7. Arrange the molecular orbitals in order of increasing energy and add the electrons.

Size: px
Start display at page:

Download "7. Arrange the molecular orbitals in order of increasing energy and add the electrons."

Transcription

1 Molecular Orbital Theory I. Introduction. A. Ideas. 1. Start with nuclei at their equilibrium positions. 2. onstruct a set of orbitals that cover the complete nuclear framework, called molecular orbitals (MO's).3. Use the rules of quantum mechanics to arrange the molecular orbitals in order of increasing energy and add the electrons. 4. Fill the MO's with the molecule's electrons. a. Lowest energy MO's filled first. b. No more than two electrons in the same MO with their spins paired. c. alf fill a degenerate set with spins parallel before pairing up in the same MO. 5. Start with the atomic orbitals (AO s). an construct the MO's by taking Linear ombinations of the Atomic Orbitals using at least one AO from each atom (LAO method). 6. Most of the time the only electrons that need be considered are the valence electrons and the AO's used in the linear combinations are the valence orbitals 7. Arrange the molecular orbitals in order of increasing energy and add the electrons. a. Lowest energy MO's filled first. b. No more than two electrons in the same MO with their spins paired. c. alf fill a degenerate set with spins parallel before pairing up in the same MO. B. Lowest energy states of homonuclear diatomic molecules. 1. Get the two lowest energy MO's by taking linear combinations of the lowest energy atomic orbitals, the 1s atomic orbitals. There are two ways to combine, can add them together or subtract them. The resulting MO's are sketched below. 1

2 Atom A Atom B! 1sA! 1sB "# 1s! 1sA! 1sB! 1sA +! 1sB " 1s a. Ψ 1s is a spherical function that is positive in all regions in space. When two 1s functions are added the resulting wave function, labeled σ 1s, is also positive in all regions. (A sketch of σ 1s is shown above.) On the other hand, when the two 1s atomic orbital functions are subtracted, the resulting function, σ * 1s, is positive around nucleus A, negative around nucleus B, and is equal to zero halfway between the two nuclei (see above). The wave function is said to have a nodal point between the two nuclei. b. The σ designation indicates that the wave function is symmetric with respect to the inter-nuclear axis. That is, the wave function does not change sign as one goes above or below the internuclear line. The subscript, 1s, tells the atomic orbitals that are involved in the molecular orbital. 3. The relative energies of the orbitals. a. The molecular orbital energy diagram. 2

3 !" 1s Energy $ # 1sA # 1sB $ Atom A! 1s AB Molecule Atom B b. The σ 1s orbital is lower in energy than the atomic orbitals by an amount β. Occupation of this orbital will tend to stabilize the molecule and promote bonding between the two atoms. The molecular orbital is said to be a bonding molecular orbital. c. The σ * 1s orbital is higher in energy (less stable) than the atomic orbitals by an amount β. Occupation of this orbital will tend to destabilize the molecule and detract from bonding. It is called an antibonding molecular orbital. Antibonding molecular orbitals are identified by a right-hand superscript asterisk ( * ). d. In more complex molecules it is also possible to have nonbonding molecular orbitals. These orbitals have the same energy at their input atomic orbitals. Occupation of the orbitals should neither promote nor detract from bonding. e. In general, the more electrons one has in bonding compared to antibonding molecular orbitals, the more stable will be the molecule. 3. Filling of the two lowest energy orbitals. a. onsider + 2 molecule-ion. This is a one electron system. 1) The electron will occupy the σ 1s MO and + 2 will have a σ 1 1s configuration and be stabilized by an amount β compared to the separated atoms. Therefore, + 2 should be stable. 3

4 2) This is a known substance whose bond dissociation energy is 255 kj and bond distance is 106 pm. b. onsider the 2 molecule. This is a two electron system. 1) The two electrons will occupy the σ 1s MO and will have their spins paired. Since both electrons are stabilized by β, to give an over-all stability of 2β, the molecule is stable. 2) 2 is the form of elemental hydrogen. It is diamagnetic, has a bond energy of 431 kj, and a bond distance of 74 pm. c. onsider the e + 2 molecule-ion. This is a three electron system. 1) Two of the three electrons will occupy the σ 1s MO while the third will be in the σ * 1s MO. Since two electrons are stabilized and only one is destabilized, the ion should be stable. 2) e + 2 is a known substance whose bond energy is 241 kj. d. onsider e 2 molecule. This is a four electron system. 1) Two electrons will occupy the σ 1s MO and two will be in the σ * 1s MO. Since two electrons are stabilized by β and two are destabilized by β, there should be no net stability and the molecule should not be stable. 2) The e 2 molecule has never been observed. 4. Molecular orbital electron configurations and bond order. a. Molecular orbital electron configurations can be written in the same manner as atomic electron configurations. 1) The molecular orbitals are written in order of increasing energy and the population of each MO is given as a right-hand superscript. 2) Examples. + 2 σ 1 1s 2 σ 2 1s e + 2 σ 2 1s σ * 1s 1 e 2 σ 2 1s σ * 1s 2 b. The stability will depend on the relative occupation of bonding MO's versus antibondingmo's. This can be measured by the bond order (BO). BO = 1 2 ( number of electrons in bonding MO's - number of electrons in antibonding MO's) 4

5 Examples: BO in + 2 = 1 2 ( 1-0) = 1 2 BO in e + 2 = 1 2 ( 2-1) = 1 2 BO in 2 = 1 2 ( 2-0 ) = 1 BO in e 2 = 1 2 ( 2-2 ) = 0 c. Note that the higher the BO, 1) the higher the bond energy. 2) the shorter the bond distance for the same atoms. d. A substance with a BO = 0 should not be stable.. igher energy MO's. 1. The next set of MO's can be obtained by taking linear combinations of the next higher energy atomic orbitals. These are the 2s and 2p atomic orbitals. Recall that the 2s energy is lower than that of the 2p atomic orbital energies. 2. The 2s AO's can be combined to give a bonding σ 2s MO ( Ψ 2sA + Ψ 2sB ) and an antibonding σ * 2s MO ( Ψ 2sA - Ψ 2sB ). These will generally have the same shapes as do the corresponding MO's obtained from the 1s AO's. 3. The 2p orbitals. a. We must now worry about the orientations of the AO's. Assume that the bonding axis is the x axis. The 2p x will have σ symmetry and the 2p y and 2p z will have π symmetry with respect to this axis. b. The 2p x orbitals combine to form σ MO's. subtract! 2px A! 2px B "# 2p x! 2px A! 2px B add " 2p x! 2px A +! 2px B 5

6 c. The 2p y orbitals will combine to form π MO's as will the 2p z orbitals. The 2p z orbitals could be combined similarly.! 2py A! 2p y B! 2pz A! 2p z B "# 2p y or "# 2pz! 2py A +! 2py B! 2py A! 2pz A! 2py B! 2pz B! 2pz A +! 2pz B " 2p y or " 2pz * * The π 2 py and the π 2 pz will have the same energy and the π 2py and the π 2pz will also have the same energies. 4. Energies. a. The energies change with atomic number as shown below. 6

7 a. At N 2 and below, the relative energies of these MO's are σ 2s < σ * 2s < π 2py = π2p z < σ2p x < π * 2p y = π * 2p z < σ * 2p x b. Above N 2 the relative energies are σ 2s < σ * 2s < σ 2p x < π 2py = π2p z < π * 2p y = π * 2p z < σ * 2p x c. Note that the π2p y and π2p z orbitals have the same energy, that is, are degenerate, as are the π * 2p y and π * 2p z orbitals. 5. Orbital filling. a. A total of 16 more electrons can be accommodated in these orbitals for a total of 20 electrons. b. Examples: Substance N Electron onfiguration B.E rx-x Magnetism BO N2 14 σ 2 1s σ* 2 1s σ2 2s σ* 2 2s π2 2py π2 2pz σ2 2px O2 16 σ 2 1s σ* 2 1s σ2 2s σ* 2 2s σ2 2px π2 2py π2 2pz π* 1 2py π* 1 2pz F2 18 σ 2 1s σ* 2 1s σ2 2s σ 2 2px σ2 2px π2 2py π2 2pz π* 2 2py π* 2 2pz diamagnetic paramagnetic diamagnetic 1 II. Other molecular systems. A. eteronuclear diatomic molecules. 1. The energies of the input atomic orbitals will not be the same. This will give rise to unequal splitting as shown below. Ψ a * = 3 Φ A 4 Φ B Φ B ENERGY Φ A Ψ b = 1 Φ A + 2 Φ B Atom A Molecule AB Atom B 7

8 a. The bonding MO will have more of the character of ψ A than ψ B, that is, the weighting factor 1 will be greater than 2. onversely, the antibonding MO will have more of ψ B character than ψ A character, that is, 4 > 3. b. The greater the energy difference between the two atomic orbitals, the greater will be the disparity in the weighting factors. If the energy difference is too much, then Ψ b will become identical with ψ A and Ψ a will become identical with ψ B. This means that two AO's do not interact. Therefore, only AO's of comparable energies can be combined to form MO's. 2. This is the case in a molecule such as F. X 1s ENERGY XX XX 2p X XX XX XX XX XX 2S F F The 1s orbital of is too high in energy interact with either the 1s or the 2s F orbitals. It can interact with the F 2p orbital having σ symmetry, to form MO's as in the above diagram. In this case the 1s orbital would be ψ B (the higher energy AO) and the F 2p σ would be ψ A. a. The F molecule has a total of 8 valence electrons, but only two are in delocalized MO's. 8

9 The 1s and 2s F AO's do not interact because of energy and only one of the three F 2p AO has the correct symmetry. b. There are only two electrons to be distributed in the MO's (one from and one from F). The electrons will occupy Ψ b and the molecule should be stable. Note that the electron density will be polarized towards the F ( 1 > 2 ). The bond will be a polar bond. 3. In general, valence orbitals are of comparable energies and are the ones that can be combined to form MO's. Therefore, for most molecules the inner core electrons can be ignored and valence orbitals used to form the MO's that are filled by the valence electrons of the constituent atoms. 2. onsider the SO 3 molecule. It is a trigonal planar molecule containing 24 valence electrons. a. Assume that the atoms are sp 2 hybridized and that the molecular plane is the xy plane. Therefore, the p z orbital on each atom will have π symmetry. Of the 24 electrons, 6 will be involved in π bonding. b. The qualitative π energy level diagrams and rough sketches of the MO's, in terms of the input AO's, are shown on the following page. c Note that two electrons occupy the bonding MO, Ψ 1, while four are in the nonbonding MO's, Ψ 2 and Ψ 3. Therefore, π interactions should stabilize the molecule. d. Also note that, considering the sum total of electron density from all the occupied MO's, electron density is evenly distributed between the sulfur and the three oxygens. Thus, the oxygens should be equivalent. In the valence bond theory such equivalency could be obtained only by using resonance. In molecular orbital theory the electrons are naturally delocalized and resonance is not necessary. Molecular orbital theory is preferred in treating molecules with delocalized π electrons 9

10 ENERGY O S O O " MO = 1! 1 + 2! 2 + 3! 3 + 4!! 1! 4! 2! 3! 4! 4! 3 " 4! 3! 2 " 1 " 2 " 3! 2 S! 1 SO 3 O's! 1 QUALITATIVE ENERGY DIAGRAM AND ORBITAL SKETES OF TE SO 3 Π MOLEULAR ORBITALS. 10

11 e. Overall electron density in the molecule. 3. onsider benzene, 6 6. It is a planar molecule consisting of six sp 2 hybridized carbons that form a prefect hexagonal ring. A hydrogen is bonded to each carbon, as shown below. a. The molecule exhibits resonance. The two major resonance structures are those shown above. The net effect of the resonance structures is that the π electrons are evenly distributed about the ring. b. To show this symmetric distribution of electron density, benzene is written as shown below. The circle signifies that the π electrons are delocalized about the planar ring. Benzene is a very stable molecule and forms the basis of aromatic organic compounds. The bonding is best treated using MO theory. 11

12 ENERGY c. In the molecular orbital approach to describing the π electronic structure, linear combinations of the following six p π orbitals on benzene are taken to construct six MO's.!! 2 3! 1! 4! 6! 5 " MO = 1! 1 + 2! 2 + 3! 3 + 4! 4 + 5! 5 + 6! 6 d. There are six π electrons which can then be placed in the MO's. The following diagram shows the relative energies, atomic orbital contributions, and filling of these MO's. Note that the net effect is that the π electron density is evenly distributed around the six member ring. 2# B! B! A # E 2! E2(a)! E2(b)! E2(a)! E2(b) 0 "# E 1! E1(a)! E1(b)! E1(a)!E1(b) "2# A! A! A Qualitative Energy Level Diagram and Orbital Sketches for the! Orbitals of Benzene 12

13 e. π Molecular Orbitals. f. Overall π electron density 13

14 14

15 15

16 16

Chemistry 6 (9 am section) Spring Covalent Bonding

Chemistry 6 (9 am section) Spring Covalent Bonding Chemistry 6 (9 am section) Spring 000 Covalent Bonding The stability of the bond in molecules such as H, O, N and F is associated with a sharing (equal) of the VALENCE ELECTRONS between the BONDED ATOMS.

More information

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures

Chapter 18 Molecular orbitals and spectroscopy Conjugation of bonds and resonance structures Chapter 18 Molecular orbitals and spectroscopy 18.1 Diatomic molecules 18.2 Polyatomic molecules 18.3 Conjugation of bonds and resonance structures 18.4 The interaction of light and matter (spectroscopy)

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory

Chemistry: The Central Science. Chapter 9: Molecular Geometry and Bonding Theory Chemistry: The Central Science Chapter 9: Molecular Geometry and Bonding Theory The shape and size of a molecule of a particular substance, together with the strength and polarity of its bonds, largely

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory Paramagnetic properties of O 2 pranjoto utomo Covalent Bonding Theory Valence Bond Theory useful for deriving shapes/polarity simple but inaccurate/deficient Molecular Orbital

More information

Molecular Orbitals in Chemical Bonding

Molecular Orbitals in Chemical Bonding 9 Molecular rbitals in hemical Bonding UTLINE 9-1 Molecular rbitals 9- Molecular rbital Energy Level Diagrams 9-3 Bond rder and Bond Stability 9-4 omonuclear Diatomic Molecules 9-5 eteronuclear Diatomic

More information

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then 1 The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then filled with the available electrons according to

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9. Molecular Geometry and Bonding Theories PART I Molecular Shapes Lewis structures give atomic connectivity: they tell us which atoms are physically connected to which atoms. The shape of a molecule

More information

Chapter 9 - Covalent Bonding: Orbitals

Chapter 9 - Covalent Bonding: Orbitals Chapter 9 - Covalent Bonding: Orbitals 9.1 Hybridization and the Localized Electron Model A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Lecture Presentation Chapter 9 Geometry James F. Kirby Quinnipiac University Hamden, CT Shapes Lewis Structures show bonding and lone pairs, but do not denote shape. However, we use Lewis Structures to

More information

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model.

Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Chapter 9: Molecular Geometries and Bonding Theories Learning Outcomes: Predict the three-dimensional shapes of molecules using the VSEPR model. Determine whether a molecule is polar or nonpolar based

More information

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved.

Chapter 9. Covalent Bonding: Orbitals. Copyright 2017 Cengage Learning. All Rights Reserved. Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents (9.1) (9.2) (9.3) (9.4) (9.5) (9.6) Hybridization and the localized electron model The molecular orbital model Bonding in homonuclear diatomic

More information

Activity Molecular Orbital Theory

Activity Molecular Orbital Theory Activity 201 9 Molecular Orbital Theory Directions: This Guided Learning Activity (GLA) discusses the Molecular Orbital Theory and its application to homonuclear diatomic molecules. Part A describes the

More information

Chapter 10: Chemical Bonding II. Bonding Theories

Chapter 10: Chemical Bonding II. Bonding Theories Chapter 10: Chemical Bonding II Dr. Chris Kozak Memorial University of Newfoundland, Canada Bonding Theories Previously, we saw how the shapes of molecules can be predicted from the orientation of electron

More information

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics

Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term. Molecular orbitals for diatomics Lecture 14 Chemistry 362 M. Darensbourg 2017 Spring term Molecular orbitals for diatomics Molecular Orbital Theory of the Chemical Bond Simplest example - H 2 : two H atoms H A and H B Only two a.o.'s

More information

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory

11/29/2014. Problems with Valence Bond Theory. VB theory predicts many properties better than Lewis Theory Problems with Valence Bond Theory VB theory predicts many properties better than Lewis Theory bonding schemes, bond strengths, bond lengths, bond rigidity however, there are still many properties of molecules

More information

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory

Chemical Bonding. Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Chemical Bonding Lewis Theory-VSEPR Valence Bond Theory Molecular Orbital Theory Problems with Valence Bond Theory VB theory predicts properties better than Lewis theory bonding schemes, bond strengths,

More information

CHAPTER 9 COVALENT BONDING: ORBITALS 323

CHAPTER 9 COVALENT BONDING: ORBITALS 323 APTER 9 OVALET BODIG: ORBITALS 323 2 3 2 2 2 3 3 2 2 3 2 3 O * * 2 o; most of the carbons are not in the same plane since a majority of carbon atoms exhibit a tetrahedral structure (19.5 bond angles).

More information

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry

Chemistry 2. Lecture 1 Quantum Mechanics in Chemistry Chemistry 2 Lecture 1 Quantum Mechanics in Chemistry Your lecturers 8am Assoc. Prof Timothy Schmidt Room 315 timothy.schmidt@sydney.edu.au 93512781 12pm Assoc. Prof. Adam J Bridgeman Room 222 adam.bridgeman@sydney.edu.au

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

General Physical Chemistry II

General Physical Chemistry II General Physical Chemistry II Lecture 10 Aleksey Kocherzhenko October 7, 2014" Last time " promotion" Promotion and hybridization" [He] 2s 2 2p x 1 2p y 1 2p z0 " 2 unpaired electrons" [He] 2s 1 2p x 1

More information

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II

Chapter 10. Structure Determines Properties! Molecular Geometry. Chemical Bonding II Chapter 10 Chemical Bonding II Structure Determines Properties! Properties of molecular substances depend on the structure of the molecule The structure includes many factors, including: the skeletal arrangement

More information

Symmetry and Molecular Orbitals (I)

Symmetry and Molecular Orbitals (I) Symmetry and Molecular Orbitals (I) Simple Bonding Model http://chiuserv.ac.nctu.edu.tw/~htchiu/chemistry/fall-2005/chemical-bonds.htm Lewis Structures Octet Rule Resonance Formal Charge Oxidation Number

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 8 homework due April. 13 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@mail.sdsu.edu. Chapter 8 homework due April. 13 th. Chapter 9 home work due April. 20th. Exam 3 is 4/14 at 2 pm. LECTURE

More information

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding

Learning Objectives and Worksheet VIII. Chemistry 1B-AL Fall Lectures (13-14) Molecular Orbital Theory of Covalent Bonding Learning Objectives and Worksheet VIII Chemistry 1B-AL Fall 2016 Lectures (13-14) Molecular Orbital Theory of Covalent Bonding WE WILL BE COVERING CHAPTER 14 IN A DIFFERENT ORDER THAN THE TEXT: first we

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals Chapter 9 Table of Contents 9.1 Hybridization and the Localized Electron Model 9.2 The Molecular Orbital Model 9.3 Bonding in Homonuclear Diatomic Molecules 9.4 Bonding

More information

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th.

ANNOUNCEMENTS. If you have questions about your exam 2 grade, write to me or Chapter 7 homework due Nov, 9 th. ANNOUNCEMENTS If you have questions about your exam 2 grade, write to me or Chem200@sdsu.edu. Chapter 7 homework due Nov, 9 th. Chapter 8 homework due Nov. 16 th. Exam 3 is 11/17 at 2 pm. LECTURE OBJECTIVES

More information

Molecular Bond Theory

Molecular Bond Theory Molecular Bond Theory Short comings of the localized electron model: electrons are not really localized so the concept of resonance was added no direct information about bond energies Molecular Orbital

More information

QUANTUM MECHANICS AND MOLECULAR STRUCTURE

QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6 QUANTUM MECHANICS AND MOLECULAR STRUCTURE 6.1 Quantum Picture of the Chemical Bond 6.2 Exact Molecular Orbital for the Simplest Molecule: H + 2 6.3 Molecular Orbital Theory and the Linear Combination

More information

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories Chapter 9 Chemical Bonding II: Molecular Geometry and Bonding Theories Topics Molecular Geometry Molecular Geometry and Polarity Valence Bond Theory Hybridization of Atomic Orbitals Hybridization in Molecules

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9. Covalent onding: Orbitals Models to explain the structures and/or energies of the covalent molecules Localized Electron (LE) onding Model Lewis Structure Valence Shell Electron Pair Repulsion

More information

Chapter 9: Molecular Geometry and Bonding Theories

Chapter 9: Molecular Geometry and Bonding Theories Chapter 9: Molecular Geometry and Bonding Theories 9.1 Molecular Geometries -Bond angles: angles made by the lines joining the nuclei of the atoms in a molecule -Bond angles determine overall shape of

More information

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals.

Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Molecular Orbital Theory Valence bond theory accounts, at least qualitatively, for the stability of the covalent bond in terms of overlapping atomic orbitals. Using the concept of hybridization, valence

More information

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory;

CB VII. Molecular Orbital (MO) Theory. General. Basic Principles. Basic Ideas. further improvement on Lewis, VSEPR & VB theory; chem101/3, D1 fa010 po 14 1 CB VII Molecular Orbital (MO) Theory chem101/3, D1 fa010 po 14 General further improvement on Lewis, VSEPR & VB theory; resulting in better info on: bond energy bond order magnetic

More information

Covalent Bonding: Orbitals

Covalent Bonding: Orbitals Hybridization and the Localized Electron Model Covalent Bonding: Orbitals A. Hybridization 1. The mixing of two or more atomic orbitals of similar energies on the same atom to produce new orbitals of equal

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Farthest apart

More information

Chapter 4. Molecular Structure and Orbitals

Chapter 4. Molecular Structure and Orbitals Chapter 4 Molecular Structure and Orbitals Chapter 4 Table of Contents (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) Molecular structure: The VSEPR model Bond polarity and dipole moments Hybridization and

More information

Lecture 9: Molecular Orbital theory for hydrogen molecule ion

Lecture 9: Molecular Orbital theory for hydrogen molecule ion Lecture 9: Molecular Orbital theory for hydrogen molecule ion Molecular Orbital Theory for Hydrogen Molecule Ion We have seen that the Schrödinger equation cannot be solved for many electron systems. The

More information

Bonding and Physical Properties The Molecular Orbital Theory

Bonding and Physical Properties The Molecular Orbital Theory Bonding and Physical Properties The Molecular Orbital Theory Ø Developed by F. Hund and R. S. Mulliken in 1932 Ø Diagram of molecular energy levels Ø Magnetic and spectral properties Paramagnetic vs. Diamagnetic

More information

What Do Molecules Look Like?

What Do Molecules Look Like? What Do Molecules Look Like? The Lewis Dot Structure approach provides some insight into molecular structure in terms of bonding, but what about 3D geometry? Recall that we have two types of electron pairs:

More information

Chapter 10 Chemical Bonding II

Chapter 10 Chemical Bonding II Chapter 10 Chemical Bonding II Valence Bond Theory Valence Bond Theory: A quantum mechanical model which shows how electron pairs are shared in a covalent bond. Bond forms between two atoms when the following

More information

5.111 Lecture Summary #13 Monday, October 6, 2014

5.111 Lecture Summary #13 Monday, October 6, 2014 5.111 Lecture Summary #13 Monday, October 6, 2014 Readings for today: Section 3.8 3.11 Molecular Orbital Theory (Same in 5 th and 4 th ed.) Read for Lecture #14: Sections 3.4, 3.5, 3.6 and 3.7 Valence

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Chapter 10. VSEPR Model: Geometries

Chapter 10. VSEPR Model: Geometries Chapter 10 Molecular Geometry VSEPR Model: Geometries Valence Shell Electron Pair Repulsion Theory Electron pairs repel and get as far apart as possible Example: Water Four electron pairs Two bonds Two

More information

Molecular Orbitals Involving Only ns Atomic Orbitals

Molecular Orbitals Involving Only ns Atomic Orbitals Skills to Develop To use molecular orbital theory to predict bond order To apply Molecular Orbital Theory to the diatomic homonuclear molecule from the elements in the second period. None of the approaches

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Prof. Dr. I. Nasser atomic and molecular physics -551 (T-11) April 18, 01 Molecular-Orbital Theory You have to explain the following statements: 1- Helium is monatomic gas. - Oxygen molecule has a permanent

More information

Molecular Orbital Theory

Molecular Orbital Theory Molecular Orbital Theory 1. MO theory suggests that atomic orbitals of different atoms combine to create MOLECULAR ORBITALS 2. Electrons in these MOLECULAR ORBITALS belong to the molecule as whole 3. This

More information

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules

Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Chemistry 2000 Lecture 2: LCAO-MO theory for homonuclear diatomic molecules Marc R. Roussel January 5, 2018 Marc R. Roussel Homonuclear diatomics January 5, 2018 1 / 17 MO theory for homonuclear diatomic

More information

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same

Andrew Rosen *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: If you can rotate a molecule to have one isomer equal to another, they are both the same *Note: For hybridization, if an SP 2 is made, there is one unhybridized p orbital (because p usually has

More information

Chemistry 1B, Fall 2012 Lectures 15-16

Chemistry 1B, Fall 2012 Lectures 15-16 Chemistry 1B Fall 2012 Quantum Mechanics of the Covalent Bond for chapter 14 animations and links see: http://switkes.chemistry.ucsc.edu/teaching/chem1b/www_other_links/ch14_links.htm 1 LISTEN UP!!! WE

More information

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49

CHEMISTRY. Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 CHEMISTRY Chapter 8 ADVANCED THEORIES OF COVALENT BONDING Kevin Kolack, Ph.D. The Cooper Union HW problems: 6, 7, 12, 21, 27, 29, 41, 47, 49 2 CH. 8 OUTLINE 8.1 Valence Bond Theory 8.2 Hybrid Atomic Orbitals

More information

CHAPTER 11 MOLECULAR ORBITAL THEORY

CHAPTER 11 MOLECULAR ORBITAL THEORY CHAPTER 11 MOLECULAR ORBITAL THEORY Molecular orbital theory is a conceptual extension of the orbital model, which was so successfully applied to atomic structure. As was once playfuly remarked, a molecue

More information

Chapter 9. Molecular Geometry and Bonding Theories

Chapter 9. Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories MOLECULAR SHAPES 2 Molecular Shapes Lewis Structures show bonding and lone pairs do not denote shape Use Lewis Structures to determine shapes Molecular

More information

Chapter 9. Covalent Bonding: Orbitals

Chapter 9. Covalent Bonding: Orbitals Chapter 9 Covalent Bonding: Orbitals EXERCISE! Draw the Lewis structure for methane, CH 4. What is the shape of a methane molecule? tetrahedral What are the bond angles? 109.5 o H H C H H Copyright Cengage

More information

Chemistry 1B, Fall 2013 Lectures 15-16

Chemistry 1B, Fall 2013 Lectures 15-16 Chemistry 1, Fall 2013 Lectures 1516 Chemistry 1 Fall 2013 Lectures 1516 Quantum Mechanics of the Covalent ond LISTEN UP!!! WE WILL E COVERING SECOND PRT OF CHPTER 14 (pp 676688) FIRST You will go CRZY

More information

Chapter 5. Molecular Orbitals

Chapter 5. Molecular Orbitals Chapter 5. Molecular Orbitals MO from s, p, d, orbitals: - Fig.5.1, 5.2, 5.3 Homonuclear diatomic molecules: - Fig. 5.7 - Para- vs. Diamagnetic Heteronuclear diatomic molecules: - Fig. 5.14 - ex. CO Hybrid

More information

Chapter 4 Symmetry and Chemical Bonding

Chapter 4 Symmetry and Chemical Bonding Chapter 4 Symmetry and Chemical Bonding 4.1 Orbital Symmetries and Overlap 4.2 Valence Bond Theory and Hybrid Orbitals 4.3 Localized and Delocalized Molecular Orbitals 4.4 MX n Molecules with Pi-Bonding

More information

Hybridization and Molecular Orbital (MO) Theory

Hybridization and Molecular Orbital (MO) Theory ybridization and Molecular Orbital (MO) Theory Chapter 10 istorical Models G.N.Lewis and I. Langmuir (~1920) laid out foundations Ionic species were formed by electron transfer Covalent molecules arise

More information

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond

UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond UNIT III Chemical Bonding There are two basic approaches to chemical bonding based on the results of quantum mechanics. These are the Valence Bond Theory (VB) and the Molecular Orbital theory (MO). 1)

More information

Chapter 9 Molecular Geometry and Bonding Theories

Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Geometry and Bonding Theories 9.1 Molecular Shapes Lewis structures give atomic connectivity (which atoms are physically connected). By noting the number of bonding and nonbonding electron

More information

Ch. 9- Molecular Geometry and Bonding Theories

Ch. 9- Molecular Geometry and Bonding Theories Ch. 9- Molecular Geometry and Bonding Theories 9.0 Introduction A. Lewis structures do not show one of the most important aspects of molecules- their overall shapes B. The shape and size of molecules-

More information

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING.

TYPES OF SYMMETRIES OF MO s s-s combinations of orbitals: , if they are antibonding. s-p combinatinos of orbitals: CHEMICAL BONDING. TYPES OF SYMMETRIES OF MO s s-s combinations of : Orbitals Molecular Orbitals s s Node s s (g) (g) Bonding orbital Antibonding orbital (u) 4 (u) s-s combinations of atomic In the bonding MO there is increased

More information

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd

MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd MOLECULAR ORBITAL THEORY Chapter 10.8, Morrison and Boyd more understanding: why oxygen is paramagnetic, why H2 + exists; explanation of excited electronic states (e.g., visible spectra) eliminates need

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I CHEM-UA 7: Advanced General Chemistry I I. LINEAR COMBINATION OF ATOMIC ORBITALS Linear combination of atomic orbitals (LCAO) is a simple method of quantum chemistry that yields a qualitative picture of

More information

Lecture 9 Electronic Spectroscopy

Lecture 9 Electronic Spectroscopy Lecture 9 Electronic Spectroscopy Molecular Orbital Theory: A Review - LCAO approximaton & AO overlap - Variation Principle & Secular Determinant - Homonuclear Diatomic MOs - Energy Levels, Bond Order

More information

Molecular Geometry and Bonding Theories. Chapter 9

Molecular Geometry and Bonding Theories. Chapter 9 Molecular Geometry and Bonding Theories Chapter 9 Molecular Shapes CCl 4 Lewis structures give atomic connectivity; The shape of a molecule is determined by its bond angles VSEPR Model Valence Shell Electron

More information

Molecular shape is determined by the number of bonds that form around individual atoms.

Molecular shape is determined by the number of bonds that form around individual atoms. Chapter 9 CH 180 Major Concepts: Molecular shape is determined by the number of bonds that form around individual atoms. Sublevels (s, p, d, & f) of separate atoms may overlap and result in hybrid orbitals

More information

Molecular Orbital Theory. Which of the following has zero bond order? N ) O F. The bond order of superoxide ion [ O ] is ).5.5 3. Bonding electrons present in N molecule are ) 4 6 0 4. Bond order of H

More information

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule.

Shapes of Molecules. Lewis structures are useful but don t allow prediction of the shape of a molecule. Shapes of Molecules Lewis structures are useful but don t allow prediction of the shape of a molecule. H O H H O H Can use a simple theory based on electron repulsion to predict structure (for non-transition

More information

Chapter 14: Phenomena

Chapter 14: Phenomena Chapter 14: Phenomena p p Phenomena: Scientists knew that in order to form a bond, orbitals on two atoms must overlap. However, p x, p y, and p z orbitals are located 90 from each other and compounds like

More information

CHAPTER 6 CHEMICAL BONDING SHORT QUESTION WITH ANSWERS Q.1 Dipole moments of chlorobenzene is 1.70 D and of chlorobenzene is 2.5 D while that of paradichlorbenzene is zero; why? Benzene has zero dipole

More information

We can keep track of the mixing of the 2s and 2p orbitals in beryllium as follows:

We can keep track of the mixing of the 2s and 2p orbitals in beryllium as follows: We can keep track of the mixing of the 2s and 2p orbitals in beryllium as follows: The beryllium sp orbitals overlap with hydrogen Is orbitals (the hydrogen's electrons are shown in the above orbital diagram

More information

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap

2. Constructive and destructive interference (in phase and out-of-phase interaction) a. Sigma bond is achieved by head on overlap Discussion #1 Chapter 10 CH102 2018 MOs TF s name: Your name: Discussion Section: 1. Atomic Orbital (s, p, d, f) vs. Molecular Orbital (σ, σ *, NB, π, π *, π nb ) a. Total Number of MO =Total Number of

More information

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2

Be H. Delocalized Bonding. Localized Bonding. σ 2. σ 1. Two (sp-1s) Be-H σ bonds. The two σ bonding MO s in BeH 2. MO diagram for BeH 2 The Delocalized Approach to Bonding: The localized models for bonding we have examined (Lewis and VBT) assume that all electrons are restricted to specific bonds between atoms or in lone pairs. In contrast,

More information

Chapter 10 Theories of Covalent Bonding

Chapter 10 Theories of Covalent Bonding Chapter 10 Theories of Covalent Bonding 1 Atomic Orbitals Molecules Bonding and 2 Molecular Structure Questions How are molecules held together? Why is O 2 paramagnetic? And how is this property connected

More information

PHYSICAL CHEMISTRY I. Chemical Bonds

PHYSICAL CHEMISTRY I. Chemical Bonds PHYSICAL CHEMISTRY I Chemical Bonds Review The QM description of bonds is quite good Capable of correctly calculating bond energies and reaction enthalpies However it is quite complicated and sometime

More information

CHAPTER 9 COVALENT BONDING: ORBITALS. Questions

CHAPTER 9 COVALENT BONDING: ORBITALS. Questions APTER 9 VALET BDIG: RBITALS Questions 11. In hybrid orbital theory, some or all of the valence atomic orbitals of the central atom in a molecule are mixed together to form hybrid orbitals; these hybrid

More information

Chemical Bonding & Structure

Chemical Bonding & Structure Chemical Bonding & Structure Further aspects of covalent bonding and structure Hybridization Ms. Thompson - HL Chemistry Wooster High School Topic 14.2 Hybridization A hybrid orbital results from the mixing

More information

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25)

Quiz 5 R = lit-atm/mol-k 1 (25) R = J/mol-K 2 (25) 3 (25) c = X 10 8 m/s 4 (25) ADVANCED INORGANIC CHEMISTRY QUIZ 5 and FINAL December 18, 2012 INSTRUCTIONS: PRINT YOUR NAME > NAME. QUIZ 5 : Work 4 of 1-5 (The lowest problem will be dropped) FINAL: #6 (10 points ) Work 6 of 7 to 14

More information

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 9. Molecular Geometries and Bonding Theories. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO Lecture Presentation Chapter 9 Theories John D. Bookstaver St. Charles Community College Cottleville, MO Shapes The shape of a molecule plays an important role in its reactivity. By noting the number of

More information

Using Symmetry to Generate Molecular Orbital Diagrams

Using Symmetry to Generate Molecular Orbital Diagrams Using Symmetry to Generate Molecular Orbital Diagrams review a few MO concepts generate MO for XH 2, H 2 O, SF 6 Formation of a bond occurs when electron density collects between the two bonded nuclei

More information

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals

NH 3 H 2 O N 2. Why do they make chemical bonds? Molecular Orbitals N 2 NH 3 H 2 O Why do they make chemical bonds? 5 Molecular Orbitals Why do they make chemical bonds? Stabilization Bond energy Types of Chemical Bonds Metallic Bond Ionic Bond Covalent Bond Covalent Bond

More information

Ch. 9 Practice Questions

Ch. 9 Practice Questions Ch. 9 Practice Questions 1. The hybridization of the carbon atom in the cation CH + 3 is: A) sp 2 B) sp 3 C) dsp D) sp E) none of these 2. In the molecule C 2 H 4 the valence orbitals of the carbon atoms

More information

Organic Chemistry Lecture I. Dr. John D. Spence

Organic Chemistry Lecture I. Dr. John D. Spence HEMISTRY 3 Organic hemistry Lecture I Dr. John D. Spence jdspence@scu.edu jspence@csus.eduedu http://www.csus.edu/indiv/s/spencej What is Organic hemistry? 780 s hemistry of compounds from living organisms

More information

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule?

Chapter 8. Molecular Shapes. Valence Shell Electron Pair Repulsion Theory (VSEPR) What Determines the Shape of a Molecule? PowerPoint to accompany Molecular Shapes Chapter 8 Molecular Geometry and Bonding Theories Figure 8.2 The shape of a molecule plays an important role in its reactivity. By noting the number of bonding

More information

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone.

Lecture B6 Molecular Orbital Theory. Sometimes it's good to be alone. Lecture B6 Molecular Orbital Theory Sometimes it's good to be alone. Covalent Bond Theories 1. VSEPR (valence shell electron pair repulsion model). A set of empirical rules for predicting a molecular geometry

More information

Homework #7. Chapter 14. Covalent Bonding Orbitals

Homework #7. Chapter 14. Covalent Bonding Orbitals omework #7 hapter 14 ovalent Bonding rbitals 7. Both M theory and LE model use quantum mechanics to describe bonding. In the LE model, wavefunctions on one atom are mixed to form hybridized orbitals. In

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Linear Trigonal 180 o planar 120 o Tetrahedral 109.5 o Trigonal Bipyramidal 120 and 90 o Octahedral 90 o linear Linear

More information

Chem Spring, 2017 Assignment 5 - Solutions

Chem Spring, 2017 Assignment 5 - Solutions Page 1 of 10 Chem 370 - Spring, 2017 Assignment 5 - Solutions 5.1 Additional combinations are p z ± d z 2, p x ±d xz, and p y ±d yz. p z ± d z 2 p x ±d xz or p y ±d yz 5.2 a. Li 2 has the configuration

More information

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals

Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chemical Bonding II: Molecular Geometry and Hybridization of Atomic Orbitals Chapter 10 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Valence shell electron

More information

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds Molecular Orbitals Chapter 9 Orbitals and Covalent Bond The overlap of atomic orbitals from separate atoms makes molecular orbitals Each molecular orbital has room for two electrons Two types of MO Sigma

More information

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase)

Morrison and Boyd, Organic Chemistry, Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Morrison and Boyd, Organic Chemistry, 1973 Interference of waves 1) constructive (in-phase) 2) destructive (out-of-phase) Electron wave function with n, l, m l => orbitals Molecular orbital theory 1) molecule

More information

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals.

In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. Lecture 7 Title: Understanding of Molecular Orbital Page-1 In this lecture we will understand how the molecular orbitals are formed from the interaction of atomic orbitals. We will see how the electrons

More information

5.111 Principles of Chemical Science

5.111 Principles of Chemical Science MIT OpenCourseWare http://ocw.mit.edu 5.111 Principles of Chemical Science Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.111 Lecture Summary

More information

Chapter IV: Electronic Spectroscopy of diatomic molecules

Chapter IV: Electronic Spectroscopy of diatomic molecules Chapter IV: Electronic Spectroscopy of diatomic molecules IV.2.1 Molecular orbitals IV.2.1.1. Homonuclear diatomic molecules The molecular orbital (MO) approach to the electronic structure of diatomic

More information

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory

Chapter 10 Chemical Bonding II: Molecular Shapes, Valence Bond Theory, and Molecular Orbital Theory 10.1 Artificial Sweeteners: Fooled by Molecular Shape 425 10.2 VSEPR Theory: The Five Basic Shapes 426 10.3 VSEPR Theory: The Effect of Lone Pairs 430 10.4 VSEPR Theory: Predicting Molecular Geometries

More information

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University

Chemistry 431. Lecture 14. Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory. NC State University Chemistry 431 Lecture 14 Wave functions as a basis Diatomic molecules Polyatomic molecules Huckel theory NC State University Wave functions as the basis for irreducible representations The energy of the

More information

Molecular Orbital Theory This means that the coefficients in the MO will not be the same!

Molecular Orbital Theory This means that the coefficients in the MO will not be the same! Diatomic molecules: Heteronuclear molecules In heteronuclear diatomic molecules, the relative contribution of atomic orbitals to each MO is not equal. Some MO s will have more contribution from AO s on

More information

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations

Valence Bond Theory Considers the interaction of separate atoms brought together as they form a molecule. Lewis structures Resonance considerations CHEM 511 chapter 2 page 1 of 11 Chapter 2 Molecular Structure and Bonding Read the section on Lewis dot structures, we will not cover this in class. If you have problems, seek out a general chemistry text.

More information