Rethinking Hybridization

Size: px
Start display at page:

Download "Rethinking Hybridization"

Transcription

1 Rethinking Hybridization For more than 60 years, one of the most used concepts to come out of the valence bond model developed by Pauling was that of hybrid orbitals. The ideas of hybridization seemed to be consistent with many experimental observations. Hybrid orbitals were simple to envision, they predicted geometries most of the time for simple p-block compounds and they made the distinction between sigma and pi bonding easy to understand. However, it has always been true that when molecular structures and properties are probed more deeply, the hybrid orbital model particularly the extreme limits of the model presented in introductory and organic chemistry texts presents many difficulties. Some of these difficulties include: 1. Hybridization schemes as typically discussed represent extremes of orbital mixing. An sp 3 orbital set on a carbon atom for example implies that all four hybrid orbitals are constituted identically, and that each has 25% s character and 75% p character. In addition, the directional properties of those orbitals one of the features that make them attractive to chemists imply that all bond angles around the sp 3 hybridized atom will be the same. While this particular argument works fine for methane, it does not work for monochloromethane, where the bond angles are not all the same. The HCH angle is less than the tetrahedral angle and the only way to rationalize this in hybridization terms is to have more p character and less s character in the carbon orbitals interacting with the hydrogen atoms. These fractional hybridization schemes have been used, but have never gained wide acceptance. More dramatic deviations from idealized hybridization are found in the hydrides of the group VI (16) elements. The bond angle in water is o, implying that the oxygen orbitals used to bond with the hydrogens have more than 75% p character. By the time you reach H 2 Se, the bond angle is essentially 90 o, implying that only p orbitals are being used by the Se atom to form bonds. A detailed picture of the bonding in water shows that the OH bonds have predominately O p orbital and H s orbital parentage, with some O s character mixed in, while the lone pairs, typically represented as being equivalent (and in equivalent orbitals in a hybridization scheme) are quite different, one being purely O p in character and the other predominately O s in character with a little bit of p character mixed in. 2. The strict hybrid orbital model is inconsistent with the results of photoelectron spectroscopy. This is observed for many molecules. One of the most dramatic examples is that of methane. Hybrid orbital theory predicts four equivalent bonds in methane. Consequently, the photoelectron spectrum of methane in the bonding region should show a single peak (with associated vibrational structure). This is not the case two peaks are clearly present, and the integrated intensities of those peaks are very close to 3:1. Likewise for water, where hybrid orbital theory would predict two ionizations one from the two equivalent bonding orbitals and one from the equivalent lone pairs four ionizations are observed, consistent with detailed molecular orbital calculations. 3. Hybrid orbital models are inconsistent with group theoretical predictions. The previous examples of methane and water are useful here. In the T d point group of methane the maximum degeneracy is three (a T representation). Rather than four equivalent bonds,

2 molecular orbital theory and group theory predict that the bonding molecular orbitals fall into two sets a triply degenerate T 2 set and a singly degenerate A 1 orbital. This is certainly consistent with the photoelectron spectral results for methane. The four bonds, which arise from the A 1 and T 2 molecular orbital are equivalent, but they arise from molecular orbitals that differ in symmetry and energy. A similar situation is found in water. There are no degenerate irreducible representations in the C 2v point group of the water molecule. Rather the four molecular orbitals in the bonding region have four distinct energies. One of these orbitals, of B 1 symmetry, is a pure p orbital on oxygen, and is therefore one of the lone pairs of electrons. Another orbital, of A 1 symmetry, is composed predominately of oxygen s character, and is best described as the second lone pair. The two orbitals that produce the O-H bonds are of A 1 and B 2 symmetry. As is the case in methane these two orbitals, when taken together, produce two equivalent bonds, but the orbitals themselves are of different symmetry and energy. In the molecular orbital model there is orbital mixing, but that orbital mixing must be based on symmetry. In some molecules that orbital mixing can produce results that appear very similar to a hybrid orbital picture. For example, in carbon monoxide, a hybrid orbital model would invoke sp hybridization on both C and O with the unhybridized p orbitals forming the pi bonds. An examination of the wavefunctions for the molecular orbitals in this molecule shows that the degenerate pi molecular orbitals are indeed formed from C and O p orbitals only, and the singly-degenerate highest occupied molecular orbital (the sigma bond) is formed from s and p orbitals. However, this agreement is purely a consequence of symmetry. An examination of the coefficients in the wavefunctions shows the pi orbitals to be more than 70% oxygen in character and the sigma orbital to be more than 80% carbon in character, and to have essentially no oxygen s character. This latter orbital is best described as being predominately a lone pair located on the carbon atom (and it the electronic rationale for the fact that CO bonds to metal atoms almost exclusively through the C atom as is the case in binding to hemoglobin and in metal carbonyls). So what are we to do? One option is to abandon the hybrid orbital model completely and to make descriptions based solely on the molecular orbital coefficients. Another, and perhaps one that is more palatable to many chemists, is to rethink what we mean by hybridization, and realize that all it really means is that orbitals of the same symmetry have been involved in forming a molecular wavefunction. This approach requires discussing fractional orbital mixing from the outset, and makes use of the results of detailed molecular calculations that though once prohibitive for all but the simplest molecules can down be done in minutes for fairly complicated systems. The importance of symmetry concepts in these arguments cannot be underestimated. From

3 Photoelectron Spectroscopy How do we know if the energy level diagrams have any meaning? The actual energy levels of the MO s in molecules can be determined experimentally by a technique called photoelectron spectroscopy. Such experiments show that the MO approach to the bonding in molecules provides an excellent description of their electronic structure.in the UV-PES experiment, a molecule is bombarded with high energy ultraviolet photons (usually Ephoton= hν= 21.1 ev). When the photon hits an electron in the molecule it transfers all the energy to the electron. Part of the energy (equal to the ionization potential, I, of the MO in which the electron was located) of the photoelectron is used to leave the molecule and the rest is left as kinetic energy (KE). The kinetic energy of the electrons are measured so I can be calculated from the equation:

4 PES Spectrum of Methane Ionization Energy (ev)

5 How to Read The Spartan Output File The pictorial representations of orbitals, the charges on the atoms, the shapes, bond lengths and bond angles that we determine using a program like Spartan are merely the visual manifestation of a complex set of calculations (remember we are attempting to solve the Schrodinger equation for the molecule). Some of the numerical results of those calculations are stored in the output file. Of particular interest to us are the eigenvalues (the energies of the molecular orbitals) and the eigenvectors (the wavefunctions for the molecular orbitals). The eigenvalues are self explanatory, and you can compare them to the orbital energies in the energy level diagram resulting from a particular calculation. Remember that our molecular orbital model constructs model orbitals by taking linear combinations of atomic orbitals (think back to making the MO's of homonuclear diatomics). The eigenfunctions are those linear combinations. The portion of the output file that is of interest to us at this time is the section labeled eigenvalues and eigenvectors. Here is the relevant section from the output file for CO.

6 We infer the origins of any of the molecular orbitals by reading down the appropriate column. For example, orbital 5 is the highest occupied molecular orbital in CO (why do we know this is the case). We would conclude that the wavefunction for orbital 5 was given by: In this case Spartan has chosen the z axis as the internuclear axis. Hence, the negative lobe of p z on one atom is pointing toward the positive lobe of p z on the other atom, so if the p z orbitals have opposite signs, as they do here, the result is a bonding interaction (draw yourself some pictures if this is confusing). Remember that it is the square of the coefficients that tell us about the fraction of a particular atomic orbital in the molecular orbital. So in this case we would say that the molecular orbital we are looking at comes has about 44% C 2s character, 35% C 2p z character, less than 1% O 2s character and about 22% O 2p z character. So this orbital is mostly C in nature (about 80%) and is the reason we consider this highest occupied orbital to be similar to a lone pair of electrons on the C atom. The sum of the squares must add to one, as each AO is used completely in forming the MO s.

7

8

9 Mol. Orbital Symmetry: 1 SI 2 SI 1 PI 1 PI 3 SI 2 PI 2 PI 4 SI Eigenvalue squares sum squares S C Px C Py C Pz C S O Px O Py O Pz O % squares S C Px C Py C Pz C S O Px O Py O Pz O

10 Valence bond theory treatment of a tetrahedral molecule: the bonding in CH4 C 2s 2p C* sp 3 C* (sp 3 ) The overlap of the sp3 hybrid orbitals on C with the 1s orbitals on the H atoms gives four C-H (sp3)- 1s s bonds oriented from each other. This provides the tetrahedral geometry predicted by VSEPR theory.

11 C C* C* 3 4 H 2s 2p sp 3 1s 1s 1s 1s H H C H H

12 MO and Valence Bond

13 MOLECULAR ORBITALS of METHANE Molecular Orbital Coefficients MO: Eigen values: (ev): A1 T2 T2 T2 T2 T2 T2 A1 1 H0 S C1 S C1 PX C1 PY C1 PZ H2 S H3 S H4 S SQUARES MO: Eigen values: (ev): A1 T2 T2 T2 T2 T2 T2 A1 1 H0 S E E C1 S C1 PX E E C1 PY E E C1 PZ H2 S H3 S H4 S % SQUARES MO: Eigen values: (ev): A1 T2 T2 T2 T2 T2 T2 A1 1 H0 S C1 S C1 PX C1 PY C1 PZ H2 S H3 S H4 S

14 Methane Molecular Orbital Diagram (AM1 Level)

15 Walsh Diagrams We can use a Walsh diagram to compare and assess the relative energies of different possible structures. In a Walsh diagram, the relative energies of important MO s are plotted as the value of a metrical parameter (e.g. bond lengths or angles) is changed. The amount of stabilization or destabilization of the MO s is based on the amount of increase or decrease in the in-phase overlap of the AO s used to make each molecular orbital. 10 A u E u 5 A 1g 0 B 1g -5 Energy (ev) å åå å A 2u E u å A u

16 WHAT ABOUT WATER? You can think of this spectrum as having 3 major peaks. The fine structure within each peak arises from vibrational energy, and is not something we'll worry about now. The energies along the x-axis refer to the electron binding energies. The light source used in this experiment is not sufficiently energetic to ionize electrons from the lowest lying molecular orbital. BeH 2 and H 2 O If you are trying to estimate the appropriate geometry for a triatomic molecule using a Walsh diagram, all that is necessary is to correctly determine the number of electrons that will populate the orbitals in the diagram. Then you can estimate which electron configuration will provide the lowest overall energy (and thus the most stable geometry). Orbital overlap analyses such as these allow for the prediction of molecular geometry using the delocalized model for covalent bonding in the same way that VSEPR is used in the localized approach.

17

18

19

20 B 2 H 6 A really strange molecule D 2h What is going on here????????????? Hydrogen can form more than one bond??????? More Lies!!! YES it can!!! Hydrogen can not form more than one standard (2 center-2 electron) bond. But it can form two 3 center 2 electron (3c-2e) bonds.

21

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding Valence Bond Theory Atomic Orbitals are bad mmmkay Overlap and Bonding Lewis taught us to think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals N 2 NH 3 H 2 O Why do they make chemical bonds? 5 Molecular Orbitals Why do they make chemical bonds? Stabilization Bond energy Types of Chemical Bonds Metallic Bond Ionic Bond Covalent Bond Covalent Bond

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Chemistry 2000 Lecture 8: Valence bond theory

Chemistry 2000 Lecture 8: Valence bond theory Chemistry 000 Lecture 8: Valence bond theory Marc R. Roussel January 9, 08 Marc R. Roussel Valence bond theory January 9, 08 / 5 MO theory: a recap A molecular orbital is a one-electron wavefunction which,

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals EXERCISE! Draw the Lewis structure for methane, CH 4. What is the shape of a methane molecule? tetrahedral What are the bond angles? 109.5 o H H C H H Copyright Cengage

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics

Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Theoretical Chemistry - Level II - Practical Class Molecular Orbitals in Diatomics Problem 1 Draw molecular orbital diagrams for O 2 and O 2 +. E / ev dioxygen molecule, O 2 dioxygenyl cation, O 2 + 25

More information

Chapter 14: Phenomena

Chapter 14: Phenomena Chapter 14: Phenomena p p Phenomena: Scientists knew that in order to form a bond, orbitals on two atoms must overlap. However, p x, p y, and p z orbitals are located 90 from each other and compounds like

More information

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text)

Hybridization of Atomic Orbitals. (Chapter 1 in the Klein text) Hybridization of Atomic Orbitals (Chapter 1 in the Klein text) Basic Ideas The atomic structures, from the Periodic Table, of atoms such as C, N, and O do not adequately explain how these atoms use orbitals

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

COVALENT BONDING: ORBITALS

COVALENT BONDING: ORBITALS COVALENT BONDING: ORBITALS The localized electron model views a molecule as a collection of atoms bound together by sharing electrons between their atomic orbitals. The arrangement of valence electrons

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms

Molecular Orbital Theory. Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions between two bonded atoms Molecular Orbital Theory Valence Bond Theory: Electrons are located in discrete pairs between specific atoms Molecular Orbital Theory: Electrons are located in the molecule, not held in discrete regions

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall

Molecular Orbitals. Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Molecular Orbitals Based on Inorganic Chemistry, Miessler and Tarr, 4 th edition, 2011, Pearson Prentice Hall Images from Miessler and Tarr Inorganic Chemistry 2011 obtained from Pearson Education, Inc.

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital

1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Atomic Orbitals 1s atomic orbital 2s atomic orbital 2s atomic orbital (with node) 2px orbital 2py orbital 2pz orbital Valence Bond Theory and ybridized Atomic Orbitals Bonding in 2 1s 1s Atomic Orbital

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1.

The Hückel Approximation Consider a conjugated molecule i.e. a molecule with alternating double and single bonds, as shown in Figure 1. The Hückel Approximation In this exercise you will use a program called Hückel to look at the p molecular orbitals in conjugated molecules. The program calculates the energies and shapes of p (pi) molecular

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

Molecular Physics. Attraction between the ions causes the chemical bond.

Molecular Physics. Attraction between the ions causes the chemical bond. Molecular Physics A molecule is a stable configuration of electron(s) and more than one nucleus. Two types of bonds: covalent and ionic (two extremes of same process) Covalent Bond Electron is in a molecular

More information

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s

σ u * 1s g - gerade u - ungerade * - antibonding σ g 1s One of these two states is a repulsive (dissociative) state. Other excited states can be constructed using linear combinations of other orbitals. Some will be binding and others will be repulsive. Thus

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University Chemistry 431 Lecture 14 Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory NC State University Wave functions as the basis for irreducible representations The energy of the

More information

MITOCW ocw lec28

MITOCW ocw lec28 MITOCW ocw-5.112-lec28 The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general is available

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Ch. 9 Practice Questions

Ch. 9 Practice Questions Ch. 9 Practice Questions 1. The hybridization of the carbon atom in the cation CH + 3 is: A) sp 2 B) sp 3 C) dsp D) sp E) none of these 2. In the molecule C 2 H 4 the valence orbitals of the carbon atoms

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester Christopher J. Cramer. Lecture 30, April 10, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 20056 Christopher J. Cramer Lecture 30, April 10, 2006 Solved Homework The guess MO occupied coefficients were Occupied

More information

3. Molecular structure

3. Molecular structure 3. Molecular structure 1. Molecular structure and covalent bonding theories Valance shell electron pair repulsion (VSEPR) Theory In a molecule composed of a central atom bonded covalently to several peripheral

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chemical Bonding & Structure

Chemical Bonding & Structure Chemical Bonding & Structure Further aspects of covalent bonding and structure Hybridization Ms. Thompson - HL Chemistry Wooster High School Topic 14.2 Hybridization A hybrid orbital results from the mixing

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

1.14 the orbital view of bonding:

1.14 the orbital view of bonding: 1.14 the orbital view of bonding: The sigma bond Dr. Abdullah Saleh/236-3 1 A limitation of Lewis Theory of Bonding It does not explain the three dimensional geometries of molecules! Dr. Abdullah Saleh/236-3

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Organic Chemistry Lecture I. Dr. John D. Spence

Organic Chemistry Lecture I. Dr. John D. Spence HEMISTRY 3 Organic hemistry Lecture I Dr. John D. Spence jdspence@scu.edu jspence@csus.eduedu http://www.csus.edu/indiv/s/spencej What is Organic hemistry? 780 s hemistry of compounds from living organisms

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound.

1. It can help us decide which of several Lewis dot structures is closest to representing the properties of the real compound. Molecular Structure Properties The electron was discovered in the year of 1900, and it took about twenty years for the electronic nature of the chemical bond to come into wide acceptance. Particle-based

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

Valence Bond Model and Hybridization

Valence Bond Model and Hybridization Valence Bond Model and ybridization APPENDIX 4 1 Concepts The key ideas required to understand this section are: Concept Book page reference VSEPR theory 65 More advanced ideas about electronic structure

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso

Molecular Orbital Theory. WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory WX AP Chemistry Chapter 9 Adapted from: Luis Bonilla Abel Perez University of Texas at El Paso Molecular Orbital Theory The goal of molecular orbital theory is to describe molecules

More information

The wavefunction that describes a bonding pair of electrons:

The wavefunction that describes a bonding pair of electrons: 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms

More information

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation

UNIT TWO BOOKLET 1. Molecular Orbitals and Hybridisation DUNCANRIG SECONDARY ADVANCED HIGHER CHEMISTRY UNIT TWO BOOKLET 1 Molecular Orbitals and Hybridisation In the inorganic unit we learned about atomic orbitals and how they could be used to write the electron

More information

Carbon Compounds. Chemical Bonding Part 1b

Carbon Compounds. Chemical Bonding Part 1b Carbon Compounds Chemical Bonding Part 1b Board Notes Introduction to VSEPR Organic Formulas Various Representations " dimethyl ether C 2 H 6 O " propyl alcohol C 3 H 8 O 3D representations " Wedges and

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

7. Arrange the molecular orbitals in order of increasing energy and add the electrons. Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals

More information

Activity Hybrid Atomic Orbitals

Activity Hybrid Atomic Orbitals Activity 201 8 Hybrid Atomic Orbitals Directions: This Guided Learning Activity (GLA) discusses Hybrid Atomic Orbitals, which are the basis for Valence Bond Theory. Part A introduces σ- and π-bonds. Part

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory

Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Chemistry 3211 Coordination Chemistry Part 3 Ligand Field and Molecular Orbital Theory Electronic Structure of Six and Four-Coordinate Complexes Using Crystal Field Theory, we can generate energy level

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

General Chemistry I (2012) Lecture by B. H. Hong

General Chemistry I (2012) Lecture by B. H. Hong 3.8 The Limitations of Lewis's Theory 3.9 Molecular Orbitals The valence-bond (VB) and molecular orbital (MO) theories are both procedures for constructing approximate wavefunctions of electrons. The MO

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 10 Aleksey Kocherzhenko October 7, 2014" Last time " promotion" Promotion and hybridization" [He] 2s 2 2p x 1 2p y 1 2p z0 " 2 unpaired electrons" [He] 2s 1 2p x 1

More information

Chapter 12: Chemical Bonding II: Additional Aspects

Chapter 12: Chemical Bonding II: Additional Aspects General Chemistry Principles and Modern Applications Petrucci Harwood Herring 8 th Edition Chapter 12: Chemical Bonding II: Additional Aspects Philip Dutton University of Windsor, Canada N9B 3P4 Prentice-Hall

More information