BONDING THEORIES Chapter , Carey

Size: px
Start display at page:

Download "BONDING THEORIES Chapter , Carey"

Transcription

1 BONDING THEORIES Chapter , Carey The Covalent Chemical Bond (9.2) FIG I Potential Energy Change to Form H2 What is a chemical bond? Why do chemical bonds occur? Descriptions of bonding: Valence Bond Theory molecule - collection of atoms with localized bonds between pairs of atoms bonds formed by overlap of atomic orbitals on adjacent atoms (constructive interference of wave functions) orbitals refined by hybridization Molecular Orbital Theory molecule - collection of nuclei valence electrons occupy molecular orbitals that extend over entire molecule molecular orbitals formed from a combination of atomic orbitals Valence Bond Theory 1. Lewis structures (based on valence electrons) octet rule bonding, lone pairs single, double, triple bonds formal charges: (FC = GN # lone electrons 1/2 # bonding electrons) resonance structures valence shell expansion (only 3rd period when more than four atoms are attached to a central atom or a formal charge separation exists) electron deficient atoms: Be - 4; B, Al Valence Shell Electron Pair Repulsion (VSEPR) Theory repulsions: BP/BP < BP/LP < LP/LP number of electron pairs (steric number) => electronic geometry molecular geometry (shape) => bond angles, distortions electronegativity => bond polarity molecular polarity => dipole moment 3. Bonding (based on atomic orbitals of valence electrons) overlap of atomic orbitals on adjacent atoms when necessary, hybridize orbitals

2 - 2 - Valence Bond Theory: Orbital Overlap as a Chemical Bond (10.6) obtain orbitals from atomic electron configuration of valence electrons bond = overlap (constructive interference) of atomic orbitals on adjacent atoms two electrons of opposite spin can occupy the overlapped orbital "singly" connected bond is a sigma (σ) bond it freely rotates without breaking the bond FIG II VB Description of H2 H: ls VB Description of HF EX 1. Sketch the valence bond description for the H F bond in HF. F: 1s 2 2s 2 2p x 2 2p y 2 2p z Put each valence electron in its proper orbital. sigma, σ, bond FIG III VB Description of F2 F: 1s 2 2s 2 2px 2 2py 2 2pz overlap of two atomic orbitals sigma, σ, bond VB Description of H2O EX 2. How many valence electrons does H 2O have? Sketch the VB description for H 2O. What are the bond angles? O: 1s 2 2s 2 2p x2 2p y2p z Something is wrong! We do not predict the correct bond angles!

3 - 3 - Hybridization and the Valence Bond Theory: Hybridization of Atomic Orbitals Refinement (Correction) of Simple Valence Bond Approach (10.7) steric number (SN) = number of bonded atoms + number of lone pairs FIG IV sp Hybridization BeH2 (SN Be = 2 => linear => sp hybridization) Be: ls 2 2s 2 bond on right left bond right bond EX 3. Draw Lewis structure; use VSEPR. What is SN for Be (= # "equivalent" Be orbitals needed = # Be AOs to be mixed)? Which Be AO s are they? How many valence e - s does Be have? How many Be e - s go in each mixed (hybridized) orbital? FIG V - sp 2 Hybridization BF3 (SN B = 3 => trigonal planar => sp 2 hybridization) B: ls 2 2s 2 2p EX 4. Draw Lewis structure; use VSEPR. What is SN for B (= # "equivalent" B orbitals needed = # B AOs to be mixed)? Which B AO s are they? How many valence e - does B have? How many B e - s go in each hybridized orbital?

4 - 4 - FIG VI sp 3 Hybridization CH4 (SN C = 4 => tetrahedral => sp 3 hybridization) C: ls 2 2s 2 2px2py EX 5. Draw Lewis structure; use VSEPR. What is SN for C (= # "equivalent" C orbitals needed = # C AOs to be mixed)? Which C AO s are they? How many valence e - does C have? How many C e - s go in each hybridized orbital? FIG VII sp 3 Hybridization (1s 2 2s 2 CH4 2px2py ; NH3 2px2py2pz ; H2O 2px 2 2py2pz) steric number of C, N, and O all 4 => sp 3 hybridization EX 6. Draw Lewis structure; use VSEPR C N O SN # orbitals needed # AO to be mixed which AO s # valence e - # e - in each hybrid

5 - 5 - FIG VIII sp 3 d Hybridization PCl5 SN P = 5 => trigonal bipyramidal => sp 3 d hybridization FIG IX sp 3 d 2 Hybridization SF6 SN S = 6 => octahedral => sp 3 d 2 hybridization hybridization sp sp 2 sp 3 sp 3 d sp 3 d 2 geometry linear trigonal planar tetrahedral trigonal bipyramidal octahedral Bonding in Valence Bond (VB) Theory bond = overlap of orbitals on adjacent atoms when necessary, hybridize orbitals procedure: draw Lewis structures with all resonance structures use VSEPR to determine geometries assign bonds based upon electron configuration of each atom if unable (or incorrect) => hybridize valence atomic orbitals, usually SN = 2 => sp SN = 5 => sp 3 d SN = 3 => sp 2 SN = 6 => sp 3 d 2 SN = 4 => sp 3 alternate way to draw put electrons in hybrid orbitals following Hund's rule overlap (constructive interference) atomic and/or hybrid orbitals to form bonds

6 - 6 - Carbon Carbon Single Bonds ethane C2H6 FIG X Carbon Carbon Single Bonds ~uniform e - distribution over σ bonds solid/dashed wedge model space-filling model ball-and-stick model EX 7. What is the hybridization of each C atom? What orbitals are overlapped to form the C C bond? Is this a sigma bond? Why? Is there free rotation about this bond or is it hindered? What orbitals are overlapped to form the C H bond? Is this a sigma bond? Valence Bond Treatment of Multiple Bonds more than one bond between atoms often one is a pi (π) bond π bond is "doubly" connected and broken upon rotation FIG XI Pi Bond Formed from Two p Orbitals overlap of two unhybridized p orbitals

7 - 7 - Double Bonds FIG XII An sp 2 Hybridized Carbon (unhybridized) ethylene, C2H4 EX 11. What is the SN of each C atom? What is the hybridization? How many carbon valence electrons are there? In what orbital is each electron? How many σ bond are there? Sketch the signma bonds and be sure to indicate which orbitals are being overlapped. Are all electrons and bonds accounted for? If not, which bonds are remaining? Sketch them. C has 4 valence e -. sp 2 hybridized C has 3 hybrid orbitals in a trigonal planar arrangement, each containing 1 e -, and an unhybridized p orbital with 1 e-. (only a half of the orbitals in the sigma bond are shown) formaldehyde, CH2O don t forget that the lone pairs need to be in orbitals! EX 12. C has 4 valence electrons and O has 6. Draw the Lewis structure for CH 2O and put each electron in its proper orbital. Describe the bonds and tell which orbitals are overlapped to form them FIG XIII Bonding in Formaldehyde, CH2O

8 - 8 - FIG XIV An sp Hybridized Carbon Triple Bonds (2 unhybridized p orbitals) acetylene, C2H2 C has 4 valence e -. sp hybridized C has 2 hybrid orbitals in a linear arrangement, each containing 1 e -, and 2 unhybridized p orbitals each with 1 e-. EX 13. What is the SN of each C atom? What is the hybridization? How many carbon valence electrons are there? In what orbital is each electron? How many σ bonds are there? Sketch the signma bonds and be sure to indicate which orbitals are being overlapped. Are all electrons and bonds accounted for? If not, which bonds are remaining? Sketch them. nitrogen, N2 σ bond from overlap of sp hybridized orbitals sp hybridized N (unhybridized p orbital on N) carbon monoxide, CO 2 π bonds from p orbital overlap bonds and orbitals containing (1 unhybridized p orbital on each N) all valence electrons EX 14. Describe the sigma and pi bonding in N 2 and CO. (1 unhybridized p orbital on each C

9 - 9 - FIG XII An sp 2 Hybridized Oxygen Adjacent Double Bonds (unhybridized) carbon dioxide, CO2 EX 15. Determine the hybridization of each atom, overlap orbitals to make bonds, and fill orbitals with electrons. How many sigma and pi bonds are there? What is the orientation of the pi bonds? Why? (1 unhybridized p orbital on left O) (2 unhybridized P orbitals on C) (1 unhybridized p orbital on right O) FIG XVI Basic Shapes of Organic Molecules

Valence Bond Theory - Description

Valence Bond Theory - Description Bonding and Molecular Structure - PART 2 - Valence Bond Theory and Hybridization 1. Understand and be able to describe the Valence Bond Theory description of covalent bond formation. 2. Understand and

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories molecular shapes the VSEPR model molecular shape and molecular polarity covalent bonding and orbital overlap hybrid orbitals multiple bonds 9.1 Molecular

More information

Covalent Compounds: Bonding Theories and Molecular Structure

Covalent Compounds: Bonding Theories and Molecular Structure CHM 123 Chapter 8 Covalent Compounds: Bonding Theories and Molecular Structure 8.1 Molecular shapes and VSEPR theory VSEPR theory proposes that the geometric arrangement of terminal atoms, or groups of

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Lewis Theory Lewis theory generally predicts trends in properties, but does not give good numerical predictions.

More information

Hybridization of Orbitals

Hybridization of Orbitals Hybridization of Orbitals Structure & Properties of Matter 1 Atomic Orbitals and Bonding Previously: Electron configurations Lewis structures Bonding Shapes of molecules Now: How do atoms form covalent

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline

CHAPTER 5: Bonding Theories - Explaining Molecular Geometry. Chapter Outline CHAPTER 5: Bonding Theories - Explaining Molecular Geometry Chapter Outline 5.1 Molecular Shape 5.2 Valence-Shell Electron-Pair Repulsion Theory (VSEPR) 5.3 Polar Bonds and Polar Molecules» What Makes

More information

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms

Lewis Dot Structures for Methane, CH 4 The central C atom is bonded by single bonds (-) to 4 individual H atoms Chapter 10 (Hill/Petrucci/McCreary/Perry Bonding Theory and Molecular Structure This chapter deals with two additional approaches chemists use to describe chemical bonding: valence-shell electron pair

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures

Lewis Structure. Lewis Structures & VSEPR. Octet & Duet Rules. Steps for drawing Lewis Structures Lewis Structure Lewis Structures & VSEPR Lewis Structures shows how the are arranged among the atoms of a molecule There are rules for Lewis Structures that are based on the formation of a Atoms want to

More information

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION

CHEMISTRY. Chapter 10 Theories of Bonding and Structure. The Molecular Nature of Matter. Jespersen Brady Hyslop SIXTH EDITION CHEMISTRY The Molecular Nature of Matter SIXTH EDITION Jespersen Brady Hyslop Chapter 10 Theories of Bonding and Structure Copyright 2012 by John Wiley & Sons, Inc. Molecular Structures Molecules containing

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Molecular Geometry and Chemical Bonding Theory

Molecular Geometry and Chemical Bonding Theory Molecular Geometry and Chemical Bonding Theory The Valence -Shell Electron -Pair Repulsion (VSEPR) Model predicts the shapes of the molecules and ions by assuming that the valence shell electron pairs

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity

Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity. Molecular Shape and Molecular Polarity Molecular Shape and Molecular Polarity When there is a difference in electronegativity between two atoms, then the bond between them is polar. It is possible for a molecule to contain polar bonds, but

More information

Chemical Bonds, Orbital Shapes, and Orbital Hybridization

Chemical Bonds, Orbital Shapes, and Orbital Hybridization Chemical Bonds, Orbital Shapes, and Orbital Hybridization PRELAB ASSIGNMENT Read the entire laboratory write up. Write an objective and answer the following questions in your laboratory notebook before

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Chapters 8 and 9. Octet Rule Breakers Shapes

Chapters 8 and 9. Octet Rule Breakers Shapes Chapters 8 and 9 Octet Rule Breakers Shapes Bond Energies Bond Energy (review): The energy needed to break one mole of covalent bonds in the gas phase Breaking bonds consumes energy; forming bonds releases

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. How to get the book of

More information

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules

Lecture 16 C1403 October 31, Molecular orbital theory: molecular orbitals and diatomic molecules Lecture 16 C1403 October 31, 2005 18.1 Molecular orbital theory: molecular orbitals and diatomic molecules 18.2 Valence bond theory: hybridized orbitals and polyatomic molecules. From steric number to

More information

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS CHAPTER TEN CHEMICAL BONDING II: AND HYBRIDIZATION O ATOMIC ORBITALS V S E P R VSEPR Theory In VSEPR theory, multiple bonds behave like a single electron pair Valence shell electron pair repulsion (VSEPR)

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210

Lecture outline: Section 9. theory 2. Valence bond theory 3. Molecular orbital theory. S. Ensign, Chem. 1210 Lecture outline: Section 9 Molecular l geometry and bonding theories 1. Valence shell electron pair repulsion theory 2. Valence bond theory 3. Molecular orbital theory 1 Ionic bonding Covalent bonding

More information

Molecular Structure and Orbitals

Molecular Structure and Orbitals CHEM 1411 General Chemistry Chemistry: An Atoms First Approach by Zumdahl 2 5 Molecular Structure and Orbitals Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and

More information

Find the difference in electronegativity between the hydrogen and chlorine atoms

Find the difference in electronegativity between the hydrogen and chlorine atoms Answers Questions 16.2 Molecular polarity 1. Write a dot diagram for the HCl molecule. Find the difference in electronegativity between the hydrogen and chlorine atoms Difference in electronegativity =

More information

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory

Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter 9 Molecular Geometry Valence Bond and Molecular Orbital Theory Chapter Objectives: Learn the basics of Valence Bond Theory and Molecular Orbital Theory and how they are used to model covalent bonding.

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Localized electron model A bond is made when a half-filled orbital of one atom overlaps with a half-filled orbital of another.! Bond: orbitals overlap straight on p

More information

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY

Subtopic 4.2 MOLECULAR SHAPE AND POLARITY Subtopic 4.2 MOLECULAR SHAPE AND POLARITY 1 LEARNING OUTCOMES (covalent bonding) 1. Draw the Lewis structure of covalent molecules (octet rule such as NH 3, CCl 4, H 2 O, CO 2, N 2 O 4, and exception to

More information

Carbon and Its Compounds

Carbon and Its Compounds Chapter 1 Carbon and Its Compounds Copyright 2018 by Nelson Education Limited 1 1.2 Organic Molecules from the Inside Out I: The Modelling of Atoms Copyright 2018 by Nelson Education Limited 2 s orbitals:

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious).

Molecular shape is only discussed when there are three or more atoms connected (diatomic shape is obvious). Chapter 10 Molecular Geometry (Ch9 Jespersen, Ch10 Chang) The arrangement of the atoms of a molecule in space is the molecular geometry. This is what gives the molecules their shape. Molecular shape is

More information

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories C h e m i s t r y 1 A : C h a p t e r 1 0 P a g e 1 Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories Homework: Read Chapter 10: Work out sample/practice

More information

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols

CHEMICAL BONDING. Chemical Bonds. Ionic Bonding. Lewis Symbols CHEMICAL BONDING Chemical Bonds Lewis Symbols Octet Rule whenever possible, valence electrons in covalent compounds distribute so that each main-group element is surrounded by 8 electrons (except hydrogen

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals 1 Chemical Bonding II Molecular Geometry (10.1) Dipole Moments (10.2) Valence Bond Theory (10.3) Hybridization of Atomic Orbitals

More information

CHEM 110 Exam 2 - Practice Test 1 - Solutions

CHEM 110 Exam 2 - Practice Test 1 - Solutions CHEM 110 Exam 2 - Practice Test 1 - Solutions 1D 1 has a triple bond. 2 has a double bond. 3 and 4 have single bonds. The stronger the bond, the shorter the length. 2A A 1:1 ratio means there must be the

More information

Valence Shell Electron Pair repulsion

Valence Shell Electron Pair repulsion Molecular Geometry Valence Shell Electron Pair repulsion The valence shell electron pair repulsion model (VSEPR model) assumes that electron pairs repel one another. (VSEPR) model gives helps determine

More information

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule

Molecular Structure. Valence Bond Theory Overlap of atomic orbitals is a covalent bond that joins atoms together to form a molecule Molecular Structure Topics 3-D structure shape (location of atoms in space) Molecular Geometry Valence Bond Theory Hybrid Orbitals Multiple Bonds VSEPR (Valence Shell Electron Pair Repulsion) Valence Bond

More information

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7

COVALENT BONDING CHEMICAL BONDING I: LEWIS MODEL. Chapter 7 Chapter 7 P a g e 1 COVALENT BONDING Covalent Bonds Covalent bonds occur between two or more nonmetals. The two atoms share electrons between them, composing a molecule. Covalently bonded compounds are

More information

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004

Molecular Geometry and Bonding Theories. Molecular Shapes. Molecular Shapes. Chapter 9 Part 2 November 16 th, 2004 Molecular Geometry and Bonding Theories Chapter 9 Part 2 November 16 th, 2004 8 Molecular Shapes When considering the geometry about the central atom, we consider all electrons (lone pairs and bonding

More information

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure

Chapter Molecules are 3D. Shapes and Bonds. Chapter 9 1. Chemical Bonding and Molecular Structure Chapter 9 Chemical Bonding and Molecular Structure 1 Shape 9.1 Molecules are 3D Angle Linear 180 Planar triangular (trigonal planar) 120 Tetrahedral 109.5 2 Shapes and Bonds Imagine a molecule where the

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. Dr. V.M. Williamson Texas A & M University Student Version Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR

Molecular Geometry. Dr. Williamson s Molecular Geometry Notes. VSEPR: Definition of Terms. VSEPR: Electronic Geometries VSEPR Molecular Geometry Dr. V.M. Williamson Texas A & M University Student Version Valence Shell Electron Pair Repulsion- VSEPR 1. Valence e- to some extent 2. Electron pairs move as far away as possible to

More information

Chapter 10. Geometry

Chapter 10. Geometry Chapter 10 Molec cular Geometry 1 CHAPTER OUTLINE Molecular Geometry Molecular Polarity VSEPR Model Summary of Molecular Shapes Hybridization Molecular Orbital Theory Bond Angles 2 MOLECULAR GEOMETRY Molecular

More information

Localized Electron Model

Localized Electron Model Localized Electron Model Models for Chemical Bonding Localized electron model (Valence bond model) Molecular orbital model Localized Electron Model Useful for explaining the structure of molecules especially

More information

Chapter 9. and Bonding Theories

Chapter 9. and Bonding Theories Chemistry, The Central Science, 11th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 1 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 1 1 / 29 Outline István Szalai (Eötvös University) Lecture 1 2 / 29 Lewis Formulas

More information

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding

Valence Bond Theory. Localized Electron Model. Hybridize the Orbitals! Overlap and Bonding. Atomic Orbitals are. mmmkay. Overlap and Bonding Valence Bond Theory Atomic Orbitals are bad mmmkay Overlap and Bonding Lewis taught us to think of covalent bonds forming through the sharing of electrons by adjacent atoms. In such an approach this can

More information

Chapter 13: Phenomena

Chapter 13: Phenomena Chapter 13: Phenomena Phenomena: Scientists measured the bond angles of some common molecules. In the pictures below each line represents a bond that contains 2 electrons. If multiple lines are drawn together

More information

Valence-Shell Electron-Pair Repulsion Theory (VSEPR)

Valence-Shell Electron-Pair Repulsion Theory (VSEPR) ; Set 09- Molecular Geometry All course materials, including lectures, class notes, quizzes, exams, handouts, presentations, and other materials provided to students for this course are protected intellectual

More information

Activity Hybrid Atomic Orbitals

Activity Hybrid Atomic Orbitals Activity 201 8 Hybrid Atomic Orbitals Directions: This Guided Learning Activity (GLA) discusses Hybrid Atomic Orbitals, which are the basis for Valence Bond Theory. Part A introduces σ- and π-bonds. Part

More information

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013

Chapter 9. and Bonding Theories. Molecular Shapes. What Determines the Shape of a Molecule? 3/8/2013 Chemistry, The Central Science, 10th edition Theodore L. Brown, H. Eugene LeMay, Jr., and Bruce E. Bursten Chapter 9 Theories John D. Bookstaver St. Charles Community College St. Peters, MO 2006, Prentice-Hall,

More information

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2

Molecular Geometry and intermolecular forces. Unit 4 Chapter 9 and 11.2 1 Molecular Geometry and intermolecular forces Unit 4 Chapter 9 and 11.2 2 Unit 4.1 Chapter 9.1-9.3 3 Review of bonding Ionic compound (metal/nonmetal) creates a lattice Formula doesn t tell the exact

More information

CHEMISTRY 112 LECTURE EXAM II Material

CHEMISTRY 112 LECTURE EXAM II Material CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Shapes of Molecules and Hybridization

Shapes of Molecules and Hybridization Shapes of Molecules and Hybridization A. Molecular Geometry Lewis structures provide us with the number and types of bonds around a central atom, as well as any NB electron pairs. They do not tell us the

More information

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons

Ex. 1) F F bond in F = 0 < % covalent, no transfer of electrons #60 Notes Unit 8: Bonding Ch. Bonding I. Bond Character Bonds are usually combinations of ionic and covalent character. The electronegativity difference is used to determine a bond s character. Electronegativity

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules

Organic Chemistry. Review Information for Unit 1. VSEPR Hybrid Orbitals Polar Molecules rganic hemistry Review Information for Unit 1 VSEPR ybrid rbitals Polar Molecules VSEPR The valence shell electron pair repulsion model (VSEPR) can be used to predict the geometry around a particular atom

More information

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis

B. (i), (iii), and (v) C. (iv) D. (i), (ii), (iii), and (v) E. (i), (iii), (iv), and (v) Answer: B. SO 3, and NO 3 - both have 24 VE and have Lewis SCCH 161 Homework 3 1. Give the number of lone pairs around the central atom and the molecular geometry of CBr 4. Answer: Carbon has 4 valence electrons and bonds to four bromine atoms (each has 7 VE s).

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Read Sec. 9.1 and 9.2, then complete the Sample and Practice Exercises in these sections. Sample Exercise 9.1 (p. 347) Use the VSEPR model to predict the molecular geometries of a)

More information

Hybridisation of Atomic Orbitals

Hybridisation of Atomic Orbitals Lecture 7 CHEM101 Hybridisation of Atomic Orbitals Dr. Noha Osman Learning Outcomes Understand the valence bond theory Understand the concept of hybridization. Understand the different types of orbital

More information

Name Unit Three MC Practice March 15, 2017

Name Unit Three MC Practice March 15, 2017 Unit Three: Bonding & Molecular Geometry Name Unit Three MC Practice March 15, 2017 1. What is the hybridization of the oxygen atom in water? a) sp b) sp 2 c) sp 3 d) It is not hybridized 2. When a double

More information

For more info visit Chemical bond is the attractive force which holds various constituents together in a molecule.

For more info visit  Chemical bond is the attractive force which holds various constituents together in a molecule. Chemical bond:- Chemical bond is the attractive force which holds various constituents together in a molecule. There are three types of chemical bonds: Ionic Bond, Covalent Bond, Coordinate Bond. Octet

More information

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Lecture Presentation. Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Lecture Presentation Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory Predicting Molecular Geometry 1. Draw the Lewis structure. 2. Determine the number

More information

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7.

Covalent Bonding Introduction, 2. Chapter 7 Covalent Bonding. Figure 7.1 The Hydrogen Molecule. Outline. Covalent Bonding Introduction, 1. Figure 7. Covalent Bonding Introduction, 2 William L. Masterton Cecile N. Hurley http://academic.cengage.com/chemistry/masterton Chapter 7 Covalent Bonding Electron density Electrons are located between nuclei Electrostatic

More information

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chapter 9 Molecular Geometry. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chapter 9 Molecular Geometry Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Sulfanilamide Lewis Structures and the Real 3D-Shape of Molecules Lewis Theory of Molecular Shape and Polarity

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to:

Molecular Geometry. Objectives N H H. The objectives of this laboratory are to: Objectives The objectives of this laboratory are to: Molecular Geometry Write Lewis structure representations of the bonding and valence electrons in molecules. Use the VSEPR model to predict the molecular

More information

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment

LESSON 10. Glossary: Molecular Geometry. a quantitative measure of the degree of charge separation in a molecule. Dipole moment LESSON 10 Glossary: Molecular Geometry Dipole moment Electronegativity Molecular geometry Pi bond Polar covalent bond Sigma bond Valence-shell electronpair repulsion (VSEPR) model a quantitative measure

More information

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory

Chemical Bonding II. Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds Hybridization MO theory Chemical Bonding II Molecular Geometry Valence Bond Theory Phys./Chem. Properties Quantum Mechanics Sigma & Pi bonds ybridization MO theory 1 Molecular Geometry 3-D arrangement of atoms 2 VSEPR Valence-shell

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook

PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes. Reference: Chapter 9 10 in textbook PART 3 Chemical Bonds, Valence Bond Method, and Molecular Shapes Reference: Chapter 9 10 in textbook 1 Valence Electrons Valence ae Electron Define: the outer shell electrons Important for determination

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: and ybridization of Atomic rbitals Chapter 10 Valence shell electron pair repulsion (VSEPR) model: Predict the geometry of the molecule from the electrostatic repulsions between the

More information

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules

Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules Unit 1 Module 1 Forces of Attraction page 1 of 10 Various forces of attraction between molecules 1. Ionic bonds 2. Covalent bonds (also co-ordinate covalent bonds) 3. Metallic bonds 4. Van der Waals forces

More information

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO:

EXAM II Material. Part I Chemical Bonding I Lewis Theory Chapter 9 pages A. Drawing electron dot structures HOW TO: CHEMISTRY 112 LECTURE EXAM II Material Part I Chemical Bonding I Lewis Theory Chapter 9 pages 376-386 A. Drawing electron dot structures HOW TO: 1. Write e- dot structure for the individual atoms. 2. a)

More information

Downloaded from

Downloaded from Points to Remember Class: XI Chapter Name: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model

Molecular Geometry. Valence Shell Electron Pair. What Determines the Shape of a Molecule? Repulsion Theory (VSEPR) Localized Electron Model Molecular Geometry Learn Shapes you will Because the physical and chemical properties of compounds are tied to their structures, the importance of molecular geometry can not be overstated. Localized Electron

More information

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape

Lecture 17 - Covalent Bonding. Lecture 17 - VSEPR and Molecular Shape. Lecture 17 - Introduction. Lecture 17 - VSEPR and Molecular Shape Chem 103, Section F0F Unit VI - Compounds Part II: Covalent Compounds Lecture 17 Using the Valence-Shell Electron-Pair Repulsion (VSEPR) Theory to predict molecular shapes Molecular shape and polarity

More information

CHAPTER 8. Molecular Structure & Covalent Bonding Theories

CHAPTER 8. Molecular Structure & Covalent Bonding Theories CAPTER 8 Molecular Structure & Covalent Bonding Theories 1 Chapter Goals 1. A Preview of the Chapter 2. Valence Shell Electron Pair Repulsion (VSEPR) Theory 3. Polar Molecules:The Influence of Molecular

More information

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts

Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1 Class XI: Chemistry Chapter 4: Chemical Bonding and Molecular Structure Top Concepts 1. The attractive force which holds together the constituent particles (atoms, ions or molecules) in chemical species

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB

SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB SMK SULTAN ISMAIL JB, NUR FATHIN SUHANA BT AYOB POLAR AND NON POLAR BONDS BOND POLARITY 1. Atoms with different electronegative from polar bonds (difference in EN) 2. Depicted as polar arrow : 3. Example

More information

NOTES #28 Bonds & Thermochemistry AP Chemistry

NOTES #28 Bonds & Thermochemistry AP Chemistry NOTES #28 Bonds & Thermochemistry AP Chemistry - When studying thermochemistry, we determined ΔH or ΔH rxn of a reaction by using ΔH f values. For practice s sake, determine ΔH rxn for the formation of

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Molecular Models: The shape of simple molecules and ions

Molecular Models: The shape of simple molecules and ions Molecular Models: The shape of simple molecules and ions Background The shape of a molecule is very important when investigating its properties and reactivity. For example, compare CO 2 and SO 2. Carbon

More information

Carbon Compounds and Chemical Bonds

Carbon Compounds and Chemical Bonds Carbon Compounds and Chemical Bonds Introduction Organic Chemistry The chemistry of the compounds of carbon The human body is largely composed of organic compounds Organic chemistry plays a central role

More information