Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+.

Size: px
Start display at page:

Download "Mass Spectroscopy. Base peak. Molecular Ion peak. The positively charged fragments produced are separated, based on their mass/charge (m/z) ratio. M+."

Transcription

1 Mass spectrometry is the study of systems causing the formation of gaseous ions, with or without fragmentation, which are then characteried by their mass to charge ratios (m/) and relative abundances. Mass Spectroscopy In MS, compounds are ionied, ionied molecule decomposes into smaller ions/radicals/radical-ions/ neutrals. One way to ionie molecules is to extract electrons from a molecule. Base peak Molecular Ion peak M+. The positively charged fragments produced are separated, based on their mass/charge (m/) ratio. M ioniation M+. fragmentation M+1 + M N1+ N Parent ion/ Molecular ion daughter ions, radicals, neutral, Most of the ions has =+1 m/ = mass of the fragment. A plot of relative abundance vs. m/ of the charged particles is presented as the Mass Spectrum. Nominal mass Spectrum output is presented as a histogram. Fragmentation: M1+ + N1. M+. M1+ M3+ + N4 M2+. + N2 M+. N. N Radical ion (odd e) Neutral radical (odd e) Neutral (even e) M+ (even e) would not break up into a radical ion. Actual signal has peaks with a line width.

2 Isotope peaks: In mass spectroscopy the actual mass of fragments generated are determined. Therefore fragments with different isotopes are distinguished, e.g. Lead metal. For molecular fragments, the isotope peak abundance is dependent on the molecular constitution and the natural isotope abundance of the constituent elements. In mass spectroscopy the masses of individual ions are measured. Isotope peaks Mass and abundance of ions of each isotopic composition is measured!! not the average molecular mass. CH peak M CH, HCH H13 CH+3, 2 H2CH+2 Unit mass spacing isotope peak M+1 Cluster isotope peak - negligible M+ 2.. Cl-CH2-CH2-S-CH2-CH2-Cl The existence of isotopes generates a cluster of peaks (isotope peaks). The Nominal mass is m/ of the lowest mass isotopomer, i.e. the member of the isotopes cluster that has all the C s as 12C, all protons as 1H, all N s as 14N,. Different peaks, because there are some molecules with etc. Especially significant for Cl, Br 13C, 2H Peaks are spaced by a unit mass m/ All peaks (cluster) are of the same molecular formula Isotopomers (isotopic isomers) are isomers having the same number of each isotopic atom but differing in their positions. Mass Spectrometer: Mass spectrometer has devices for each of the following; Sample Introduction Create gas-phase ions of sample Separate ions in space or time; based on m/ ratio accomplished by mass analyers. Detect of the quantity of ions/ current from each m/ ratio ion

3 Ioniation: If a quantity of energy is supplied to a molecule greater than the ioniation energy of the molecule, a molecular ion is formed M+. Electron Ioniation (Electron Impact, EI) Chemical Ioniation (CI) Electrospray Ioniation (ESI) Matrix Assisted Laser Desorption Ioniation (MALDI) Atmospheric Pressure Chemical Ioniation (APCI) Atmospheric Pressure Photo-ioniation (APPI) Atmospheric Pressure Laser Ioniation (APLI) Fast Atom Bombardment (FAB) Inductively Coupled Plasma (ICP) Electron impact ioniation Magnetic sector separation single focusing Mass Analyers: Magnetic Sector Mass Analyer (Single/Double Focusing ) Quadrupole Mass Filters Time-of-flight (TOF) Mass Analyer Ion Trap Mass Analyer Fourier-Transform Mass Spectrometry (FTMS) Ion Detection: Faraday Cup Electron Multiplier Photomultiplier Conversion Dynode The interior of the mass spectrometer must be evacuated. The ion source, mass filter/analyer, and detector are under vacuum so that the ions would move from the ion source to the detector without colliding with other ions and molecules. The mean-free path of a charged particle should be greater than the distance between ioniation and detection regions. Mass Spectrometer B -i A high vacuum is created with two pumps where a low-vacuum pump is connected to the output of a high-vacuum pump. F Evacuated system torr Diffusion pump(s) + rotary-vane rough pump Turbo-molecular pump(s) + rotary-vane rough pump Pressure (Torr) Mean Free Path (m) 6.0x x x x x104 Electron impact ioniation (EI) 70V - + V Ion optics Ekin = ev = mv2/2 70eV high energy electrons, molecular ion - very energetic, low/no abundance.

4 Volatilied compound is ionied by electron impact. An electron beam is generated by a accelerating the electrons from a heated filament through an applied voltage. The electron energy is defined by the potential difference between the filament and the source housing and is usually set to 70 ev. A field keeps the electron beam focused across the ion source. Upon impact with a 70 ev electron, the gaseous molecule may lose one of its electrons to become a positively charged radical ion, daughter ions, etc. Magnetic sector mass analyer: V Depending on the lifetime of the excited state, fragmentation will either take place in the ion source giving rise to stable fragment ions, or on the way to the detector, producing metastable ions. m er 2 B 2 2V note: slits Ion source accelerates ions to a KE KE = ½ mv2 = ev In the magnet A 'repeller' serves to define the field within the ion source. Each m/ beam follows it s own path (r) for a given B and V in the magnetic sector (60 o/900). B r All ions are subsequently accelerated out of the ion source by an electric field produced by the potential difference applied to the ion source and a grounded Electrode, V. F = mv2 /r = Bev, Upon rearrangement r = mv/eb = (2Vm/e)1/2/B m/ = (eb2r2)/(2v) The m/ ratio of the ions that reach the detector can be varied by scanning either the magnetic field (B) or the applied voltage of the ion optics (V). i.e. by varying the voltage or magnetic field of the magnetic-sector analyer, the individual ion beams are separable spatially, radius of curvature is held constant. For specific V and B ions of unique m/ pass thro the magnetic sector and reaches the stationary detector. Variations of V and/or B causes fragments of different m/ value to reach the detector. Usually B is scanned to allow different m/ s to reach the detector sequentially generating the complete mass spectrum keeping V constant. e(v- V) e(v+ V) The distribution of a given mass by way of energy distribution of kinetic energy.

5 Magnetic Sector Mass Analyer: Double Focusing (EB) E B + - V mv 2 mv 2 and ev= r 2 2V m r ; r independent of in E; focussing! E ee Resolving Power 1. Defined in terms of the overlap (or valley ) between two peaks. For two peaks of equal height, masses m1 and m2, when there is overlap between the two peaks to a stated percentage of either peak height (10% is recommended), then the resolving power is defined as [m1/(m1 m2)]. The percentage overlap (or valley ) concerned must always be stated. R Actual signal has peaks with a line width. Imposes a limitation on the resolvability of consecutive peaks Example M M Minimum resolution necessary to separate N2+ and CO+ peaks? Exact masses: N2+ = amu CO+ = amu 10% R M M Example State the method of calculation when expressing resolving power, and the position of the lower peak.

6 Ioniation EI: Electrons in molecules occupy molecular orbitals and hence acquire the energy associated with such orbitals. To remove electrons from such orbitals and ionie the molecule energy is required. The energy required depends on the orbital of electron occupation namely the HOMO. Thus the ease of ioniation will depend on the types of electrons in the molecule. The molecular ion (dominant) is formed by the removal of the least tightly bound electron. Chemical ioniation (CI): Interaction of the molecule M with a reactive ionied reagent species (gaseous Bronsted acids). e.g.., EI of methane, generates CH4+ which then reacts to give the Bronsted acid CH5+; CH4+ + CH4 CH5+ + CH3 If M in the source has a higher proton affinity than CH 4, the protonated species MH+ will be formed by the exothermic reaction. M + CH5+ MH+ + CH4 CI is a softer ioniation process. M+. nearly nonexistent. Abundant M+. CI is a lower energy process than EI, results in less fragmentation and therefore a simpler spectrum with the parent/molecular ion intact.

7 Fast Atom Bombardment Ioniation: The sample droplet is bombarded with energetic atoms (Ar, Xe) of 8-10 kev kinetic energy. Ions (e.g., Cs+) can be used as the bombarding particle in a similar technique termed liquid secondary ion mass spectrometry (LSIMS) Beam collides with the sample and matrix molecules, producing positive and negative sample-related ions that can be accelerated into the mass spectrometer. Fast Atom Bombardment Used for polar organic compounds, acidic and basic functional groups. Basic groups run well in positive ioniation mode and acidic groups run well in negative ioniation mode. FAB analytes: peptides, proteins, fatty acids, organometallics, surfactants, carbohydrates, antibiotics, and gangliosides. Quadrupole Mass Analyer (spectrometer): 4 parallel, polished metal rods -[U+Vcos(ωt)] + [U+Vcosωt] y y x x Diagonal electrodes have potentials of the same sign U= DC voltage, V=AC voltage, ω= angular velocity of alternating voltage Behavior of electrical charges in electric fields. The path of charged particles depends on sie/mass differences. Larger masses have a higher inertia than a small mass. Apply a DC; make it (+) on two diagonal rods. -[U+Vcos(ωt)] + + [U+Vcosωt] 2r0 x + ions Parameters affecting motion: m/, U, V, r 0 and. + y

8 Superimpose an AC; V sin t with an amplitude V and a frequency. + U + Vsin t + ions + U + V sin t + ions + U + V sin t Lighter ions spirals out of the quadrupole (filters out). Apply a DC; make it (+) on the two rods. Superimpose an AC; V sin t with an amplitude V and a frequency. + U + V sin t Heavier ions travel straight to the detector - U - V sin t High Pass Filter Lower m/ crashes High mass pass through + ions m/ - U - V sin t Heavier ion spirals out of the quadrupole (filters out). - U - V sin t Low mass pass through + ions - U - V sin t Lighter ions travel straight to the detector. m/ Low Pass Filter higher m/ crashes

9 Narrow window pass High Pass Filter Narrow window pass High Pass Filter Low Pass Filter m/ m/ m/ m/ Low Pass Filter Quadrupole Mass Analyer (Spectrometer): Ions oscillate under the influence of the variable fields. y + Viewed down y x Combined DC and RF potentials on the quadrupole rods create a stable linear path and passes only a selected m/ ratio (resonant ion) at a time. All other m/ ions acquire unstable paths and spirals out. y y x The mass spectrum is obtained by varying the voltages on the rods and monitoring which ions pass through the quadrupole rods. Quadrupole mass (QM) analyer is a "mass filter".

10 The solution of equations of motion of ions traveling through a QM analyer shows that for an ion with a particular m/ to pass through, certain combinations of U and V must be obtained. Varying rod voltages (scanning the spectrum): a. scan ω while holding U and V constant b. scan U and V but keep the ratio U/V fixed Two functions a and q define a stable trajectory for which ions do not collide with the rods across a range of values of U and V. a 4 eu m 2 r ev m 2 r02 2 In principle QM analyer can be operated for a range of U and V values. If U and V are scanned such that U/V = constant, V>U then successive detection of ions of different m/ is achieved. Stability curve for an ion - m/ q= a 2U q V Graphically, e.g. the three stability curves represent values of U and V for which the masses m 1, m2 and m3 have stable trajectories through the quadrupole. Only those mass values on the operating line transmits. (U) (V) A given m/ ion travels thro the quadrupole if the values of U and V are in a segment of the operating line and bounded by the stability curve. (U) (V) The resolution is determined by the magnitude of U/V ratio, i.e the slope. Resolution of the mass analyer can be increased by increasing the slope of the line, U/V (= held const.), and that if U = 0 then ions of all m/ are transmitted. (U) (V) Because quadrupoles operate at lower voltages, they can be scanned at faster rates (~1000 a.m.u./s) than magnet based spectrometers. QMs are better detectors for LC-MS and GC-MS implementation.

11 MS/MS MS1 MS2 Dissociation region QqQ Scan with MS1 (only) turned on entire MS spectrum. Set (e.g. U and V) MS1 to filter fragment of interest, dissociate further in q (Q2) collision with Ar or N 2 the fragment selected in MS1 and mass analye by scanning with MS2. Time-of-Flight Mass Analyers (spectrometer): TOF measures the mass-dependent time required for ions of different masses to move from the ion source to the detector. L This requires that at the starting time t=0, (time ions leaves the ion source) to be well-defined. Ions are created by a pulsed method (MALDI), or by rapid electric field switching that serves as a 'gate' to release the ions from the ion source in a very short time. KE ev Time-of-Flight Mass Spectrometry, Principle mv 2 2 v L t m 2Vt 2 2 e L Ion Source - MALDI Laser +U Probe (Start) Ion Detector m/ MALDI Ion Source Field Free Drift Tube dsource dtof ttotal = tsource + ttof Metal plate +/- U ions Acceleration region t L 1 2eV m

12 Time-of-Flight Mass Spectrometers, General Organiation TC1 Linear TOF: L a Laser Prism Detectors BA2 Ioniing Probe (start) M3 Inlet BA1 Sample Plate M2 M1 Ion detector (MCP) Grids Ion Signals Flight Tube +/- U Camera Ion Selector Reflector Valves Pumps (Turbo) TC2 time Fore Pump Reflex MALDI TOF Mass Spectrometer Laser output ion mirror Reflection time-of-flight mass spectrometer Parent/Molecular Peak M: High Resolution MS: An molecular ion that has not lost/gained atoms. The nominal mass of which is calculated with the mass numbers of the predominant isotopes of atoms. Using mass number for isotopes of atoms is approximate. Actual mass of a given isotope deviates From this integer by a small but unique amount ( E = mc2). Relative to 12C at , the isotopic mass of 16O is a.m.u., etc. Base peak: Base peak is the peak from the most abundant ion, which is often the most stable ion. High resolution mass spectrometers that can determine m/ values accurately to four/more decimal places, making it possible to distinguish different molecular formulas having the same nominal mass.

13 m/=74 Very short list. Isotope Accurate Mass MF Unsaturation CH2N2O2 C6H2 6.0 C3H3FO C2H3FN2 1-H 2-H C 13-C N 15-N C3H6O O 17-O 18-O C2H6N2O 1.0 C4H7F 1.0 C4H10O 0.0 C3H10N m/=74 MF C2H2O3 Unsaturation Exact Mass C2H2O CH2N2O C6H C3H3FO C2H3FN C3H6O C2H6N2O C4H7F C4H10O C3H10N MF finder CHEMCALC

Mass Spectrometry. What is Mass Spectrometry?

Mass Spectrometry. What is Mass Spectrometry? Mass Spectrometry What is Mass Spectrometry? Mass Spectrometry (MS): The generation of gaseous ions from a sample, separation of these ions by mass-to-charge ratio, and measurement of relative abundance

More information

Chemistry 311: Topic 3 - Mass Spectrometry

Chemistry 311: Topic 3 - Mass Spectrometry Mass Spectroscopy: A technique used to measure the mass-to-charge ratio of molecules and atoms. Often characteristic ions produced by an induced unimolecular dissociation of a molecule are measured. These

More information

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis

CEE 772 Lecture #27 12/10/2014. CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511 524) (Harris, Chapt.

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #21 Mass Spectrometry: Mass Filters & Spectrometers (Skoog, Chapt. 20, pp.511-524) (Harris, Chapt.

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 3 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can be obtained from a MS spectrum?

More information

Lecture 8: Mass Spectrometry

Lecture 8: Mass Spectrometry intensity Lecture 8: Mass Spectrometry Relative abundance m/z 1 Ethylbenzene experiment CH 2 CH 3 + m/z = 106 CH 2 + m/z = 91 C 8 H 10 MW = 106 CH + m/z = 77 + 2 2 What information can we get from MS spectrum?

More information

TANDEM MASS SPECTROSCOPY

TANDEM MASS SPECTROSCOPY TANDEM MASS SPECTROSCOPY 1 MASS SPECTROMETER TYPES OF MASS SPECTROMETER PRINCIPLE TANDEM MASS SPECTROMETER INSTRUMENTATION QUADRAPOLE MASS ANALYZER TRIPLE QUADRAPOLE MASS ANALYZER TIME OF FLIGHT MASS ANALYSER

More information

MS Goals and Applications. MS Goals and Applications

MS Goals and Applications. MS Goals and Applications MS Goals and Applications 1 Several variations on a theme, three common steps Form gas-phase ions choice of ionization method depends on sample identity and information required Separate ions on basis

More information

Harris: Quantitative Chemical Analysis, Eight Edition

Harris: Quantitative Chemical Analysis, Eight Edition Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 21: MASS SPECTROMETRY CHAPTER 21: Opener 21.0 Mass Spectrometry Mass Spectrometry provides information about 1) The elemental composition of

More information

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics

Fundamentals of Mass Spectrometry. Fundamentals of Mass Spectrometry. Learning Objective. Proteomics Mass spectrometry (MS) is the technique for protein identification and analysis by production of charged molecular species in vacuum, and their separation by magnetic and electric fields based on mass

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

Mass Spectrometry. General Principles

Mass Spectrometry. General Principles General Principles Mass Spectrometer: Converts molecules to ions Separates ions (usually positively charged) on the basis of their mass/charge (m/z) ratio Quantifies how many units of each ion are formed

More information

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai

Instrumental Analysis. Mass Spectrometry. Lecturer:! Somsak Sirichai 303351 Instrumental Analysis Mass Spectrometry Lecturer:! Somsak Sirichai Mass Spectrometry What is Mass spectrometry (MS)? An analytic method that employs ionization and mass analysis of compounds in

More information

(Refer Slide Time 00:09) (Refer Slide Time 00:13)

(Refer Slide Time 00:09) (Refer Slide Time 00:13) (Refer Slide Time 00:09) Mass Spectrometry Based Proteomics Professor Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology, Bombay Mod 02 Lecture Number 09 (Refer

More information

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein.

Mass Analyzers. Principles of the three most common types magnetic sector, quadrupole and time of flight - will be discussed herein. Mass Analyzers After the production of ions in ion sources, the next critical step in mass spectrometry is to separate these gas phase ions according to their mass-to-charge ratio (m/z). Ions are extracted

More information

Mass Spectrometry. Electron Ionization and Chemical Ionization

Mass Spectrometry. Electron Ionization and Chemical Ionization Mass Spectrometry Electron Ionization and Chemical Ionization Mass Spectrometer All Instruments Have: 1. Sample Inlet 2. Ion Source 3. Mass Analyzer 4. Detector 5. Data System http://www.asms.org Ionization

More information

ICPMS Doherty Lecture 1

ICPMS Doherty Lecture 1 ICPMS Doherty Lecture 1 Mass Spectrometry This material provides some background on how to measure isotope abundances by means of mass spectrometry. Mass spectrometers create and separate ionized atoms

More information

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2

GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 DEPARTMENTS OF CHEMISTRY AND BIOCHEMISTRY GRADUATE COURSE IN MASS SPECTROMETRY: LECTURE 2 Mass Analysers Shabaz Mohammed October 20, 2015 High Vacuum System Turbo pumps Diffusion pumps Rough pumps Rotary

More information

Mass Spectrometry in MCAL

Mass Spectrometry in MCAL Mass Spectrometry in MCAL Two systems: GC-MS, LC-MS GC seperates small, volatile, non-polar material MS is detection devise (Agilent 320-MS TQ Mass Spectrometer) Full scan monitoring SIM single ion monitoring

More information

Molecular Mass Spectrometry

Molecular Mass Spectrometry Molecular Mass Spectrometry Mass Spectrometry: capable of providing information about (1) Elemental composition of samples of matter: atomic mass (2) Structures of inorganic, organic, and biological molecules

More information

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University

Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University Mass Spectrometry and Proteomics - Lecture 2 - Matthias Trost Newcastle University matthias.trost@ncl.ac.uk Previously: Resolution and other basics MALDI Electrospray 40 Lecture 2 Mass analysers Detectors

More information

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Chemistry Instrumental Analysis Lecture 35. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 35 Principle components: Inlet Ion source Mass analyzer Ion transducer Pumps Signal processor Mass analyzers Quadrupole Time of Flight Double Focusing Ion

More information

Ionization Techniques Part IV

Ionization Techniques Part IV Ionization Techniques Part IV CU- Boulder CHEM 5181 Mass Spectrometry & Chromatography Presented by Prof. Jose L. Jimenez High Vacuum MS Interpretation Lectures Sample Inlet Ion Source Mass Analyzer Detector

More information

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps

MASS ANALYSER. Mass analysers - separate the ions according to their mass-to-charge ratio. sample. Vacuum pumps ION ANALYZERS MASS ANALYSER sample Vacuum pumps Mass analysers - separate the ions according to their mass-to-charge ratio MASS ANALYSER Separate the ions according to their mass-to-charge ratio in space

More information

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed

Mass Analyzers. mass measurement accuracy/reproducibility. % of ions allowed through the analyzer. Highest m/z that can be analyzed Mass Analyzers Double Focusing Magnetic Sector Quadrupole Mass Filter Quadrupole Ion Trap Linear Time-of-Flight (TOF) Reflectron TOF Fourier Transform Ion Cyclotron Resonance (FT-ICR-MS) Mass Analyzers

More information

MS/MS .LQGVRI0606([SHULPHQWV

MS/MS .LQGVRI0606([SHULPHQWV 0DVV6SHFWURPHWHUV Tandem Mass Spectrometry (MS/MS) :KDWLV0606" Mass spectrometers are commonly combined with separation devices such as gas chromatographs (GC) and liquid chromatographs (LC). The GC or

More information

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n

20.2 Ion Sources. ions electrospray uses evaporation of a charged liquid stream to transfer high molecular mass compounds into the gas phase as MH n 20.2 Ion Sources electron ionization produces an M + ion and extensive fragmentation chemical ionization produces an M +, MH +, M +, or M - ion with minimal fragmentation MALDI uses laser ablation to transfer

More information

Chemistry Instrumental Analysis Lecture 34. Chem 4631

Chemistry Instrumental Analysis Lecture 34. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 34 From molecular to elemental analysis there are three major techniques used for elemental analysis: Optical spectrometry Mass spectrometry X-ray spectrometry

More information

Mass Spectrometry for Chemists and Biochemists

Mass Spectrometry for Chemists and Biochemists Erasmus Intensive Program SYNAPS Univ. of Crete - Summer 2007 Mass Spectrometry for Chemists and Biochemists Spiros A. Pergantis Assistant Professor of Analytical Chemistry Department of Chemistry University

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) Alternative names: Mass spectrometric (selective) detector (MSD) Spectrometry - methods based on interaction of matter and radiation Mass spectrometry - method based on formation

More information

LC-MS Based Metabolomics

LC-MS Based Metabolomics LC-MS Based Metabolomics Analysing the METABOLOME 1. Metabolite Extraction 2. Metabolite detection (with or without separation) 3. Data analysis Metabolite Detection GC-MS: Naturally volatile or made volatile

More information

Mass spectrometry.

Mass spectrometry. Mass spectrometry Mass spectrometry provides qualitative and quantitative information about the atomic and molecular composition of inorganic and organic materials. The mass spectrometer produces charged

More information

MASS SPECTROMETRY. Topics

MASS SPECTROMETRY. Topics MASS SPECTROMETRY MALDI-TOF AND ESI-MS Topics Principle of Mass Spectrometry MALDI-TOF Determination of Mw of Proteins Structural Information by MS: Primary Sequence of a Protein 1 A. Principles Ionization:

More information

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced

2. Separate the ions based on their mass to charge (m/e) ratio. 3. Measure the relative abundance of the ions that are produced I. Mass spectrometry: capable of providing both quantitative and qualitative information about samples as small as 100 pg (!) and with molar masses in the 10 4-10 5 kdalton range A. The mass spectrometer

More information

Mass Spectrometry: Introduction

Mass Spectrometry: Introduction Mass Spectrometry: Introduction Chem 8361/4361: Interpretation of Organic Spectra 2009 Andrew Harned & Regents of the University of Minnesota Varying More Mass Spectrometry NOT part of electromagnetic

More information

M M e M M H M M H. Ion Sources

M M e M M H M M H. Ion Sources Ion Sources Overview of Various Ion Sources After introducing samples into a mass spectrometer, the next important step is the conversion of neutral molecules or compounds to gas phase ions. The ions could

More information

Lecture 15: Introduction to mass spectrometry-i

Lecture 15: Introduction to mass spectrometry-i Lecture 15: Introduction to mass spectrometry-i Mass spectrometry (MS) is an analytical technique that measures the mass/charge ratio of charged particles in vacuum. Mass spectrometry can determine masse/charge

More information

Introduction to LC-MS

Introduction to LC-MS Wednesday April 5, 2017 10am Introduction to LC-MS Amy Patton, MS Laboratory Manager, Pinpoint Testing, LLC Little Rock, AR DESCRIPTION: Amy Patton, laboratory manager for Pinpoint Testing, will begin

More information

Mass spectrometry gas phase transfer and instrumentation

Mass spectrometry gas phase transfer and instrumentation Objectives of the Lecture spectrometry gas phase transfer and instrumentation Matt Renfrow January 15, 2014 1. Make ions 2. Separate/Analyze 3. Detect ions 4. What is mass resolution and mass accuracy?

More information

Introduction to GC/MS

Introduction to GC/MS Why Mass Spectrometry? Introduction to GC/MS A powerful analytical technique used to: 1.Identify unknown compounds 2. Quantify known materials down to trace levels 3. Elucidate the structure of molecules

More information

Secondary Ion Mass Spectroscopy (SIMS)

Secondary Ion Mass Spectroscopy (SIMS) Secondary Ion Mass Spectroscopy (SIMS) Analyzing Inorganic Solids * = under special conditions ** = semiconductors only + = limited number of elements or groups Analyzing Organic Solids * = under special

More information

Introduction to the Q Trap LC/MS/MS System

Introduction to the Q Trap LC/MS/MS System www.ietltd.com Proudly serving laboratories worldwide since 1979 CALL +1.847.913.0777 for Refurbished & Certified Lab Equipment ABI Q Trap LC/MS/MS Introduction to the Q Trap LC/MS/MS System The Q Trap

More information

Mass Spectrometry Course

Mass Spectrometry Course Mass Spectrometry Course Árpád Somogyi Mass Spectrometry Laboratory, Department of Chemistry and Biochemistry University of Arizona, Tucson, AZ Eötvös University, Budapest April 11-20, 2012 1 2 UA Chemistry

More information

Mass spectrometry and elemental analysis

Mass spectrometry and elemental analysis Mass spectrometry and elemental analysis A schematic representation of a single-focusing mass spectrometer with an electron-impact (EI) ionization source. M: + e _ M +. + 2e _ Ionization and fragmentation

More information

Mass spectrometry as analytical tool in catalysis research

Mass spectrometry as analytical tool in catalysis research Mass spectrometry as analytical tool in catalysis research Katrin Pelzer Functional Characterization AC, FHI-MPG Berlin 17/11/2006 Mass Spectrometry Modern Methods in Heterogeneous Catalysis Research K.

More information

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects

Mass Spectrometry. Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects Mass Spectrometry Introduction EI-MS and CI-MS Molecular mass & formulas Principles of fragmentation Fragmentation patterns Isotopic effects 1 Introduction to MS Mass spectrometry is the method of analysis

More information

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS

Mass Spectrometry. Hyphenated Techniques GC-MS LC-MS and MS-MS Mass Spectrometry Hyphenated Techniques GC-MS LC-MS and MS-MS Reasons for Using Chromatography with MS Mixture analysis by MS alone is difficult Fragmentation from ionization (EI or CI) Fragments from

More information

Analysis of Polar Metabolites using Mass Spectrometry

Analysis of Polar Metabolites using Mass Spectrometry Analysis of Polar Metabolites using Mass Spectrometry TransMed Course: Basics in Clinical Proteomics and Metabolomics. Oct 10-19, 2012 dd.mm.yyyy Vidya Velagapudi, Ph.D, Adjunct Professor Head of the Metabolomics

More information

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY

RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY international UNION OF PURE AND APPLIED CHEMISTRY ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ANALYTICAL NOMENCLATURE RECOMMENDATIONS FOR NOMENCLATURE OF MASS SPECTROMETRY RULES APPROVED 1973 LONDON BUTTER

More information

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS

MASS SPECTRA measure a compound s Mol. Wt. This ionization type is called: electron impact MS MASS SPECTRA measure a compound s Mol. Wt. p. 213 M + Molecule e - Molecule + 2 e - + + Mole cule + + Mol ecule IONIZATION CHAMBER repellor plate accelerating plates variable field magnet + Mo + lecule

More information

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4

sample was a solution that was evaporated in the spectrometer (such as with ESI-MS) ions such as H +, Na +, K +, or NH 4 Introduction to Spectroscopy V: Mass Spectrometry Basic Theory: Unlike other forms of spectroscopy used in structure elucidation of organic molecules mass spectrometry does not involve absorption/emission

More information

History of Mass spectroscopy. Mass Spectroscopy. Introduction... Uses of Mass Spec. Where are Mass Spectrometers Used? Mass Spectroscopy Units

History of Mass spectroscopy. Mass Spectroscopy. Introduction... Uses of Mass Spec. Where are Mass Spectrometers Used? Mass Spectroscopy Units History of Mass spectroscopy Mass Spectroscopy CHEM 466 Upali Siriwardane Marilyn Cox Jim Plamer http://www.chemistry.ohiostate.edu/~allen/587%20w04/587%20w0 4%20130-136%20std.pdf http://www.cem.msu.edu/~cem333/week1

More information

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS. ESS The RGA freenotes Theory page 1 of 14 RGA Theory Notes Courtesy of ESS and TheRGA web pages part of a series of application and theory notes for public use which are provided free of charge by ESS.

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Mass Spectrometry. A truly interdisciplinary and versatile analytical method

Mass Spectrometry. A truly interdisciplinary and versatile analytical method Mass Spectrometry A truly interdisciplinary and versatile analytical method MS is used for the characterization of molecules ranging from small inorganic and organic molecules to polymers and proteins.

More information

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY:

Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: Chem 550, Spring, 2012 Part I: OVERVIEW OF MASS SPECTROMETRY: I. BASIC ELEMENTS OF A MASS SPECTROMETER Inlet System or Chromatograph Ion Source Mass Analyzer Detector Computer II. ION SOURCES A. Electron

More information

1. The range of frequencies that a measurement is sensitive to is called the frequency

1. The range of frequencies that a measurement is sensitive to is called the frequency CHEM 3 Name Exam 1 Fall 014 Complete these problems on separate paper and staple it to this sheet when you are finished. Please initial each sheet as well. Clearly mark your answers. YOU MUST SHOW YOUR

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Mass Spectrometry (MS) MW Molecular formula Structural information GC-MS LC-MS To Do s Read Chapter 7, and complete the endof-chapter problem 7-4. Answer Keys are available in CHB204H MS Principles Molecule

More information

Chapter 5. Mass spectrometry

Chapter 5. Mass spectrometry ionization and fragmentation Chapter 5. Mass spectrometry which fragmentations? mass and frequency, m/z and count rate Reading: Pavia Chapters 3 and 4 Don t need 3.3 B-D, 3.4 B-D Use the text to clarify

More information

Time-of-Flight Mass Analyzers

Time-of-Flight Mass Analyzers Time-of-Flight Mass Analyzers Jonathan Karty C613 lecture 1 March 6, 8 (Section 4. in Gross, pages 115-18) TOF Overview Time-of-flight (TOF) is the least complex mass analyzer in terms of its theory Ions

More information

Auxiliary Techniques Soft ionization methods

Auxiliary Techniques Soft ionization methods Auxiliary Techniques The limitations of the structural information in the normal mass spectrum can be partly offset by special mass-spectral techniques. Although a complete description of these is beyond

More information

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory

Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Ionization Methods in Mass Spectrometry at the SCS Mass Spectrometry Laboratory Steven L. Mullen, Ph.D. Associate Director SCS Mass Spectrometry Laboratory Contact Information 31 oyes Laboratory (8:00-5:00

More information

Types of Analyzers: Quadrupole: mass filter -part1

Types of Analyzers: Quadrupole: mass filter -part1 16 Types of Analyzers: Sector or double focusing: magnetic and electric Time-of-flight (TOF) Quadrupole (mass filter) Linear ion trap Quadrupole Ion Trap (3D trap) FTICR fourier transform ion cyclotron

More information

IUPAC Terms and Definitions in Mass Spectrometry

IUPAC Terms and Definitions in Mass Spectrometry IUPAC Terms and Definitions in Mass Spectrometry The third Draft Document released in August 2006 by the IUPAC task group on MS Terms has fixed the basic definitions to be adopted and those to be abandoned

More information

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee

Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Analytical Technologies in Biotechnology Prof. Dr. Ashwani K. Sharma Department of Biotechnology Indian Institute of Technology, Roorkee Module - 6 Spectroscopic Techniques Lecture - 6 Atomic Spectroscopy

More information

Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/ Atomic Symbol

Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/ Atomic Symbol Atomic Structure Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/1840-1 Behaviour of

More information

Mass spectrometry of proteins, peptides and other analytes: principles and principal methods. Matt Renfrow January 11, 2008

Mass spectrometry of proteins, peptides and other analytes: principles and principal methods. Matt Renfrow January 11, 2008 Mass spectrometry of proteins, peptides and other analytes: principles and principal methods Matt Renfrow January 11, 2008 Objectives of the Lecture 1. Make ions 2. Separate/Analyze/Detect ions 3. What

More information

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources

Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Ch 13. Basics of Mass Spectrometry (I) : Principles & Ionization Sources Why should you be interested in mass spectrometry (MS)? - to identify unknown compounds - to quantify known materials - to elucidate

More information

vacuum analysis plasma diagnostics surface science gas analysis

vacuum analysis plasma diagnostics surface science gas analysis Hiden EQP Systems High Sensitivity Mass and Energy Analysers for Monitoring, Control and Characterisation of Ions, Neutrals and Radicals in Plasma. vacuum analysis surface science gas analysis plasma diagnostics

More information

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York

for the Novice Mass Spectrometry (^>, John Greaves and John Roboz yc**' CRC Press J Taylor & Francis Group Boca Raton London New York Mass Spectrometry for the Novice John Greaves and John Roboz (^>, yc**' CRC Press J Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa business

More information

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma

- A spark is passed through the Argon in the presence of the RF field of the coil to initiate the plasma THE PLASMA Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces a current within a stream of Argon (Ar) gas, which

More information

Qualitative Organic Analysis CH 351 Mass Spectrometry

Qualitative Organic Analysis CH 351 Mass Spectrometry Qualitative Organic Analysis CH 351 Mass Spectrometry Bela Torok Department of Chemistry University of Massachusetts Boston Boston, MA General Aspects Theoretical basis of mass spectrometry Basic Instrumentation

More information

Ch. 22 Mass Spectrometry (MS)

Ch. 22 Mass Spectrometry (MS) Ch. Mass Spectroetry (MS).1 MS easures ass of atos, olecules, or fragents of olecules -1. What is MS? Gaseous ato fro condensed phase ionized Accelerated & separated By ass to charge ratio /z M=00: 1 ion

More information

Extrel Application Note

Extrel Application Note Extrel Application Note Real-Time Plasma Monitoring and Detection of Trace H 2 O and HF Species in an Argon Based Plasma Jian Wei, 575 Epsilon Drive, Pittsburgh, PA 15238. (Presented at the 191st Electrochemical

More information

Interpretation of Organic Spectra. Chem 4361/8361

Interpretation of Organic Spectra. Chem 4361/8361 Interpretation of Organic Spectra Chem 4361/8361 Characteristics of Common Spectrometric Methods H-1 C-13 MS IR/RAMAN UV-VIS ORD/CD X- RAY Radiation type RF RF Not relevant IR UV to visible UV to visible

More information

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap

Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap Week 5: Fourier Tranform-based Mass Analyzers: FT-ICR and Orbitrap 1 Last Time Mass Analyzers; CAD and TOF mass analyzers: 2 Fourier Transforms A transform is when you change your analytical space without

More information

Welcome to Organic Chemistry II

Welcome to Organic Chemistry II Welcome to Organic Chemistry II Erika Bryant, Ph.D. erika.bryant@hccs.edu Class Syllabus 3 CHAPTER 12: STRUCTURE DETERMINATION 4 What is this solution Soda Tea Coffee??? 5 What is this solution Soda Tea

More information

Mass Spectrometry. Quantitative Mass Spectrometry Chiral Mass Spectrometry

Mass Spectrometry. Quantitative Mass Spectrometry Chiral Mass Spectrometry Mass Spectrometry Quantitative Mass Spectrometry Chiral Mass Spectrometry Quantitation by MS Goal is to develop methodology to sensitively, specifically, accurately and rapidly measure one or more compounds

More information

This is the total charge on an ion divided by the elementary charge (e).

This is the total charge on an ion divided by the elementary charge (e). 12.2 Fundamentals and general terms Accelerator mass spectrometry An ultra-sensitive technique using tandem accelerators employed mainly for the study of long-lived radioisotopes, and stable isotopes at

More information

Introduction to Elemental Analysis

Introduction to Elemental Analysis Introduction to Elemental Analysis A dust storm charges across the Sahara desert, whipping up sand and blowing it west, towards the ocean. Meanwhile, in the middle of the Atlantic Ocean, a team of scientist

More information

1) In what pressure range are mass spectrometers normally operated?

1) In what pressure range are mass spectrometers normally operated? Exercises Ionization 1) In what pressure range are mass spectrometers normally operated? Mass spectrometers are usually operated in the high vacuum regime to ensure mean free paths significantly longer

More information

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez

Mass Analyzers. Ion Trap, FTICR, Orbitrap. CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography. Prof. Jose-Luis Jimenez Mass Analyzers Ion Trap, FTICR, Orbitrap CU- Boulder CHEM 5181: Mass Spectrometry & Chromatography Prof. Jose-Luis Jimenez Last Update: Oct. 014 Some slides from Dr. Joel Kimmel (007) MS Interpretation

More information

Ion sources. Ionization and desorption methods

Ion sources. Ionization and desorption methods Ion sources Ionization and desorption methods 1 2 Processes in ion sources 3 Ionization/ desorption Ionization Desorption methods Electron impact ionization Chemical ionization Electro-spray ionisation

More information

CHAPTER D3 TOF ION OPTICS

CHAPTER D3 TOF ION OPTICS Back to Basics Section D: Ion Optics CHAPTER D3 TOF ION OPTICS TABLE OF CONTENTS QuickGuide...399 Summary...401 Background...403 EquationsofMotionofIons...403 Resolution...405 Reflectron...407 Comparison

More information

Propose a structure for an alcohol, C4H10O, that has the following

Propose a structure for an alcohol, C4H10O, that has the following Propose a structure for an alcohol, C4H10O, that has the following 13CNMR spectral data: Broadband _ decoupled 13CNMR: 19.0, 31.7, 69.5 б DEPT _90: 31.7 б DEPT _ 135: positive peak at 19.0 & 31.7 б, negative

More information

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC

LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY (LC/MS) Presented by: Dr. T. Nageswara Rao M.Pharm PhD KTPC INTRODUCTION Principle: LC/MS is a technique that combines physical separation capabilities of liquid

More information

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry

15.04.jpg. Mass spectrometry. Electron impact Mass spectrometry Mass spectrometry Electron impact Mass spectrometry 70 ev = 1614 kcal/mol - contrast with energy from IR (1-10 kcal/mol) or NMR (0.2 cal/mol) - typical C-C bond = 100 kcal/mol Point: lots of energy in

More information

Quadrupole Mass Spectrometry Concepts. Mass spectrometers for residual gas analysis: Intermediate Level Users Guide

Quadrupole Mass Spectrometry Concepts. Mass spectrometers for residual gas analysis: Intermediate Level Users Guide Quadrupole Mass Spectrometry Concepts Mass spectrometers for residual gas analysis: Intermediate Level Users Guide What does Residual Gas Analysis allow us to do? RGA is the examination of the molecular

More information

MS Interpretation I. Identification of the Molecular Ion

MS Interpretation I. Identification of the Molecular Ion MS Interpretation I Identification of the Molecular Ion Molecular Ion: EI Requirements for the Molecular Ion Must be the highest m/z peak in the spectrum Highest Isotope Cluster Must be an odd-electron

More information

Secondaryionmassspectrometry

Secondaryionmassspectrometry Secondaryionmassspectrometry (SIMS) 1 Incident Ion Techniques for Surface Composition Analysis Mass spectrometric technique 1. Ionization -Electron ionization (EI) -Chemical ionization (CI) -Field ionization

More information

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy

12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy 12. Structure Determination: Mass Spectrometry and Infrared Spectroscopy Determining the Structure of an Organic Compound The analysis of the outcome of a reaction requires that we know the full structure

More information

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS)

( 1+ A) 2 cos2 θ Incident Ion Techniques for Surface Composition Analysis Ion Scattering Spectroscopy (ISS) 5.16 Incident Ion Techniques for Surface Composition Analysis 5.16.1 Ion Scattering Spectroscopy (ISS) At moderate kinetic energies (few hundred ev to few kev) ion scattered from a surface in simple kinematic

More information

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles

1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles 1.1 Atomic Structure Details of the three Sub-atomic (fundamental) Particles Particle Position Relative Mass Relative Charge Proton Nucleus 1 +1 Neutron Nucleus 1 0 Electron Orbitals 1/1840-1 An atom of

More information

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW

ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW ELEMENT2 High Resolution- ICP-MS INSTRUMENT OVERVIEW Inductively Coupled Plasma Mass Spectrometry (ICP-MS) What is a Plasma? - The magnetic field created by a RF (radio frequency) coil produces

More information

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP

Application Note GA-301E. MBMS for Preformed Ions. Extrel CMS, 575 Epsilon Drive, Pittsburgh, PA I. SAMPLING A CHEMICAL SOUP Application Note MBMS for Preformed Ions, 575 Epsilon Drive, Pittsburgh, PA 15238 (Poster Presented at 45th ASMS Conference on Mass Spectrometry, June 1-5, 1997) In order to accurately characterize a plasma

More information

Mass Spectrometry (MS)

Mass Spectrometry (MS) Kevin Burgess, February 20, 2017 1 Mass Spectrometry (MS) from chapter(s) in the recommended text A. Introduction Kevin Burgess, February 20, 2017 2 B. Components f Mass Spectrometers mass-to-charge. molecular

More information

Skoog/Holler/Crouch Chapter 19 Principles of Instrumental Analysis, 6th ed. CHAPTER 19

Skoog/Holler/Crouch Chapter 19 Principles of Instrumental Analysis, 6th ed. CHAPTER 19 Skoog/Holler/Crouch Chapter 19 Principles of Instrumental Analysis, 6th ed. Instructor s Manual CHAPTER 19 19-1. In a continuous wave NMR experiment, the intensity of the absorption signal is monitored

More information

CEE 772: Instrumental Methods in Environmental Analysis

CEE 772: Instrumental Methods in Environmental Analysis Updated: 10 December 2014 Print version CEE 772: Instrumental Methods in Environmental Analysis Lecture #22 Mass Spectrometry: Chemical Ionization (Skoog,) (Harris, Chapt.) Mercer/Goodwill CEE 772 #22

More information

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS

CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS Back to Basics Section D: Ion Optics CHAPTER D4 ORTHOGONAL TIME OF FLIGHT OPTICS TABLE OF CONTENTS QuickGuide...413 Summary...415 Introduction...417 The physical basis of orthogonal TOF....... 419 Pulsedmainbeamsofions...421

More information