, y) r th pths in Q from z to x n y rspctivly. W cll ths pths th qury contxt of x n y. Not tht ll nos r tgg in Q. For simplicity, not th tg of ch no y its prim vrsion, i.., no x hs tg x. Suppos thr is no pth in tht psss through ll th nos z, u,..., u k, v,..., v m, x, y n in n orr comptil with th qury contxts ov, which rspcts ny pc-rltionships prsnt in th qury contxts. Thn w cn conclu tht x n y must cousins in vry vli instnc of, which stisfis Q. Whn this conition hols, w sy x n y r isjoint. s n xmpl, consir qury Q4 in Figur 8, without th sh lin. Thn qury nos n (with tg txt) r ncssrily cousins. This is cus thr is no pth in th schm tht psss through ctgoris, scription, prlist, n txt in ny comptil orr, such tht thr is f 27

9 . whnvr x, y r isjoint, infr COUS(x, y). 2. whnvr z is lc(x, y), x n y r uniqu w.r.t. z, th pth from z to x tht stisfis th qury contxt of x is inticl to th pth from z to y tht stisfis th qury contxt of y, tg(x) = tg(y), infr (x, y) 3. whnvr z is th lc(x, y), x n y r uniqu w.r.t. z, th uniqu pth from z to y tht stisfis th qury of x n y contins g (x, y ), tg(x) tg(y), infr pc(x, y) 4. whnvr (x, z), (y, z), : xctly on pth from x to y n tht pth is n g, infr pc(x, y) Figur 2: Slct Infrnc Ruls(with Schm) irct g from scription to txt, so n r isjoint. Howvr, if th g is rlx to n -g (i.., sh lin is ), such pth xists in th schm, so n r not isjoint, hnc n r not ncssrily cousins. Disjointnss cn chck fficintly using vrint of mrg sort n in tim linr in th sum of sizs of th two qury contxts. Ruls 2-3 corrspon to uniqu nos. Lt Q qury n x n y th nos in Q, such tht (y, x) G. Lt schm. Thn x is uniqu with rgr to y whnvr hs xctly on pth from y to x stisfying th qury contxt of x n y, n no g on this pth is ll or +. Th intuition hin rul 2 is tht th qury pths from z to x s wll s from z to y will oth mpp ncssrily to on pth in vry vli instnc of. So, if x n y hv th sm tg, thy must mp to th sm instnc no. Rul 3 hs similr intuition. Rul 4 sys whnvr (x, z), (y, z) hols, clrly on of x, y must prnt/ncstor of th othr (whn x n y hv iffrnt tgs). This is trmin y th schm. Finlly, th chs procur for TPQs (with NICs ut no wilcrs) in th prsnc of schm is s follows. First, construct th constrint grph G of Q s for th schmlss cs. Nxt, using sttic nlysis of th schm, infr ll COUS,, pc, rltionships n thm to G. Chs G using th infrnc ruls intifi ov until sturtion or violtion tction. W cn show: Thorm 4.2 (Chs Compltnss with Schm) : Lt n cylic schm without choic n Q tr pttrn qury with NICs ut no wilcrs. Thn Q is stisfil w.r.t. iff thr is n ming of Q into n no violtion is tct whn th constrint grph of Q is chs. To unrstn th implictions of Thorm 4.2 for th complxity of chcking stisfiility of tr pttrn qury w.r.t. givn cyclic schm without choic, w consir this prolm t two lvls. Firstly, lt ny schm. Thn w fin th lngug ST ={Q Q is qury & Q is stisfil w.r.t. }. W cll th complxity of chcking this mmrship qury complxity, y nlogy with th notion of t complxity in [22]. Sconly, w fin th lngug ST to ST={(, Q) is schm & Q is qury & Q is stisfil w.r.t }. W cll th complxity of chcking this mmrship th comin complxity of stisfiility chcking, y nlogy to th wllknown notion of comin complxity[22]. W hv th following rsults. Thorm 4.3 (Qury Complxity) : Th qury complxity of stisfiility chcking in th prsnc of cyclic schm without choic is PTIME. Th i is tht w cn pply th infrnc ruls to sturtion or until violtion is tct, which is procss tht tks polynomil tim in th siz of qury. W cn lso tst whthr thr is n ming from th qury to th schm in PTIME. This yils polynomil tim lgorithm for tsting stisfiility in th prsnc of schm. Efficint implmnttion, similr to tht iscuss in Sction 3.2., is possil. Th tils r omitt. finl not is tht VCs cn sily incorport in th sm wy thy wr for th schmlss cs. Thus, w cn tst stisfiility in polynomil tim in th prsnc of schm n VCs. Thorm 4.4 (Comin Complxity) : Th comin complxity of stisfiility in th prsnc of cylic schm without choic is co-np-complt. Th complxity coms not irctly from th chs, ut from violtion chcking. Figur 3 illustrts th violtion chcking procur. DTD C? D? E Q E() E() E(),, Figur 3: Violtion Dtction Exmpl Th qury Q in Figur 3 is not stisfil cus it ssrts thr must xist t lst thr iffrnt Es unr. Howvr, thr r only two pths from to E in th DTD, ll of whos gs r ll /?. Thus thr xist t most two Es unr in ny vli instnc. Th proof of Thorm 4.4 is y ruction from Mximl Cliqu. Th tils cn foun in []. Whil th comin complxity is high, in prctic, w will oftn wnt to chck th stisfiility of mny quris ginst fix schm, illustrting th significnc of qury complxity n of Thorm

10 4.2. No Intity Constrints n Wilcrs In th prsnc of schm, tsting stisfiility of tr pttrn qury with wilcrs n NICs is NPcomplt. Similrly, whn thr r no wilcrs ut th qury contins vlu-s isjunctiv slction constrints, gin th prolm is NP-complt. Thorm 4.5 (Hrnss rsults) : Lt schm n Q tr pttrn qury. Thn stisfiility of Q w.r.t. is NP-complt in th following css: () Q contins wilcrs n NICs. (2) Q contins isjunctiv VCs (n no NICs). Th first rsult is y ruction of 3-colorility n th proof only uss constrints. Th scon rsult is y ruction of 3ST. oth proofs only mk us of tr schms n only pc-gs in Q. Th complxity rsults for th schm cs r summriz in Figur 4. ll rsults shown corrspon to qury complxity. Disjunction NICs/join constrints Wilcrs Complxity X PTIME X PTIME X X NP-complt X NP-complt Figur 4: Complxity of chcking Stisfiility with schm. 5 Exprimntl Rsults To stuy th ffctivnss of tsting stisfiility, w systmticlly rn rng of xprimnts to msur th impct of vrious prmtrs. In ition to msuring svings n ovrh, w lso msur how stisfiility chcking tim vris s function of th numr n kins of constrints. W rn our xprimnts on th XMrk nchmrk tst [24] n iomicl tst [25] from th Ntionl iomicl Rsrch Fountion. For ch tst w construct th ocumnts of vrious siz using th IM XMLGnrtor [26]. W us Wutk DTDprsr [27] to prs th DTD, which is n for sttic nlysis of schm. For qury vlution, w us n XQury ngin XQEngin [28] for convninc n flxiility. oth tools r opn sourc, vlop in Jv. W implmnt our stisfiility tsts in Jv. Stup: W rn our xprimnts on sprc worksttion running SunOS vrsion 5.9 with 8 procssors ch hving sp of 900MHz n 32G of RM. ll vlus rport r th vrg of 5 trils ftr ropping th mximum n minimum, osrv uring iffrnt worklos. Qury St: ll quris chosn for xprimnttion corrspon to clsss of tr pttrn quris stui in this ppr. Pls not tht whn multipl no qulitis r prsnt in TPQ, w n to us XQury for its implmnttion. For stisfiility tsting without schm n with schm css, w us Q-Q3 in Figur 8. lthough Q: for $ in oc( uction.xml )//ctgory, 2 $ in $//scription, 3 $C in $//prlist, 4 $2 in $//scription 5 whr $//txt is $C//txt n $2//prlist is $C 6 rturn $ Q2: 7 for $ in oc( uction.xml )//scription, 8 $ in $/prlist, 9 $C in $//listitm, 0 $D in $//txt whr $//ol is $C//ol n $D//kywor is $C//kywor 2 rturn $ Q3: 3 for $ in oc( uction.xml )//ctgoris 4 whr $/scription/txt is $//prlist//txt 5 rturn $ Figur 5: Exmpls for Schmlss cs w us th sm st of quris, w us iffrnt nlysis for no schm mo n schm mo sprtly. W lso xprimnts with th iomicl tst ut w i not inclu th tils for spc limittions. Th tils cn foun in th full vrsion of this ppr. Sving&Ovrh Rtio: Lt c th tim tkn to trmin th stisfiility of qury Q n lt th tim it tks to vlut th qury ovr th ocumnt (without using stisfiility chck). Th svings rtio S Q otin y using stisfiility chck on unstisfil quris is fin s S Q = c n th ovrh rtio incurr y oing stisfiility chck on stisfil quris is fin s O Q = c+. Intuitivly, th closr to th two rtios r th ttr. Sving Rtio: Not surprisingly, on unstisfil quris, stisfiility chck ls to phnomnl svings. Our sving rtio is clos to (usully twn out 0.8 n 0.9) whthr th schm is prsnt or not. W omit ths rsults for rvity. Ovrh Rtio: Figurs 6 n 7 show th vrition of svings rtio with ocumnt siz for th thr stisfil quris Q Q3 in Figur 8 (with schm) n Q Q3 in Figur 5 (without schm). W xpct th ovrh rtio to crs s th ocumnt siz incrss. O v rh R tio S T - N o D T D k 0k 00k m D o c u m n t Siz ( y t ) Q ' Q 2 ' Q 3 ' Figur 6: Ovrh Rtio - Without Schm 29

11 O v rh R tio S T - u c tio n. t k 0k 00k m 0m D o c u m n t Siz ( y t ) Figur 7: Ovrh Rtio - With Schm In, this hvior cn osrv from th figurs. Ovrll, our rsults show tht th ovrh is ngligil frction of th vlution tim. In ition, w lso tst th impct of numr of constrints on stisfiility chck tim. For stisfil quris, s xpct th tim incrss, whil for unstisfil quris, it crss s violtions r foun fstr. W lso vri th structur of rsulting OTSP sts y ing constrints n stui thir ffct on stisfiility chck tim. W foun fw lrg OTSP sts incrs th tsting tim mor thn svrl smll OTSP sts. Th sm conclusions wr lso otin from th xprimnts on th iomicl tst. 6 Rlt Work Continmnt: Thr hs n much work on qury procsssing, continmnt n minimiztion of vrious XPth frgmnts [8, 7, 5, 2, 3,, 23]. Kupr t l. [9] stuy xprssiv powr n closur proprtis of vrious XPth frgmnts n tr pttrn quris. Lvy t l. [8] stui qury quivlnc n stisfiility for tlog xtnsions. Stisfiility cn ruc to continmnt: qury Q is unstisfil iff Q is contin in (fix) unstisfil qury Q. Howvr, our rsults on stisfiility in this ppr cnnot otin from known rsults on continmnt. Spcificlly, w show stisfiility cn tst in polynomil tim for th following clsss of tr pttrn quris quris: (i) TP /,//,[], n (ii) TP /,//,[],NIC, oth in th snc of schm n in th prsnc of n cyclic DTD without isjunction. In th snc of schm, continmnt for th formr clss is co-npcomplt [2] whil for th lttr it is Π p 2-complt [8]. Whil [8] consir continmnt in th prsnc of intgrity constrints, s point out y th uthors, thy o not cptur DTD compltly. Continmnt for TP /,//,[], w.r.t. DTD ws shown to EXP- TIME complt [3], ut it shoul not tht th DTD is llow to contin choic n cycls. Complxity of continmnt whn th DTD is cyclic n/or choic-fr is opn. Finlly, complxity of continmnt for TP /,//,[],NIC w.r.t. DTD is opn, lthough [3] Q ' Q 2 ' Q 3 ' show tht continmnt for TP /,[] n TP //,[] w.r.t. DTD is co-np-hr, whn th DTD is llow to contin choic n cycls. In sum, our PTIME rsults for stisfiility cnnot otin from known rsults on continmnt. Continmnt cn ruc to stisfiility: givn quris Q, Q, Q is contin in Q iff Q Q is unstisfil. ut this cnnot us to riv th hrnss rsults in this ppr sinc Q Q os not long to th clss of tr pttrn quris stui in this ppr. Stisfiility: Th closst work is Hirs [5], whr h consirs th complxity of stisfiility tsting for XPth frgmnts in th snc of schm. Howvr, thr r importnt iffrncs in th contriutions of th two pprs, s w xplin in til low. Th min contriution of [5] ws showing tht tsting stisfiility of XPth xprssions is NP-complt for vrious XPth frgmnts: (i) XPth with chil n slf-or-scnnt n intrsction, (ii) prnt, union, n rnching, (iii) root, rnching, chil, prnt, slf-or-ncstor. ll ths rsults pn on wilcr ing prsnt in th qury. Sconly, h show tht whn only rnching (n ll forwr n ckwr xs s wll s orr) r prsnt, stisfiility cn tst in polynomil tim. For this, h uss tr scription grph, which is similr to our constrint grph, xcpt VCs r not consir. Th procur h opts for stisfiility tsting hs flvor similr to our chs, ut th infrnc ruls r consirly simplr. Th min rson is whn st oprtions (union, intrsction) r snt, on cnnot xprss qulity. In this cs, th infrncs com much simplr. H lso show tht whn ll th xs n root r prsnt, ut non of th st oprtions or rnching r llow, gin stisfiilty cn tst in polynomil tim. similr commnt pplis to infrncs in this cs. y contrst, ll our PTIME rsults llow rnching. In prticulr, whn th qury contins no wilcrs ut contins VCs n NICs, w giv n fficint polynomil tim tst for stisfiility. This rsult os not follow from th rsults of [5]. sis, w hv xtn th tchniqus n rsults for tsting stisfiility in th prsnc of schm. To th st of our knowlg, this hs not n rss for. Finlly, our NP-compltnss rsults r orthogonl to thos in [5]. On xcption is Thorm 3.3, which s w mntion, is n sy corollry of rsult in [5]. Tsting stisfiility of tr scriptions, s on prtil tr scriptions is of consirl intrst in computtionl linguistics [0, 2, 6]. Constrint grphs r on kin of prtil tr scription. Kutz n roirsky [0] rcntly prsnt n fficint lgorithm tht chcks th stisfiility of pur ominnc constrints, which scri unll root trs using prtil orr. For ritrry pirs of nos thy spcify sts of missil rltiv positions in tr. Howvr, th (pur) ominnc constrints r sust of th structur constrints stui in this ppr. sis, rltionships such s OTSP n COUS r not consir thr, nor is rsoning in th prsnc of 30

12 schm. Thr r lso othr work rlt to stisfiility prolm. Ppkonstntinou t l.[4] stui th infrnc of DTDs for viws of XML t. This ppr propos two xtnsions tht nhnc DTD s scriptiv powr. It mntion tht stisifiility for th viws prouc y th slctiv quris in th contxt of th xtn DTD cn chck in PTIME. Howvr, th slctiv quris r only sust of th TPQs w iscuss in our ppr; thy in t llow ithr wilcrs or no qulity. Thus th prolm of chcking th stisfiility of slctiv quris is quivlnt of fining th ming of th qury in our ppr. 7 Summry Whil thr hs n consirl work on continmnt n minimiztion for vrious XPth n tr pttrn qury frgmnts, th rlt prolm of stisfiility hs n lrgly ignor. W vlop mtho for tsting stisfiility of vrious clsss of tr pttrn quris, which r known to closly rlt to XPth n XQury n to of funmntl importnc [9]. W stuy this prolm oth with n without schm (cyclic n choic-fr) n intify css in which it is NP-complt n whn it is PTIME. For th lttr cs, w vlop fficint lgorithms s on chs procur. W complmnt our nlyticl rsults with n xtnsiv st of xprimnts. Whil stisfiility chcking cn ffct sustntil svings in qury vlution, our rsults monstrt tht it incurs ngligil ovrh ovr stisfil quris. Stisfiility, for lrgr qury clsss, in th prsnc of cycls n/or choic r intrsting prolms. Stisfiility in th prsnc of XML schm is n importnt prolm. Rsults on som of ths prolms will ppr in th full vrsion of this ppr. Rfrncs [] Sihm mr-yhi t l. Minimiztion of tr pttrn quris. In CM SIGMOD Confrnc, 200. [2] T. Cornll. On trmining th consistncy of prtil scriptions of trs. In 32n CL Confrnc, 994. [3] D. Drpr t. l. Xqury.0 n xpth 2.0 forml smntics. Tchnicl rport, W3C, [4] M. F. Frnnz t. l. Xqury.0 n xpth 2.0 t mol. Tchnicl rport, W3C, [5] J. Hirs. Stisfiility of xpth xprssions. In DPL [6] H. V. Jgish t. l. Timr: ntiv xml ts. VLD Journl, [7] C. Koch n G. Gottlo. Xpth qury procssing. In 9th Intrntionl Workshop on Dts Progrmming Lngugs (DPL), Potsm, Grmny, Sptmr [8].Y. Lvy t. l. Equivlnc, qury-rchility, n stisfiility in tlog xtnsions. In CM PODS Confrnc, 993. [9] G. M. Kupr t l. Structurl proprtis of xpth frgmnts. In ICDT [0] M. Kutz n M. roirsky. Pur ominnc constrints. In STCS [] Lks V.S. Lkshmnn t l. On Tsting Stisfiility of Tr Pttrn Quris. Tch. Rport, Dpt. of Computr Scinc, UC, Mrch vill from lks/pprs.html. [2] G. Miklu n D. Suciu. Continmnt n quivlnt for n xpth frgmnt. In PODS [3] F. Nvn n T. Sch. Xpth continmnt in th prsnc of isjunction, ts n vrils. ICDT [4] Ynnis Ppkonstntinou t l. DTD Infrncfor Viws of XML Dt In CM PODS Confrnc [5] R. Pichlr t l. Th complxity of xpth qury vlution. In CM PODS Confrnc, [6] J. Rogrs n K. Vijy-Shnkr. Rsoning with scriptions of trs. In CL Confrnc, 992. [7] J. Shnmugsunrm t.l. Rltionl tss for qurying xml ocumnts: Limittions n opportunitis. In VLD Confrnc, 999. [8] V. Tnnn n. Dutsch. Continmnt n intgrity constrints for xpth frgmnts. In 8th KRD, 200. [9] I.Ttrinov t. l. Storing n qurying orr xml using rltionl ts systm. In CM SIGMOD Confrnc, [20] R. Trinn t l. Dominnc constrints: lgorithms n complxity. In 3r confrnc on Logicl spcts of Computtionl Linguistics, 200. [2] Jffry D. Ullmn. Principls of Dts n Knowlg-s Systms Volum II: Th Nw Tchnologis. Computr Scinc Prss, 989. [22] Mosh Vri. Th complxity of rltionl qury lngugs. In CM STOC, 982,pp [23] Ptr T. Woo. Continmnt for xpth frgmnts unr t constrints. ict [24] XMrk: [25] iomicl ts: rsrch/xmltsts/www/rpository.html. [26] IM XML gnrtor: [27] Wutk DTD prsr: [28] XQury: 3

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören

ME 522 PRINCIPLES OF ROBOTICS. FIRST MIDTERM EXAMINATION April 19, M. Kemal Özgören ME 522 PINCIPLES OF OBOTICS FIST MIDTEM EXAMINATION April 9, 202 Nm Lst Nm M. Kml Özgörn 2 4 60 40 40 0 80 250 USEFUL FOMULAS cos( ) cos cos sin sin sin( ) sin cos cos sin sin y/ r, cos x/ r, r 0 tn 2(

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016

Winter 2016 COMP-250: Introduction to Computer Science. Lecture 23, April 5, 2016 Wintr 2016 COMP-250: Introduction to Computr Scinc Lctur 23, April 5, 2016 Commnt out input siz 2) Writ ny lgorithm tht runs in tim Θ(n 2 log 2 n) in wors cs. Explin why this is its running tim. I don

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Weighted Matching and Linear Programming

Weighted Matching and Linear Programming Wightd Mtching nd Linr Progrmming Jonthn Turnr Mrch 19, 01 W v sn tht mximum siz mtchings cn b found in gnrl grphs using ugmnting pths. In principl, this sm pproch cn b pplid to mximum wight mtchings.

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

CSI35 Chapter 11 Review

CSI35 Chapter 11 Review 1. Which of th grphs r trs? c f c g f c x y f z p q r 1 1. Which of th grphs r trs? c f c g f c x y f z p q r . Answr th qustions out th following tr 1) Which vrtx is th root of c th tr? ) wht is th hight

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1

Chapter 16. 1) is a particular point on the graph of the function. 1. y, where x y 1 Prctic qustions W now tht th prmtr p is dirctl rltd to th mplitud; thrfor, w cn find tht p. cos d [ sin ] sin sin Not: Evn though ou might not now how to find th prmtr in prt, it is lws dvisl to procd

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

A Linear-Space Top-down Algorithm for Tree Inclusion Problem

A Linear-Space Top-down Algorithm for Tree Inclusion Problem A Linr-Spc Top-own Algorithm for Tr Inclusion Prolm Yngjun Chn 1, Yiin Chn 2 Dpt. Appli Computr Scinc, Univrsity of Winnipg, Cn 1 y.chn@uwinnipg.c, 2 chnyiin@gmil.com Astrct W consir th following tr-mtching

More information

Multi-Section Coupled Line Couplers

Multi-Section Coupled Line Couplers /0/009 MultiSction Coupld Lin Couplrs /8 Multi-Sction Coupld Lin Couplrs W cn dd multipl coupld lins in sris to incrs couplr ndwidth. Figur 7.5 (p. 6) An N-sction coupld lin l W typiclly dsign th couplr

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser

Notes on Finite Automata Department of Computer Science Professor Goldberg Textbooks: Introduction to the Theory of Computation by Michael Sipser Nots on Finit Automt Dprtmnt of Computr Scinc Profssor Goldrg Txtooks: Introduction to th Thory of Computtion y Michl Sipsr Elmnts of th Thory of Computtion y H. Lwis nd C. Ppdimitriou Ths nots contin

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture:

Lecture 11 Waves in Periodic Potentials Today: Questions you should be able to address after today s lecture: Lctur 11 Wvs in Priodic Potntils Tody: 1. Invrs lttic dfinition in 1D.. rphicl rprsnttion of priodic nd -priodic functions using th -xis nd invrs lttic vctors. 3. Sris solutions to th priodic potntil Hmiltonin

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x,

, between the vertical lines x a and x b. Given a demand curve, having price as a function of quantity, p f (x) at height k is the curve f ( x, Clculus for Businss nd Socil Scincs - Prof D Yun Finl Em Rviw vrsion 5/9/7 Chck wbsit for ny postd typos nd updts Pls rport ny typos This rviw sht contins summris of nw topics only (This rviw sht dos hv

More information

Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k.

Finite Automata. d: Q S Q. Finite automaton is M=(Q, S, d, q 0, F) Ex: an FA that accepts all odd-length strings of zeros: q 0 q 1. q i. q k. Finit Automt Bsic id: FA is mchin tht chngs stts whil procssing symols, on t tim. Finit st of stts: Q = {q 0, q 1, q 3,..., q k } Trnsition function: Initil stt: Finl stts: d: Q S Q q 0 Q F Q Finit utomton

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister

Compression. Compression. Compression. This part of the course... Ifi, UiO Norsk Regnesentral Vårsemester 2005 Wolfgang Leister Kurs INF5080 Ifi, UiO Norsk Rgnsntrl Vårsmstr 2005 Wolfgng Listr This prt of th ours...... is hl t Ifi, UiO... (Wolfgng Listr) n t ontins mtril from Univrsity Collg Krlsruh (Ptr Ol, Clmns Knorzr) Informtion

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Case Study VI Answers PHA 5127 Fall 2006

Case Study VI Answers PHA 5127 Fall 2006 Qustion. A ptint is givn 250 mg immit-rls thophyllin tblt (Tblt A). A wk ltr, th sm ptint is givn 250 mg sustin-rls thophyllin tblt (Tblt B). Th tblts follow on-comprtmntl mol n hv first-orr bsorption

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

DFA (Deterministic Finite Automata) q a

DFA (Deterministic Finite Automata) q a Big pictur All lngugs Dcidl Turing mchins NP P Contxt-fr Contxt-fr grmmrs, push-down utomt Rgulr Automt, non-dtrministic utomt, rgulr xprssions DFA (Dtrministic Finit Automt) 0 q 0 0 0 0 q DFA (Dtrministic

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

2-D ARMA MODEL PARAMETER ESTIMATION BASED ON THE EQUIVALENT 2-D AR MODEL APPROACH

2-D ARMA MODEL PARAMETER ESTIMATION BASED ON THE EQUIVALENT 2-D AR MODEL APPROACH -D AMA MODEL PAAMETE ESTIMATION BASED ON THE EQUIVALENT -D A MODEL APPOAH Ayın Kıılky Ahmt Hmi Kyrn -mil: yin@hituutr -mil: kyrn@hituutr Istnul Tchnicl Univrsity, Fculty of Elctricl n Elctronics Enginring,

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

VLSI Testing Assignment 2

VLSI Testing Assignment 2 1. 5-vlu D-clculus trut tbl or t XOR unction: XOR 0 1 X D ~D 0 0 1 X D ~D 1 1 0 X ~D D X X X X X X D D ~D X 0 1 ~D ~D D X 1 0 Tbl 1: 5-vlu D-clculus Trut Tbl or t XOR Function Sinc 2-input XOR t wors s

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2

The Course covers: Lexical Analysis Syntax Analysis Semantic Analysis Runtime environments Code Generation Code Optimization. CS 540 Spring 2013 GMU 2 CS 540 Spring 2013 Th Cours covrs: Lxicl Anlysis Syntx Anlysis Smntic Anlysis Runtim nvironmnts Cod Gnrtion Cod Optimiztion CS 540 Spring 2013 GMU 2 Pr-rquisit courss Strong progrmming ckground in C, C++

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

13. Binary tree, height 4, eight terminal vertices 14. Full binary tree, seven vertices v 7 v13. v 19

13. Binary tree, height 4, eight terminal vertices 14. Full binary tree, seven vertices v 7 v13. v 19 0. Spnning Trs n Shortst Pths 0. Consir th tr shown blow with root v 0.. Wht is th lvl of v 8? b. Wht is th lvl of v 0? c. Wht is th hight of this root tr?. Wht r th chilrn of v 0?. Wht is th prnt of v

More information

10. EXTENDING TRACTABILITY

10. EXTENDING TRACTABILITY Coping with NP-compltnss 0. EXTENDING TRACTABILITY ining small vrtx covrs solving NP-har problms on trs circular arc covrings vrtx covr in bipartit graphs Q. Suppos I n to solv an NP-complt problm. What

More information

On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery

On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery On th Rol of Fitnss, Prcision, Gnrliztion n Simplicity in Procss Discovry Joos Buijs Bouwijn vn Dongn Wil vn r Alst http://www.win.tu.nl/coslog/ Avncs in Procss ining ny procss iscovry n conformnc chcking

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

LR(0) Analysis. LR(0) Analysis

LR(0) Analysis. LR(0) Analysis LR() Analysis LR() Conlicts: Introuction Whn constructing th LR() analysis tal scri in th prvious stps, it has not n possil to gt a trministic analysr, caus thr ar svral possil actions in th sam cll. I

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information