What is a mass spectrum?

Size: px
Start display at page:

Download "What is a mass spectrum?"

Transcription

1 EMBnet course Day 1 Mass spectrometry in proteomics Outline Mass spectrometry, general introduction What is a mass spectrum What are the constituents of a mass spectrometer How the instruments look like Pierre-Alain Binz Swiss Institute of Bioinformatics, proteome informatics group Geneva Bioinformatics SA (GeneBio) EMBnet course Basle, 28 Jan, 28 1 What is a mass spectrum? MALDI-DE-RE-TOF MS tryptic digest of BSA 6 % Intensity Mass () Protein Identification using Mass Spectrometry Outline 1-DE, 2-DE, LC protein from gel/ PVDF/LC fraction tryptic digestion & peptide extraction Mass spectrometry, peptide mass fingerprints TYGGAAR EHICLLGK GANK PSTTGVEMFR unmodified and modified peptides Mass spectrometry, general introduction What is a mass spectrum What are the constituents of a mass spectrometer PMF identification MS Fragmentation How the instruments look like MS/MS identification Mass spectrometry, peptide MS fragments 1

2 1 What is a mass spectrum? How does a peptide signal looks like? MALDI-DE-RE-TOF MS tryptic digest of BSA Low resolution 6 % Intensity High resolution Mass () Isotopic distribution Isotopic distribution Mass resolution.1% vs. 1 ppm Symbol Mass Abund. Symbol Mass Abund C(12) C(13) N(14) N(15) O(16) O(17) H(1) H(2) S(32) S(33) Mass resolution Mass resolution 2 1. FWHM.7 FWHM.5 FWHM Full width 1.3 FWHM.2 FWHM.1 FWHM Half mass 2

3 Relative Abundance Singly charged Ion: Distance between Peak and Isotop 1 amu = 1. amu Relative Abundance Doubly charged Ion: Distance between Peak and Isotop.5 amu =.5 amu = 1. amu =.5 amu Resolution: Example Peptide Mw , Ion 4 M ultiply charged myoglobin ions from ES I Intens. x Intens. x Resolution.6 Resolution M M (M 2-1.8) /M 1 -M 2 = Z 1 (Z 1 M 1 )-(Z1.8) = Mwt Deconvoluted myoglobin spectrum MALDI-DE-RE-TOF MS tryptic digest of BSA % Intensity E mass % Intensity Mass () Mass () 3

4 Ion fragmentation with Mass Spectrometry Tandem MS or MS/MS One set of ions (one value) is selected from a mixture of ions; These ions are fragmented; the fragments are measured. Int. x Ab. 1 5 HPLC-ESI-autoMS/MS Time [min] MS, Time=4.42min Ab. 1 MS/MS(634), Time=4.458min TIC H I O O I H N O HO 634 MS/MS H O O HO 563 I OH I Peptide fragmentation with MS/MS Outline Mass spectrometry, general introduction What is a mass spectrum MAPNCSCK MAPNCSC K MAPNCS CK MAPNC SCK MAPN CSCK... K C S C N P D M y3 [M2H] 2 y1 y7 y4 y5 y2 y6 y8 What are the constituents of a mass spectrometer How the instruments look like How are mass spectra produced? Ions are produced in the source and are transferred into the mass analyser Generic description of a mass spectrometer Atmosphere Vacuum System They are separated according to their mass/charge ratio in the mass analyser (e.g. Quadrupole, Ion Trap, Time of Flight) Sample Inlet Ionisation Method Mass Analyser Detector Data System Ions of the various values exit the analyser and are counted by the detector 4

5 Ionization methods Analytes are ionized to be driven in the mass analyzer Electron impact (EI) Chemical Ionisation (CI) Fast atom bombardment (FAB) Field desorption (FD) Atmospheric Pressure Chemical Ionisation (APCI) ESI Electro-Spray Ionization MALDI Matrix Assisted Laser Desorption Ionization EI electron impact ionisation: beam of electrons through the gas-phase sample. Produces molecular ions or fragment ions. Typically 7eV. Sample heated. Reproducible, structural information - sample must be volatile and stable, molecular ion often abscent mass range: < 1Da CI: chemical ionisation: reagent gaz (methane, isobutane, or ammonia) ionized with electrons. High gaz pressure: (R = reagent, S = sample, e = electron,. = radical electron, H = hydrogen) R e ---> R. 2e R. RH ---> RH R. RH S ---> SH R Heated sample. [MH] often visible, less fragmentation than EI - sample must be volatile and stable, less structural info than EI mass range: < 1Da DCI: Desorption CI : CI on a heated filament rapid, simple - reproducibility mass range <15Da NCI: negative-ion CI: electron capture; use of Methane to slow down electrons efficient, sensitive; less fragmentation that EI, CI - not all molecule compatible, reproducibility mass range <1Da FD: Field Desorption: sample deposited on filament gradually heated by electric field. Sample ionise by electron tunneling. Ions are M and [MNa] simple spectra, almost no background - sensitive to alkali, slow, volatile to desorb mass range <2-3Da FI: Field ionisation: sample introduced in gas phase (heaten or not), ionised by electron tunneling near the emitter. simple spectra, almost no background - sample must be volatile mass range <1Da FAB: fast atom bombardment: analyte in a liquid matrix (glycerol, etc.). Bombardment with fast atom beam (xenon at 6keV). Desorbtion of molecular ions, fragments and matrix clusters sample introduced liquid, or LC/MS rapid, simple, good for variety of compounds, strong currents, high resolution - background, sample must be soluble in matrix mass range ~3-6Da SIMS: soft ionisation: similar to FAB but with ion beam as gas (Ce), allowing higher acceleration (energy) idem FAB - idem FAB, target can get hotter, more maintenance mass range 3-13Da ESI: electrospray ionisation: The sample solution is sprayed across a high potential difference (a few kilovolts) from a needle into an orifice in the interface. Heat and gas flows are used to desolvate the ions existing in the sample solution. ESI often produces multiply charged ions with the number of charges tending to increase as the molecular weight increases. High to low flow rates 1 ml/min to nl/min. good for charged, polar or basic compounds, ok for most MS, best for multiply charged ions, low background, controlled fragmentation, MS/MS compatible - complementary to APCI: not good for uncharged, non-basic, low-polarity compounds, low ion currents mass range <2 Da APCI: atmospheric pressure CI: as in ESI, sample introduced in a high potential difference field. Uses a corona discharge for better ionisation of less polar molecules than in ESI. APCI and ESI are complementary MALDI: Matrix-Assisted Laser Desorption Ionization: analyte co-crystallised in matrix. The matrix chromophore absorbs and distribute the energy of a laser, produced a plasma, vaporates and ionize the sample. rapid, convenient for molecular weight (singly charged ions mostly) - MS/MS difficult, almost not compatible with LC coupling <5 Da Electrospray Ionization (ESI) Matrix Assisted Laser Desorption/Ionization MALDI UV or IR laser S S S droplet S SH MH S S Smaller droplet SnH S S S MH SH 2 S MH2 Coulomb explosion: Clusters and ionic species pump MH 2 MH2 Ions sample target grid Membrane, gel or metal Matrix Analytes Modif. From Alex Scherl 5

6 Matrix Assisted Laser Desorption/Ionization MALDI Mass Analyzers Mass Spectrometers separate ions according to their mass-tocharge () ratios Magnetic Sector Quadrupole Ion Trap Time-of-flight Hybrid- Sector/trap, Quad/TOF, etc. Time of Flight (TOF) mass analyzer Ion source High vacuum flight tube Ion source High vacuum flight tube Detector Detector time 1 time 2 time 3 Small ions are faster than heavy, and reach detector first Reflectron Quadrupole mass analyzer Ion Trap mass analyzer RF DC The quadrupole consists of two pairs of parallel rods with applied DC and RF voltages. Ions are scanned by varying the DC/Rf quadrupole voltages. The ion is transmitted along the quadrupole in a stable trajectory Rf field. The ion does not have a stable trajectory and is ejected from the quadrupole. Consists of ring electrode and two end caps Principle very similar to quadrupole Ions stored by RF & DC fields Scanning field can eject ions of specific Advantages - MS/MS/MS.. - High sensitivity full scan MS/MS 6

7 Linear Trap Hybrid Mass Spectrometers 3D Trap Full Scan Sensitivity MS 3 (or greater) Tandem in TIME Linear Trap Tandem in SPACE & TIME QqQ MRM Sensitivity Neutral Loss Precursor Scan Tandem in SPACE Full Scan Sensitivity MS 3 MRM Sensitivity Neutral Loss Precursor Scan Novel Scan Types From K Rose FTMS Ions moving at their cyclotron frequency can absorb RF energy at this same frequency. A pulse of RF excites the ions in the magnetic field. The ions re-emit the radiation, which is picked up by the reciever plates. The decay produces a free-induction decay signal that can be Fourier transformed to produce the emitted frequencies, and therefore the masses of the ions present. FTMS Ion Motion in Orbitrap Only an axial frequency does not depend on initial energy, angle, and position of ions, so it can be used for mass analysis The axial oscillation frequency follows the formula w = k m / z w k = oscillation frequency = instrumental const. =. what we want! A.A. Makarov, Anal. Chem. 2, 72: A.A. Makarov et al., Anal. Chem. 26, 78:

8 Ions of Different in Orbitrap Large ion capacity - stacking the rings Fourier transform needed to obtain individual frequencies of ions of different How Big Is Orbitrap? Outline Mass spectrometry, general introduction What is a mass spectrum What are the constituents of a mass spectrometer How the instruments look like MS instruments used in Proteomics ESI-Triple quadrupole MS ESI-Q-TOF MS ESI-Ion-trap MS ESI-Q-trap MS ESI-FTICR MS ESI-LTQ-Orbitrap SELDI MS MALDI-TOF MS MALDI-TOF-TOF MS MALDI-Q-TOF MS MALDI-Ion-trap MS MALDI-FTICR MS MALDI-TOF-MS MALDI-TOF MS: illustrated examples MALDI sample plates LASER Voyager DE-PRO Applied Biosystems Voyager STR Applied Biosystems I Autoflex Bruker Reflex III Bruker Micromass 8

9 (ESI) - Triple quadrupole MS Q2 is Non-Linear Collision Cell A B C Q2 collision cell Product Ion Scan (3Q) Q1 Mass selection Ion C Cgas Products Q3 Full Scan Products Q Q1 Q2 Q3 D ESI Probe ions in source Q1 only transmits ion C Fragment the Ion C Q3 Scans for products Square Rod Ion Transmission to Analytical Quads Hyperbolic, high precision quadrupoles Electron Multiplier, Detection System #1 scan mode used in proteomics as it generates primary structure (sequence) information The observed signal is a result of the mass-analyzed product ions derived from a mass-selected precursor ion: low energy collisions Typical product ion spectrum of a peptide fragmented under low energy conditions A B D ions in source C Q1 Mass selection Q2 Q3 Selected Ion Monitoring (3Q) Ion C Q1 only transmits ion C Q2 only transmits ion C Ion c Q3 only transmits ion C High sensitivity, due to short mass scanning range (can switch) We know what we are looking for (ion C and standard) For complex samples (plasma) it is common to have multiple peaks Ions A-F Neutral Q1 Pass A-H Loss 2 O Scan Q2 collision Mode cell (3Q) Q3 Pass A Ion A-H 2 O Ion B Ion C Ion D Ion E Ion F Scans across mass range (NB A-bond-HOH, not minus) A-H O A 2 A H 2 O Fragment ions one at a timescans across mass range at 18 amu lower than Q1 (linked scan) A The setup of a TSQ can easily be understood: Q1 and Q2 are scanned with an offset of the neutral loss n to be detected. Thus, Q1 passes (M), M fragments in Q2 by loss of n and Q2 passes (M)-n. One important analytical application of CNL scans is their use in SRM (selected reaction monitoring) A B D C Single/Multiple Reaction Q1 Mass selection Monitoring Q2 collision (3Q) cell Ion C SRM/MRM Cgas C1C2C3 Q3 Mass Selection Ion C2 Ions A-F Q1 Mass selection Q2 collision cell Q3 pass only 79 Precursor Ion Scan Mode (3Q) Ion A-PO 4 Ion B Ion C Ion D Ion E Ion F PO 3-79 Ions in Source Q1 only transmits ion C Fragment Ion C Q3 only transmits ion C2 MRM/SRM is performed by specifying the parent mass(es) of the compound for MS/MS fragmentation and then specifically monitoring for (a single) fragment ion(s) MRM/SRM can generate fragment ions that can be measured and quantified from very complicated mixtures (e.g. plasma) SRM typically contain a single peak: ideal for sensitive and specific quantitation Scans across mass range Fragment ions one at a time Transmits only 79 In the precursor ion scan, the instrument looks for a predefined product ion and associates it back to the precursor ion it originated from Example in a negative ion mode: The MS can transmits of -79 (a negatively charged phosphate ion), and identify which peptide ion lost the phosphate ion, thereby identifying it as a phosphopeptide The mass spectrum reveals all precursor ions that fragment to yield a common product ion 9

10 ESI ESI-Q-TOF MS, MS mode Q q TOF ESI ESI-Q-q-TOF, MS/MS mode Q q TOF I Ion 1 Ion 2 Ion 3 I Fragment 2 Fragment 1 Fragment 3 Mod. From Alex Scherl Mod. From Alex Scherl Esquire-LC Ion Optics Q-TOF MS HPLC inlet Capillary Skimmers Octopole End Caps Q Star XL Hybrid Applied Biosystems BioTOF-q Bruker Ion trap MS qtof-ultima Micromass Nebulizer Lenses Ion Trap Ring Electrode LCQ Deca XP Finnigan Esquire 3 Bruker nanolc-esi ESI-Q-TOF Principe of LC-MS/MS Column C18 75 mm Q-Tof = time 27.4 min : peak at = QIIEEDAALVEIGPR Q96DH1 HPLC Autosampler/Injector 1

11 Sample Plate 47 TOF/TOF from Applied Biosystems Laser Reflector Detector Reflector MALDI TOF-TOF: TOF: MS/MS Mode CID Cell TIS intensity Mass () Source 1 Source 2 V 1 V 2 source TOF 1 collision cell TOF 2 TOF 1 TOF 2 Timed ion selector operation Bruker UltraFlex TOF-TOF from ion source TIS Deceleration m 12 3 m 12 3 m 1m m 2 3 m 1 m 2 m 3 m 1 m 2 m 3 m 1 m 1 2 2m3 m m 2 m 2 m 2 m m 2 m 2 m 2 m m 13 TOF 1 - m 13 m3 m 1 m 3 m 1 to collision cell 5 V TTL Pulse V 95 V Switch down time calculated by low mass gate geometry TIS Single Gate V -95 V Switch up time calculated by high mass gate geometry Timed ion selector operation from ion source TIS TOF CID - LIFT TOF 2 Switch down time calculated by low mass gate geometry Few ns Switch up time calculated by high mass gate geometry TIS CID Cell V 1 V 2 11

12 MALDI TOF-TOF MS AB 47 Proteomics Analyzer with Auto-loader nanolc-maldi MALDI-TOF-TOF Spotting robot Column C18 75 mm HPLC Autosampler/Injector MALDI plate TOF-TOF from Bruker: the Ultraflex Off-line MALDI MS (MS/MS) Bruker APEXIII ElectroSpray MALDI EI/CI Switchable CF-FAB, CF-SIMS GC Interface LC Interface Pulsed valve for MS/MS IRMPD FTMS can provide very high resolution, 1 6, which its main advantage compared to other mass spectrometers. Mass accuracy <1ppm in MS and MS/MS mode Operating mass range (APEX 7e) of Daltons Q Trap (Quadrupole linear trap) The Q-trap MS linear-trap MS Q-trap Applied Biosystems and MDS Sciex LTQ-XL Thermo Fisher Scientific 12

13 LTQ Orbitrap Operation Principle 1. Ions are stored in the Linear Trap 2.. are axially ejected 3.. and trapped in the C-trap 4.. they are squeezed into a small cloud and injected into the Orbitrap 5.. where they are electrostatically trapped, while rotating around the central electrode and performing axial oscillation LTQ-Orbitrap The oscillating ions induce an image current into the two outer halves of the orbitrap, which can be detected using a differential amplifier Ions of only one mass generate a sine wave signal From Thermo Additional info on MS

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

(Refer Slide Time 00:09) (Refer Slide Time 00:13) (Refer Slide Time 00:09) Mass Spectrometry Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 09 (Refer

More information

Types of Analyzers: Quadrupole: mass filter -part1

Types of Analyzers: Quadrupole: mass filter -part1 16 Types of Analyzers: Sector or double focusing: magnetic and electric Time-of-flight (TOF) Quadrupole (mass filter) Linear ion trap Quadrupole Ion Trap (3D trap) FTICR fourier transform ion cyclotron

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

LC-MS Based Metabolomics

LC-MS Based Metabolomics LC-MS Based Metabolomics Analysing the METABOLOME 1. Metabolite Extraction 2. Metabolite detection (with or without separation) 3. Data analysis Metabolite Detection GC-MS: Naturally volatile or made volatile

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously: Resolution and other basics MALDI Electrospray 40 Lecture 2 Mass analysers Detectors

More information

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 DEPARTMENTS OF CHEMISTRY AND BIOCHEMISTRY GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 Mass Analysers Shabaz Mohammed October 20, 2015 High Vacuum System Turbo pumps Diffusion pumps Rough pumps Rotary

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 3 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS Mass Spectrometry Hyphenated Techniques GC-MS LC-MS and MS-MS Reasons for Using Chromatography with MS Mixture analysis by MS alone is difficult Fragmentation from ionization (EI or CI) Fragments from

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 1 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Steven L. Mullen, Ph.D. Associate Director SCS Mass Spectrometry Laboratory Contact Information 31 oyes Laboratory (8:00-5:00

More information

Mass spectrometry gas phase transfer and instrumentation

Mass spectrometry gas phase transfer and instrumentation Objectives of the Lecture spectrometry gas phase transfer and instrumentation Matt Renfrow January 15, 2014 1. Make ions 2. Separate/Analyze 3. Detect ions 4. What is mass resolution and mass accuracy?

More information

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed Mass Analyzers Double Focusing Magnetic Sector Quadrupole Mass Filter Quadrupole Ion Trap Linear Time-of-Flight (TOF) Reflectron TOF Fourier Transform Ion Cyclotron Resonance (FT-ICR-MS) Mass Analyzers

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) Alternative names: Mass spectrometric (selective) detector (MSD) Spectrometry - methods based on interaction of matter and radiation Mass spectrometry - method based on formation

More information

Translational Biomarker Core

Translational Biomarker Core Translational Biomarker Core Instrumentation Thermo Scientific TSQ Quantum Triple Quadrupole Mass Spectrometers. There are two TSQ Quantum Ultra AM instruments available in the TBC. The TSQ Quantum Ultra

More information

Chemistry Instrumental Analysis Lecture 37. Chem 4631

Chemistry Instrumental Analysis Lecture 37. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 37 Most analytes separated by HPLC are thermally stable and non-volatile (liquids) (unlike in GC) so not ionized easily by EI or CI techniques. MS must be at

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York Mass Spectrometry for the Novice John Greaves and John Roboz (^>, yc**' CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

Lecture 15: Introduction to mass spectrometry-i

Lecture 15: Introduction to mass spectrometry-i Lecture 15: Introduction to mass spectrometry-i Mass spectrometry (MS) is an analytical technique that measures the mass/charge ratio of charged particles in vacuum. Mass spectrometry can determine masse/charge

More information

Mass Spectrometry. What is Mass Spectrometry?

Mass Spectrometry. What is Mass Spectrometry? Mass Spectrometry What is Mass Spectrometry? Mass Spectrometry (MS): The generation of gaseous ions from a sample, separation of these ions by mass-to-charge ratio, and measurement of relative abundance

More information

Selecting an LC/MS Interface Becky Wittrig, Ph.D.

Selecting an LC/MS Interface Becky Wittrig, Ph.D. Selecting an LC/MS Interface Becky Wittrig, Ph.D. RESTEK CORPORATION LC/MS Interfaces I. Background of LC/MS I. Historical Perspective II. Reasons for use II. Interfaces I. Transport devices II. Particle

More information

Mass spectrometry of proteins, peptides and other analytes: principles and principal methods. Matt Renfrow January 11, 2008

Mass spectrometry of proteins, peptides and other analytes: principles and principal methods. Matt Renfrow January 11, 2008 Mass spectrometry of proteins, peptides and other analytes: principles and principal methods Matt Renfrow January 11, 2008 Objectives of the Lecture 1. Make ions 2. Separate/Analyze/Detect ions 3. What

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+. Mass spectrometry is the study of systems causing the formation of gaseous ions, with or without fragmentation, which are then characteried by their mass to charge ratios (m/) and relative abundances.

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

Mass spectrometry.

Mass spectrometry. Mass spectrometry Mass spectrometry provides qualitative and quantitative information about the atomic and molecular composition of inorganic and organic materials. The mass spectrometer produces charged

More information

Analysis of Polar Metabolites using Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry Analysis of Polar Metabolites using Mass Spectrometry TransMed Course: Basics in Clinical Proteomics and Metabolomics. Oct 10-19, 2012 dd.mm.yyyy Vidya Velagapudi, Ph.D, Adjunct Professor Head of the Metabolomics

More information

MS/MS .LQGVRI0606([SHULPHQWV

MS/MS .LQGVRI0606([SHULPHQWV 0DVV6SHFWURPHWHUV Tandem Mass Spectrometry (MS/MS) :KDWLV0606" Mass spectrometers are commonly combined with separation devices such as gas chromatographs (GC) and liquid chromatographs (LC). The GC or

More information

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n 20.2 Ion Sources electron ionization produces an M + ion and extensive fragmentation chemical ionization produces an M +, MH +, M +, or M - ion with minimal fragmentation MALDI uses laser ablation to transfer

More information

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511 524) (Harris, Chapt.

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511-524) (Harris, Chapt.

More information

Choosing the metabolomics platform

Choosing the metabolomics platform GBS 748 Choosing the metabolomics platform Stephen Barnes, PhD 4 7117; sbarnes@uab.edu So, I have my samples what s next? You ve collected your samples and you may have extracted them Protein precipitation

More information

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile

LECTURE-11. Hybrid MS Configurations HANDOUT. As discussed in our previous lecture, mass spectrometry is by far the most versatile LECTURE-11 Hybrid MS Configurations HANDOUT PREAMBLE As discussed in our previous lecture, mass spectrometry is by far the most versatile technique used in proteomics. We had also discussed some of the

More information

Mass Spectrometry for Chemists and Biochemists

Mass Spectrometry for Chemists and Biochemists Erasmus Intensive Program SYNAPS Univ. of Crete - Summer 2007 Mass Spectrometry for Chemists and Biochemists Spiros A. Pergantis Assistant Professor of Analytical Chemistry Department of Chemistry University

More information

Introduction to LC-MS

Introduction to LC-MS Wednesday April 5, 2017 10am Introduction to LC-MS Amy Patton, MS Laboratory Manager, Pinpoint Testing, LLC Little Rock, AR DESCRIPTION: Amy Patton, laboratory manager for Pinpoint Testing, will begin

More information

Mass Spectrometry: Introduction

Mass Spectrometry: Introduction Mass Spectrometry: Introduction Chem 8361/4361: Interpretation of Organic Spectra 2009 Andrew Harned & Regents of the University of Minnesota Varying More Mass Spectrometry NOT part of electromagnetic

More information

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY:

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: I. BASIC ELEMENTS OF A MASS SPECTROMETER Inlet System or Chromatograph Ion Source Mass Analyzer Detector Computer II. ION SOURCES A. Electron

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

BIOINF 4399B Computational Proteomics and Metabolomics

BIOINF 4399B Computational Proteomics and Metabolomics BIOINF 4399B Computational Proteomics and Metabolomics Sven Nahnsen WS 13/14 3. Chromatography and mass spectrometry Overview Recall last lecture Basics of liquid chromatography Algorithms to predict and

More information

M M e M M H M M H. Ion Sources

M M e M M H M M H. Ion Sources Ion Sources Overview of Various Ion Sources After introducing samples into a mass spectrometer, the next important step is the conversion of neutral molecules or compounds to gas phase ions. The ions could

More information

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment Applied Biosystems QStar Pulsar i Features of the API QSTAR Pulsar i The

More information

Introduction to the Q Trap LC/MS/MS System

Introduction to the Q Trap LC/MS/MS System www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment ABI Q Trap LC/MS/MS Introduction to the Q Trap LC/MS/MS System The Q Trap

More information

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD 4-7117 sbarnes@uab.edu Introduction to mass spectrometry Class 1 - Biology and mass spectrometry Why

More information

Tendenze nell innovazione della strumentazione in spettrometria di massa:

Tendenze nell innovazione della strumentazione in spettrometria di massa: Tendenze nell innovazione della strumentazione in spettrometria di massa: Trappola lineare, orbitrap, ion mobility e nuova strumentazione René Magritte La Condition Humaine 1 Ion Trap Mass Spectrometry

More information

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap 1 Last Time Mass Analyzers; CAD and TOF mass analyzers: 2 Fourier Transforms A transform is when you change your analytical space without

More information

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD

Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD Mass spectrometry: forming ions, to identifying proteins and their modifications Stephen Barnes, PhD 4-7117 sbarnes@uab.edu Introduction to mass spectrometry Class 1 - Biology and mass spectrometry Why

More information

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer

Thermo Scientific LTQ Orbitrap Velos Hybrid FT Mass Spectrometer IET International Equipment Trading Ltd. www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +847.913.0777 for Refurbished & Certified Lab Equipment Thermo Scientific LTQ Orbitrap Velos

More information

Mass Spectrometry Course

Mass Spectrometry Course Mass Spectrometry Course Árpád Somogyi Mass Spectrometry Laboratory, Department of Chemistry and Biochemistry University of Arizona, Tucson, AZ Eötvös University, Budapest April 11-20, 2012 1 2 UA Chemistry

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez Mass Analyzers Ion Trap, FTICR, Orbitrap CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography Prof. Jose-Luis Jimenez Last Update: Oct. 014 Some slides from Dr. Joel Kimmel (007) MS Interpretation

More information

Quattro Micro - How does it work?

Quattro Micro - How does it work? Quattro Micro - How does it work? 1 Introduction This document is designed to familiarise you with the principles behind how the Quattro Micro works. The level of this document is designed as Level One

More information

Instrumentation development for coupling ion/ion reactions and ion mobility in biological mass spectrometry

Instrumentation development for coupling ion/ion reactions and ion mobility in biological mass spectrometry Graduate Theses and Dissertations Iowa State University Capstones, Theses and Dissertations 2008 Instrumentation development for coupling ion/ion reactions and ion mobility in biological mass spectrometry

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC INTRODUCTION Principle: LC/MS is a technique that combines physical separation capabilities of liquid

More information

1. The range of frequencies that a measurement is sensitive to is called the frequency

1. The range of frequencies that a measurement is sensitive to is called the frequency CHEM 3 Name Exam 1 Fall 014 Complete these problems on separate paper and staple it to this sheet when you are finished. Please initial each sheet as well. Clearly mark your answers. YOU MUST SHOW YOUR

More information

Introduction to Mass Spectrometry

Introduction to Mass Spectrometry Introduction to Mass Spectrometry Table of Contents 1. What is Mass spectrometry 2. Mass Spectrometry History 3. Basic Components in a Mass Spectrometer 4. Sample Inlets 5. Ionization Technologies 6. Mass

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 6 Atomic Spectroscopy

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

PC 235: Mass Spectrometry and Proteomics

PC 235: Mass Spectrometry and Proteomics PC 235: Mass Spectrometry and Proteomics Lecture 1 May 11 th, 2009 Shenheng Guan NIH NCRR Mass Spectrometry Facility, UCSF sguan@cgl.ucsf.edu Course Outline Lectures: 10hrs: 10am-12 in Genentech Hall Room

More information

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4

Atomic masses. Atomic masses of elements. Atomic masses of isotopes. Nominal and exact atomic masses. Example: CO, N 2 ja C 2 H 4 High-Resolution Mass spectrometry (HR-MS, HRAM-MS) (FT mass spectrometry) MS that enables identifying elemental compositions (empirical formulas) from accurate m/z data 9.05.2017 1 Atomic masses (atomic

More information

Ch. 22 Mass Spectrometry (MS)

Ch. 22 Mass Spectrometry (MS) Ch. Mass Spectroetry (MS).1 MS easures ass of atos, olecules, or fragents of olecules -1. What is MS? Gaseous ato fro condensed phase ionized Accelerated & separated By ass to charge ratio /z M=00: 1 ion

More information

Basics of Mass Spectrometry

Basics of Mass Spectrometry Handbook of instrumental techniques from CCiTUB Basics of Mass Spectrometry Lourdes Berdié 1, Isidre Casals 2, Irene Fernández 3, Olga Jáuregui 2, Rosa Maria Marimon 4, Joaquim Perona 4, and Pilar Teixidor

More information

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Why should you be interested in mass spectrometry (MS)? - to identify unknown compounds - to quantify known materials - to elucidate

More information

Auxiliary Techniques Soft ionization methods

Auxiliary Techniques Soft ionization methods Auxiliary Techniques The limitations of the structural information in the normal mass spectrum can be partly offset by special mass-spectral techniques. Although a complete description of these is beyond

More information

Thermo Finnigan LTQ. Specifications

Thermo Finnigan LTQ. Specifications IET International Equipment Trading Ltd. www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +847.913.0777 for Refurbished & Certified Lab Equipment Thermo Finnigan LTQ Specifications

More information

Mass spectrometry as analytical tool in catalysis research

Mass spectrometry as analytical tool in catalysis research Mass spectrometry as analytical tool in catalysis research Katrin Pelzer Functional Characterization AC, FHI-MPG Berlin 17/11/2006 Mass Spectrometry Modern Methods in Heterogeneous Catalysis Research K.

More information

This is the total charge on an ion divided by the elementary charge (e).

This is the total charge on an ion divided by the elementary charge (e). 12.2 Fundamentals and general terms Accelerator mass spectrometry An ultra-sensitive technique using tandem accelerators employed mainly for the study of long-lived radioisotopes, and stable isotopes at

More information

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT

IDENTIFICATION OF ORGANOMETALLIC COMPOUNDS USING FIELD DESORPTION IONIZATION ON THE GCT IDETIFICATIO OF ORGAOMETALLIC COMPOUDS USIG FIELD DESORPTIO IOIZATIO O THE GCT David Douce 1, Michael Jackson 1, Robert Lewis 1, Peter Hancock 1, Martin Green 1 and Stuart Warriner 2 1 Waters Corporation,

More information

Tandem MS = MS / MS. ESI-MS give information on the mass of a molecule but none on the structure

Tandem MS = MS / MS. ESI-MS give information on the mass of a molecule but none on the structure Tandem MS = MS / MS ESI-MS give information on the mass of a molecule but none on the structure In tandem MS (MSMS) (pseudo-)molecular ions are selected in MS1 and fragmented by collision with gas. collision

More information

Protein analysis using mass spectrometry

Protein analysis using mass spectrometry Protein analysis using mass spectrometry Michael Stadlmeier 2017/12/18 Literature http://www.carellgroup.de/teaching/master 3 What is Proteomics? The proteome is: the entire set of proteins in a given

More information

MS-based proteomics to investigate proteins and their modifications

MS-based proteomics to investigate proteins and their modifications MS-based proteomics to investigate proteins and their modifications Francis Impens VIB Proteomics Core October th 217 Overview Mass spectrometry-based proteomics: general workflow Identification of protein

More information

Ion sources. Ionization and desorption methods

Ion sources. Ionization and desorption methods Ion sources Ionization and desorption methods 1 2 Processes in ion sources 3 Ionization/ desorption Ionization Desorption methods Electron impact ionization Chemical ionization Electro-spray ionisation

More information

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4.

Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Other Methods for Generating Ions 1. MALDI matrix assisted laser desorption ionization MS 2. Spray ionization techniques 3. Fast atom bombardment 4. Field Desorption 5. MS MS techniques Matrix assisted

More information

Accurate, High-Throughput Protein Identification Using the Q TRAP LC/MS/MS System and Pro ID Software

Accurate, High-Throughput Protein Identification Using the Q TRAP LC/MS/MS System and Pro ID Software www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment ABI Q Trap Pro LC/MS/MS Accurate, High-Throughput Protein Identification

More information

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization.

4. How can fragmentation be useful in identifying compounds? Permits identification of branching not observed in soft ionization. Homework 9: Chapters 20-21 Assigned 12 April; Due 17 April 2006; Quiz on 19 April 2006 Chap. 20 (Molecular Mass Spectroscopy) Chap. 21 (Surface Analysis) 1. What are the types of ion sources in molecular

More information

vacuum analysis plasma diagnostics surface science gas analysis

vacuum analysis plasma diagnostics surface science gas analysis Hiden EQP Systems High Sensitivity Mass and Energy Analysers for Monitoring, Control and Characterisation of Ions, Neutrals and Radicals in Plasma. vacuum analysis surface science gas analysis plasma diagnostics

More information

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365 Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365 Effortless Performance The LCMS-9030 quadrupole time-of-flight (Q-TOF) mass spectrometer integrates the world s fastest

More information

Finnigan LCQ Advantage MAX

Finnigan LCQ Advantage MAX www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +847.913.0777 for Refurbished & Certified Lab Equipment Finnigan LCQ Advantage MAX The Finnigan LCQ Advantage MAX ion trap mass spectrometer

More information

Mass Spectrometry. A truly interdisciplinary and versatile analytical method

Mass Spectrometry. A truly interdisciplinary and versatile analytical method Mass Spectrometry A truly interdisciplinary and versatile analytical method MS is used for the characterization of molecules ranging from small inorganic and organic molecules to polymers and proteins.

More information

BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Systems Biology Exp. Methods

BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer Systems Biology Exp. Methods BIOINF 4120 Bioinformatics 2 - Structures and Systems - Oliver Kohlbacher Summer 2013 14. Systems Biology Exp. Methods Overview Transcriptomics Basics of microarrays Comparative analysis Interactomics:

More information

Ion traps. Quadrupole (3D) traps. Linear traps

Ion traps. Quadrupole (3D) traps. Linear traps Ion traps Quadrupole (3D) traps Linear traps 3D-Ion traps A 3D-ion trap can be considered the tridimensional analogue of the linear quadrupole mass analyzer: B A C D The central ring electrode of the 3D-ion

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) MW Molecular formula Structural information GC-MS LC-MS To Do s Read Chapter 7, and complete the endof-chapter problem 7-4. Answer Keys are available in CHB204H MS Principles Molecule

More information

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1

BST 226 Statistical Methods for Bioinformatics David M. Rocke. January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 BST 226 Statistical Methods for Bioinformatics David M. Rocke January 22, 2014 BST 226 Statistical Methods for Bioinformatics 1 Mass Spectrometry Mass spectrometry (mass spec, MS) comprises a set of instrumental

More information

Part I Introduction to MS in bioanalysis

Part I Introduction to MS in bioanalysis Part I Introduction to MS in bioanalysis Mass Spectrometry in Medicinal Chemistry. Edited by K. T. Wanner and G. Höfner Copyright 8 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31456-0

More information

Introduction to Mass Spectrometry

Introduction to Mass Spectrometry Introduction to Mass Spectrometry Table of Contents What is mass spectrometry? Where can mass spectrometry be used? How did mass spectrometry originate? A history of mass spectrometry What is a mass spectrometer?

More information

1) In what pressure range are mass spectrometers normally operated?

1) In what pressure range are mass spectrometers normally operated? Exercises Ionization 1) In what pressure range are mass spectrometers normally operated? Mass spectrometers are usually operated in the high vacuum regime to ensure mean free paths significantly longer

More information

The Role of Multiple MS Technologies in Bioanalytical Analysis

The Role of Multiple MS Technologies in Bioanalytical Analysis The Role of Multiple MS Technologies in Bioanalytical Analysis Daniel Pentek* February 3, 2011 -UCONN Bioanalytical Chem 395 daniel.pentek@perkinelmer.com Introduction Dan Pentek Education: Wesleyan University:

More information

Interazioni di ioni con elettroni (ECD, ETD) e fotoni (Ion spectroscopy) Gianluca Giorgi. via Aldo Moro Siena

Interazioni di ioni con elettroni (ECD, ETD) e fotoni (Ion spectroscopy) Gianluca Giorgi. via Aldo Moro Siena Interazioni di ioni con elettroni (ECD, ETD) e fotoni (Ion spectroscopy) Gianluca Giorgi Università degli Studi di Siena Dipartimento di Biotecnologie, Chimica e Farmacia via Aldo Moro 53100 Siena e-mail:

More information