The wavefunction that describes a bonding pair of electrons:

Size: px
Start display at page:

Download "The wavefunction that describes a bonding pair of electrons:"

Transcription

1 4.2. Molecular Properties from VB Theory a) Bonding and Bond distances The wavefunction that describes a bonding pair of electrons: Ψ b = a(h 1 ) + b(h 2 ) where h 1 and h 2 are HAOs on adjacent atoms pointing towards each other. (Source: Purcell + Kotz, Inorganic Chemistry, 1977) Bond strength = f(overlap integral S), i.e. the constructive overlap between h 1 and h 2. Q. How does the overlap integral change as a function of different hybridization? e.g., C-H bonds in ethane, ethylene, acetylene 95

2 The more s-character, the larger the overlap integral (up to a point). The more s-character the shorter the bond. In general: Shorter bonds are stronger bonds (which does not necessarily correlate with overall reactivity!!!). (Source: A. Macoll, Trans. Faraday Soc., Vol. 46, 369, (1950). C(sp n ) r CC [Å] E(C-C) [kcal/mole] H-C C-H sp H 2 C=CH 2 sp H 3 CCH 3 sp Why bonds with more s-character are shorter: (Source: Purcell + Kotz, Inorganic Chemistry, 1977) Positive overlap continuously increases for s-orbitals, but goes through a maximum for p-orbitals! 96

3 Concept of isovalent hybdridization: BENT S RULES (cf. H.A. Bent, Chem. Rev., 61, 275, (1961)) So far we ve only considered high symmetry systems EX n or X n E-EX n. What happens in EX m Y n? The more electronegative an atom X or Y bound to a central atom E, the greater will be its demand for electron density from the central atom. From the concept of orbital electronegativity: EN (s) > EN (p) > EN (d ) the more the s-character in a hybrid orbital, the greater its electronegativity. Recall: Mulliken electronegativities of carbon: (sp) 2 π ev 5.7 ev (sp 2 ) 3 π ev 5.6 ev (sp 3 ) ev Central atom E will direct more p (and less s) character towards the more electronegative atom (and vice versa) Lone pairs will be in orbitals with more s-character. (Think of a lone pair as a bonding pair to a very electro-positive atom ). fine tuning of VSEPR structures e.g. PCl 5 : Note that phosphorus pentachloride exists as a neutral PCl 5 molecule in the gas phase and as ionic [PCl 4 + ][PCl 6 - ] in the solid state. Q. Can you predict the structure of SbF 2 Br 3 based on isovalent hybridization? Q. Can you predict the structure of SF 4? 97

4 b) Molecular Dipole Moments Rationalized by VB Theory Need to find the centers of electronic (-ve) and nuclear (+ve) charge in the molecule as determined by the molecular structure and e - -distribution. ( hmm, wasn t there another concept that we used for this as well?) Consider each bond and lone-pair separately ( essence of VB theory). Def. of dipole: µ = n r where n = number of charges r= distance between charges Lone pair dipoles: µ lp = 2e<r> <r> = average value of r Lone pair dipoles are fairly large. Absolute size varies with hybrid character: sp > sp 2 > sp Debye Note: Dipole moments are expressed in Debye units. 1 Debye = 10-8 pm esu Example: Two charges equal in magnitude to the charge of an electron (4.8 x electrostatic units esu) and separated by a distance of 91.7 pm (interatomic distance of HF molecule) give a dipole of 4.4 Debye. The value 4.4 Debye represents the expected dipole moment for 100% ionic H + F -. The observed dipole moment for HF is 1.98 Debye. Therefore, the H-F bond has 1.98/4.4 = 45% ionic character. Okay, now let s look at how HAO s are useful for explaining lone pair dipole moments 98

5 One of the quantum mechanical postulates is that the average or expectation value of any observable property O is given by: where is the operator that corresponds to the property O (e.g. the Hamiltonian for the energy of the system, or the distance between charge centroids) and ψ is the state function (i.e. wavefunction) of the system. Consider an sp hybrid orbital: Total orbital: φ n = c s φ s + c p φ p Average (= quantum mechanical expectation) value of r for an sp hybrid orbital: The last equality makes the approximation: <r> p <r> s Furthermore because of normalization: c s 2 + c p 2 = 1 Thus: Because the s-orbital is centrosymmetric (i.e., <r s > = 0), the only dipole contribution comes from the hybrid orbital and the dipole is simply µ = 2 e <r> h = 4 e c s c p <r> sp i.e., only the interference integral that describes the hybrid contributes to the dipole. POINT: s and p orbitals are centrosymmetric. HAO s are not and therefore can be invoked in the explanation of dipoles. 99

6 Bond pair dipoles: more difficult to estimate Need to identify the charge centers along a bond: +ve: In 1 st approximation simply the halfway point of the bond -ve: Need to know the electron density distribution along the bond as f(r) Consider bond H-E, where E = any element except hydrogen: Expectation value of r (as before): ; φ Eh = sp-hybrid orbital on E Physical meaning of all the terms: a 2 <r> H b 2 <r> E 2ab<r> HE electron density contribution of the hydrogen 1s AO to center of ve charge electron density contribution of the E sp-hybrid orbital to center of ve charge electron density contribution of the overlap density to center of ve charge 2+ = positive charge midpoint (because we are dealing with electron pairs, we must count up the positive charge in pairs as well). R = distance between nuclei 100

7 From figure: - The electron density center for hydrogen is at <r> H = -(R/2) - The electron density center for the hybrid orbital is at (using the result for r sp from the derivatization for the lone pair): For the complete electron pair: <r> E = <r> s + 2c s c p <r> sp = R/2 + 2 c s c p <r> sp where the substitution i = b 2 - a 2 is a measure of the ionic character of the bond: a 2 = b 2 i = 0 purely covalent bond a 2 or b 2 = 1 i = 1 purely ionic bond (also: a 2 + b 2 = 1) In summary: i(r/2) 2ab<r> HE 2b 2 c s c p <r> sp orientation of the bond-dipole to the more electronegative atom contribution from the overlap density of both atoms in the bond to the center of negative charge along the bond contribution from the hybrid orbital itself on E to the charge center; orientation depends on the radial distribution of electron density in φ E. (non-existent for φ 1s because of radial symmetry) The orientation and size of a bond-dipole moment cannot solely be predicted on the basis of the difference in EN values of the two atoms involved!!! Have to consider the charge distribution contributions from the orbitals involved, which can lead to a dipole that is reversed from the one expected based on ΔEN!!! 101

8 In general: LP dipole moments >> BP dipole moments In bonds of the type E 1 -E 2 (E 1 E 2 ) with hybrid orbitals from both atoms forming the bond, the hybrid contributions to the dipole moment tend to cancel. Examples: NH 3 vs. NF 3 µ = 1.5 D µ = 0.2 D Χ N > Χ H Χ N < Χ F no hybrid dipole moment on H Bent s rule requires more s-character on N LP overall weak BP dipole moment dominated by LP dipole moment F atoms have LP aligned with bond overall weak N LP dipole moment dominated by BP NF and LP F overall dipole moment orientation?? Carbon monoxide: Lone pairs measured dipole moment µ = 0.1 D, i.e. very small Bond pairs From Bent s rule: both sp lone pairs have more than 50 % s-character with carbon more so than oxygen dipole towards oxygen but: C(sp) more diffuse (i.e. spreads further out) dipole towards carbon net effect µ 0 Dominated by ΔEN: More compact oxygen orbitals dipole towards oxygen but: +ve charge center closer to the oxygen (higher nuclear charge) net effect µ 0 and now you understand why CO is a gas!!! 102

9 c) Bond Energies and VB theory VB Theory microscopic picture/molecular scale isolated, localized electron pairs form bonds Thermodynamics macroscopic picture/bulk scale bond energies within a molecule are additive Diatomic molecules: Experimentally, bond energy (D) is simply the internal energy change required to separate the gas phase molecule into its two constituent atoms (also in the gas phase.) A-B(g) A(g) + B(g) D AB = ΔE (Note: D is discrete bond energy, E is average) Polyatomic molecules: 1) Removal of one terminal atom to leave a fragment AB n-1 alters the bonding between A and the remaining B atoms (changes hybridization / multiple bonding). 2) Ground state electron configuration of the dissociated B atom may be quite different from its valence state when bound to A. The valence state promotion energy for B may make a significant contribution to the bond energy D. Consider a simple binary compound AB n. AB n (g) AB n-1 (g) + B(g) D AB =?? D AB is a function of: Hybridization state of AB n and AB n-1 Changes in multiple bonding between AB caused by removal of one B Electrostatic configuration of B alone vs. B in AB n (in particular of the promotion energy B groundstate B hybrid ). Example: Stepwise dissociation of CO 2 (gasphase) Step 1: O=C=O C O + O D CO = 127 kcal/mol Step 2: C O C + O D CO = 256 kcal/mol In step 1: Breaking of one bond followed by configuration relaxation: O: (sp 2 ) 1 (sp 2 ) 2 (sp 2 ) 2 π 1 (= s 5/3 p 13/3 ) s 2 p 4 ( 3 P) from hybrid to ground state atomic C: (sp) 1 (sp) 1 (π) 1 (π) 1 (= s 1 p 3 ) (sp) 1 (sp) 2 π 1 (= s 1.5 p 2.5 ) from double to triple bonding In step 2: Breaking of second bond and relaxation of both atoms into g. s. atomic configuration DO THIS FOR YOURSELF AT HOME 103

10 A reverse example: Cl-Hg II -Cl Hg I -Cl + Cl Hg Cl D HgCl = 81 kcal/mol D HgCl = 25 kcal/mol - Can you write down the electron configurations of this example? - Why is the second step energetically easier? Important conclusion: Average bond energies and individual bond energies in AB n systems are not the same!!! Average bond energies (thermodynamics): AB n (g) A(g) + n B(g) E A = 1/n ΔE Expect major consequences on stability/reactivity of molecules in general!!! Consider the reaction PCl 5 PCl 4 + Cl What are the structures of PCl 5 and PCl 4? Based on VB are all the P-Cl bonds equally strong? Thought experiment: No matter which P-Cl is broken ΔE is always the same. This is a requirement of the macroscopically observed real experimental value but how can that be?? In summary: Experimental bond energies are composed of the actual bond dissociation energy and the energy terms that account for changes in the electronic configurations of the participating atoms and/or molecular fragments. ( to be really correct would also have to consider vibrational and rotational states ) 104

11 More examples: Series of EH n molecules with n = 2, 3, or 4 (NOTE: These are called hydrides.) Compare CH 4 vs. SiH 4 : Average <E EH > [kcal/mole] Promotion energy [kcal/mole] s 2 p n (n = 2,3,4) 4 sp 3 CH SiH NH PH OH SH <E CH > = 4 99 = 4 E * CH P C 396 = 4 E * CH 150 E * CH = 137 kcal/mole 4 <E SiH > = 4 76 = 4 E * SiH P Si 304 = 4 E * Si 115 E * Si = 105 kcal/mole The C-H bond is truly stronger than the Si-H bond. Also true for N/P and O/S pairs. Why? Because of greater diffuseness of the atomic orbitals of heavier elements see below! Consequence of more diffuse orbitals on heavier elements resulting in smaller overlap integrals and thus in weaker bonds: (Source: Purcell + Kotz, Inorganic Chemistry, 1977) 105

12 4.3 Concept of Isolobality (Nobel laureate Roald Hoffman) See: Angew. Chem. Int. Ed. 1982, 21, 711. Contributes to the understanding of parallels between organic and inorganic chemistry. Structurally analogous fragments of molecules are described as isolobal. Studying isolobal molecular fragments can help suggest patterns of bonding / reactivity. Concept of hybridization can be used to identify isolobality. Def. Two molecular fragments are said to isolobal if the number, symmetry properties, approximated energy and shape of the frontier orbitals and the number of electrons in them are similar (NOT identical, but similar). Example: The following orbitals have σ-type symmetry, are similar in energy, and are occupied by one electron therefore we can expect analogous bonding properties. We can also make the isolobal analogy with the following two and three orbitals examples: NOTE: Although the isolobal analogy can give clues about what kind of compounds might be expected to exist, it is only a useful tool and not a hard and fast rule. HOMEWORK: Exercise

13 4.4. Limitations of VB Theory Valence shell expansion is often required to draw satisfactory Lewis diagrams, e.g. for PCl 5 and SF 6, even though the incorporation of d-orbitals does energetically not make sense the process: s 2 p n d 0 s 2 p n-m d m Costs too much hybridization energy. So how can it be that e.g. sulfur can bind six fluorine atoms??? Why is O 2(g) paramagnetic (i.e., has unpaired electrons)? How can we describe the bonding in B 2 H 6 using only H 1s orbitals? How can we explain these bond angles through hybridization? No hybridization can explain bond angles < 90!! We need a new theory! 107

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Polarity in Molecules!

Polarity in Molecules! Chapter 9 part 2: Polarity in Molecules, Valence Bond Theory! Read:!!BLB 9.3 5! W:!!BLB 9.33, 35, 38!!!Packet 9:8-11! Know:! bond angles and geometry! polarity of molecules! Polarity in Molecules! " Just

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chemical Bonding. The Octet Rule

Chemical Bonding. The Octet Rule Chemical Bonding There are basically two types of chemical bonds: 1. Covalent bonds electrons are shared by more than one nucleus 2. Ionic bonds electrostatic attraction between ions creates chemical bond

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Molecular Structure and Bonding- 2. Assis.Prof.Dr.Mohammed Hassan Lecture 3

Molecular Structure and Bonding- 2. Assis.Prof.Dr.Mohammed Hassan Lecture 3 Molecular Structure and Bonding- 2 Assis.Prof.Dr.Mohammed Hassan Lecture 3 Hybridization of atomic orbitals Orbital hybridization was proposed to explain the geometry of polyatomic molecules. Covalent

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB POLAR AND NON POLAR BONDS BOND POLARITY 1. Atoms with different electronegative from polar bonds (difference in EN) 2. Depicted as polar arrow : 3. Example

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

Chapter 16 Covalent Bonding

Chapter 16 Covalent Bonding Chemistry/ PEP Name: Date: Chapter 16 Covalent Bonding Chapter 16: 1 26; 28, 30, 31, 35-37, 40, 43-46, Extra Credit: 50-53, 55, 56, 58, 59, 62-67 Section 16.1 The Nature of Covalent Bonding Practice Problems

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison

Matter and Materials ATOMIC BONDS. Grade Sutherland high school Mrs. Harrison Matter and Materials ATOMIC BONDS Grade 11 2018 Sutherland high school Mrs. Harrison 1. Chemical Bonds Why would atoms want to bond? Atoms are not generally found alone. They are found as components of

More information

Periodic Trends. Homework: Lewis Theory. Elements of his theory:

Periodic Trends. Homework: Lewis Theory. Elements of his theory: Periodic Trends There are various trends on the periodic table that need to be understood to explain chemical bonding. These include: Atomic/Ionic Radius Ionization Energy Electronegativity Electron Affinity

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Unit IV. Covalent Bonding

Unit IV. Covalent Bonding Unit IV. Covalent Bonding READING ASSIGNMENT 1: Read 16.1 pp. 437-451. Complete section review questions 1-12. Lewis Theory of Covalent Bonding- The driving force of bond formation is the desire of each

More information

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry

Atomic Structure and Bonding. Chapter 1 Organic Chemistry, 8 th Edition John McMurry Atomic Structure and Bonding Chapter 1 Organic Chemistry, 8 th Edition John McMurry 1 Common Elements Groups First row Second row In most organic molecules carbon is combined with relatively few elements

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron pair repulsion (VSEPR)

More information

CHAPTER 6 CHEMICAL BONDING TEXT BOOK EXERCISE Q.1. Select the correct statement. i. An ionic compound A + B - is most likely to be formed when ii. iii. a. the ionization energy of A is high and electron

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Chemical Bonding Chapter 8

Chemical Bonding Chapter 8 Chemical Bonding Chapter 8 Get your Clicker, 2 magnets, goggles and your handouts Nov 15 6:15 PM Recall that: Ionic-Involves the transfer of electrons - forms between a metal and a nonmetal Covalent-Involves

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Its Bonding Time. Chemical Bonds CH 12

Its Bonding Time. Chemical Bonds CH 12 Its Bonding Time Chemical Bonds CH 12 What is a chemical bond? Octet Rule: Chemical compounds tend to form so that each atom, by gaining, losing, or sharing electrons, has an octet of electrons in its

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions

K + 09/04/2018. Structure of Organic Molecules. Ionic bond. The compound potassium fluoride consists of potassium (K+) ions and fluoride (F-) ions Structure of rganic Molecules Ref. books: 1. A text book of rganic Chemistry - B.S. Bahl and Arun Bahl 2. rganic Chemistry - R.T. Morrison and R. N. Boyd Atom: The smallest part of an element that can

More information

with the larger dimerization energy also exhibits the larger structural changes.

with the larger dimerization energy also exhibits the larger structural changes. A7. Looking at the image and table provided below, it is apparent that the monomer and dimer are structurally almost identical. Although angular and dihedral data were not included, these data are also

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Questions to Consider What is meant by the term chemical bond? Why do atoms bond with each other to form compounds? How do atoms bond with each other to form

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds

Chapter 6. Table of Contents. Section 1 Covalent Bonds. Section 2 Drawing and Naming Molecules. Section 3 Molecular Shapes. Covalent Compounds Covalent Compounds Table of Contents Section 1 Covalent Bonds Section 2 Drawing and Naming Molecules Section 3 Molecular Shapes Section 1 Covalent Bonds Bellringer Make a list of the elements that form

More information

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond

CHEMISTRY Matter and Change Section 8.1 The Covalent Bond CHEMISTRY Matter and Change Section Chapter 8: Covalent Bonding CHAPTER 8 Table Of Contents Section 8.2 Section 8.3 Section 8.4 Section 8.5 Naming Molecules Molecular Structures Molecular Shapes Electronegativity

More information

Structure and Bonding of Organic Molecules

Structure and Bonding of Organic Molecules Chem 220 Notes Page 1 Structure and Bonding of Organic Molecules I. Types of Chemical Bonds A. Why do atoms forms bonds? Atoms want to have the same number of electrons as the nearest noble gas atom (noble

More information

Ionic Versus Covalent Bonding

Ionic Versus Covalent Bonding Ionic Versus Covalent Bonding Ionic compounds are formed when electrons are transferred from one atom to another The transfer of electrons forms ions Each ion is isoelectronic with a noble gas Electrostatic

More information

Polar bonds, polar molecules and the shape of molecules.

Polar bonds, polar molecules and the shape of molecules. Chapter 3 Polar bonds, polar molecules and the shape of molecules. Polar and non-polar bonds In homonuclear diatomic molecules such as H 2 or Cl 2 electrons are shared equally between equal atoms. The

More information

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds: CHEMICAL BONDS Chemical Bonds: The strong electrostatic forces of attraction holding atoms together in a unit are called chemical bonds (EU 2.C). Reflect a balance in the attractive and repulsive forces

More information

Chemical Bonding AP Chemistry Ms. Grobsky

Chemical Bonding AP Chemistry Ms. Grobsky Chemical Bonding AP Chemistry Ms. Grobsky What Determines the Type of Bonding in Any Substance? Why do Atoms Bond? The key to answering the first question are found in the electronic structure of the atoms

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.2 Electronegativity 8.3 Bond Polarity and Dipole Moments 8.4 Ions: Electron Configurations and Sizes 8.5 Energy

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

CHAPTER 12: CHEMICAL BONDING

CHAPTER 12: CHEMICAL BONDING CHAPTER 12: CHEMICAL BONDING Problems: 1-26, 27c, 28, 33-34, 35b, 36(a-c), 37(a,b,d), 38a, 39-40, 41-42(a,c), 43-58, 67-74 12.1 THE CHEMICAL BOND CONCEPT chemical bond: what holds atoms or ions together

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

structure prediction, chemical bonding

structure prediction, chemical bonding 1 structure prediction, chemical bonding 2 Lewis structures Atoms listed in order of increasing EN, no connectivity implied CSPF (PNF 2 ) 4 3 after the Lewis Structure determine the steric number number

More information

Section 8.13 Molecular Hybridization Structure: The VSEPR Model

Section 8.13 Molecular Hybridization Structure: The VSEPR Model Molecular Hybridization Structure: The VSEPR Model Covalent bonds are formed by the sharing of electrons; orbitals overlap to allow for this sharing. The mixing of two or more atomic orbitals of an atom

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

Chapter 8. Bonding: General Concepts

Chapter 8. Bonding: General Concepts Chapter 8 Bonding: General Concepts Chapter 8 Table of Contents 8.1 Types of Chemical Bonds 8.3 Bond Polarity and Dipole Moments 8.5 Energy Effects in Binary Ionic Compounds 8.6 Partial Ionic Character

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

sharing or transferring electrons between atoms covalent ionic polar covalent Quantitative description: Quantum mechanics

sharing or transferring electrons between atoms covalent ionic polar covalent Quantitative description: Quantum mechanics Chapter. 3 Chemical Bonding: The Classical Description Two or more atoms approach -> their electrons interact and form new arrangements of electrons with lower total potential energy than isolated atoms

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure Cartoon courtesy of NearingZero.net Chemical Bonding and Molecular Structure Chemical Bonds Forces that hold groups of atoms together and make them function as a unit. 3 Major Types: Ionic bonds transfer

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

Bond characteristics: Bond length, Bond Enthalphy, Bond angle, Bond order 1. Bond Angles i. It is the angle between any two bonded atoms at central atom in a molecule. ii. Bond angles of molecule may (or)

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

5 Polyatomic molecules

5 Polyatomic molecules s manual for Burrows et.al. Chemistry 3 Third edition 5 Polyatomic molecules Answers to worked examples WE 5.1 Formal charges in N 2 (on p. 221 in Chemistry 3 ) Use formal charges to decide whether oxygen

More information

Chapters 9&10 Structure and Bonding Theories

Chapters 9&10 Structure and Bonding Theories Chapters 9&10 Structure and Bonding Theories Ionic Radii Ions, just like atoms, follow a periodic trend in their radii. The metal ions in a given period are smaller than the non-metal ions in the same

More information

Covalent Bonding 10/29/2013

Covalent Bonding 10/29/2013 Bond Energies or Bond Dissociation Energies Tables 8.4 and 8.5 on page 72 gives a list of the energy required to dissociate or break bonds. This value is used to determine whether covalent bonds will form

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Inorganic Chemistry A. Cl and 37 Cl are and

Inorganic Chemistry A. Cl and 37 Cl are and S e l f - s t u d y e x e r c i s e s 1 Inorganic Chemistry A Self-study exercises Chapters 1 and 2 1. Calculate the value of A r for naturally occurring chlorine if the distribution of isotopes is 75.77%

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules Bond order, bond lengths,

More information

Chapter Seven. Chemical Bonding and Molecular Structure. Chapter Seven Slide 1 of 98

Chapter Seven. Chemical Bonding and Molecular Structure. Chapter Seven Slide 1 of 98 Chapter Seven Chemical Bonding and Molecular Structure Chapter Seven Slide 1 of 98 Chemical Bonds: A Preview Forces called chemical bonds hold atoms together in molecules and keep ions in place in solid

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

Chapter 8 Covalent Boding

Chapter 8 Covalent Boding Chapter 8 Covalent Boding Molecules & Molecular Compounds In nature, matter takes many forms. The noble gases exist as atoms. They are monatomic; monatomic they consist of single atoms. Hydrogen chloride

More information

BONDING THEORIES Chapter , Carey

BONDING THEORIES Chapter , Carey BONDING THEORIES Chapter 10.6-10.7, Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons?

REVIEW: VALENCE ELECTRONS CHEMICAL BONDS: LEWIS SYMBOLS: CHEMICAL BONDING. What are valence electrons? REVIEW: VALENCE ELECTRONS 13 CHEMICAL BONDING What are valence electrons? Which groups on the periodic table readily give up electrons? What group readily accepts electrons? CHEMICAL BONDS: What are chemical

More information

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 7 Chemical Bonding and Molecular Structure Chapter 7 Chemical Bonding and Molecular Structure Three Types of Chemical Bonding (1) Ionic: formed by electron transfer (2) Covalent: formed by electron sharing (3) Metallic: attraction between metal

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Chapter 1: Structure and Bonding

Chapter 1: Structure and Bonding 1. What is the ground-state electronic configuration of a carbon atom? A) 1s 2, 2s 2, 2p 5 B) 1s 2, 2s 2, 2p 2 C) 1s 2, 2s 2, 2p 6 D) 1s 2, 2s 2, 2p 4 2. What is the ground-state electronic configuration

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

Chapter 7. Ionic & Covalent Bonds

Chapter 7. Ionic & Covalent Bonds Chapter 7 Ionic & Covalent Bonds Ionic Compounds Covalent Compounds 7.1 EN difference and bond character >1.7 = ionic 0.4 1.7 = polar covalent 1.7 Electrons not shared at

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Unit 9: CHEMICAL BONDING

Unit 9: CHEMICAL BONDING Unit 9: CHEMICAL BONDING 1 Unit 9: Bonding: 1. Electronegativity 2. Intramolecular Bonding 3. Intermolecular Bonding 4. Drawing Lewis Structures 5. Lewis Structures for Polyatomic Ions 6. Exceptions to

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS

CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS 1 CHEM 101: CHAPTER 11: CHEMICAL BONDS: THE FORMATION OF COMPOUNDS FROM ATOMS PERIODIC TRENDS: See pages 214-216, 221 Table 11.3, and 227 + 228 of text. Lewis Structures of Atoms: The Lewis Dot Diagram

More information

Bonding - Ch. 7. Types of Bonding

Bonding - Ch. 7. Types of Bonding Types of Bonding I. holds everything together! II. All bonding occurs because of III. Electronegativity difference and bond character A. A between two atoms results in a when those two atoms form a bond.

More information

Lecture 17: VSEPR & polarity 2

Lecture 17: VSEPR & polarity 2 Lecture 17: VSEPR & polarity 2 Read: BLB 9.3 HW: BLB 9.33,35,38 Sup 9:8 11 molecular geometry molecular polarity Exam #2: Monday, March 2 @ 6:30; review previous material, so you UNDERSTAND what we ve

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Electronegativity (MHR Text p ) Draw an electron dot formula for HCl.

Electronegativity (MHR Text p ) Draw an electron dot formula for HCl. http://www.youtube.com/user/kosasihiskandarsjah#p/u/45/kj3o0xvhvqq Electronegativity (MHR Text p. 174 175) Draw an electron dot formula for HCl. The formula suggests that the pair of electrons, which constitutes

More information

***Occurs when atoms of elements combine together to form compounds.*****

***Occurs when atoms of elements combine together to form compounds.***** CHEMICAL BONDING ***Occurs when atoms of elements combine together to form compounds.***** Formation of compounds involve adjustments in the position of one or more valence electrons. PE is lower in bonded

More information

Chapter 7 Chemical Bonding

Chapter 7 Chemical Bonding Chapter 7 Chemical Bonding 7.1 Ionic Bonding Octet rule: In forming compounds atoms lose, gain or share electrons to attain a noble gas configuration with 8 electrons in their outer shell (s 2 p 6 ), except

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds David A. Katz Pima Community College Tucson, AZ Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction

More information

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding

Chemistry 121: Topic 4 - Chemical Bonding Topic 4: Chemical Bonding Topic 4: Chemical Bonding 4.0 Ionic and covalent bonds; Properties of covalent and ionic compounds 4.1 Lewis structures, the octet rule. 4.2 Molecular geometry: the VSEPR approach. Molecular polarity.

More information

HYBRIDIZATION THEORY

HYBRIDIZATION THEORY HYBRIDIZATION THEORY According to carbon's orbital diagram, it should only be able to form two bonds... 1s 2s 2p But we know carbon forms 4 bonds, not 2!!! Dec 5 8:19 PM HYBRIDIZATION THEORY Scientists

More information

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved.

Chemical Bonding 4.8. Valence Bond Theory Hybrid Orbital Theory Multiple Bonds High School Chem Solutions. All rights reserved. Chemical Bonding 4.8 Valence Bond Theory Hybrid Orbital Theory Multiple Bonds Valence Bond Theory Combines Lewis theory of filling octets by sharing pairs of electrons with the electron configuration of

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information