New Computational Methods for Systems Biology

Size: px
Start display at page:

Download "New Computational Methods for Systems Biology"

Transcription

1 New Computational Methods for Systems Biology François Fages, Sylvain Soliman The French National Institute for Research in Computer Science and Control INRIA Paris-Rocquencourt Constraint Programming Group 1

2 Systems Biology Systems Biology aims at systems-level understanding which requires a set of principles and methodologies that links the behaviors of molecules to systems characteristics and functions. H. Kitano, ICSB 2000 " Analyze (post-)genomic data produced with high-throughput technologies (stored in databases like GO, KEGG, BioCyc, etc.); " Integrate heterogeneous data about a specific problem; " Understand and predict the behavior of large networks of genes and proteins; " Multi-scale models of cell processes, tissues, organisms, ecosystems& Systems Biology Markup Language (SBML): model exchange format SBML model repositories: e.g. biomodels.net 241 curated models 2

3 Issue of Abstraction in Systems Biology Models are built in Systems Biology with two contradictory perspectives : 3

4 Issue of Abstraction in Systems Biology Models are built in Systems Biology with two contradictory perspectives : 1) Models for representing knowledge : the more concrete the better 4

5 Issue of Abstraction in Systems Biology Models are built in Systems Biology with two contradictory perspectives : 1) Models for representing knowledge : the more concrete the better 2) Models for making predictions : the more abstract the better! 5

6 Issue of Abstraction in Systems Biology Models are built in Systems Biology with two contradictory perspectives : 1) Models for representing knowledge : the more concrete the better 2) Models for making predictions : the more abstract the better! These perspectives can be reconciled by organizing formalisms and models into a hierarchy of abstractions. To understand a system is not to know everything about it but to know abstraction levels that are sufficient for answering questions about it 6

7 Formal Semantics of Living Processes? Formally, the behavior of a system depends on our choice of observables.?? Mitosis movie [Lodish et al. 03] 7

8 Boolean Semantics " Formally, the behavior of a system depends on our choice of observables. " Presence/absence of molecules " Boolean transitions 0 1 Mitosis movie [Lodish et al. 03] 8

9 Continuous Differential Semantics " Formally, the behavior of a system depends on our choice of observables. " Concentrations of molecules " Rates of reactions x ý Mitosis movie [Lodish et al. 03] 9

10 Stochastic Semantics " Formally, the behavior of a system depends on our choice of observables. " Numbers of molecules " Probabilities of reaction n τ Mitosis movie [Lodish et al. 03] 10

11 Temporal Logic LTL " Formally, the behavior of a system depends on our choice of observables. " Presence/absence of molecules " Temporal logic formulas F x F x F (x ^ F ( x ^ y)) FG (x v y) & Mitosis movie [Lodish et al. 03] 11

12 Temporal Logic LTL(R) " Formally, the behavior of a system depends on our choice of observables. " Concentrations of molecules " TL with Constraints over R F x>1 F (x >0.2) F (x >0.2 ^ F (x<0.1 ^ y>0.2)) FG (x>0.2 v y>0.2) & Mitosis movie [Lodish et al. 03] 12

13 Hierarchy of Semantics abstraction Boolean model Discrete model Theory of abstract Interpretation Abstractions as Galois connections [Cousot Cousot POPL 77] [Fages Soliman CMSB 06,TCS 07] Stochastic model Differential model concretization 13 Syntactical model

14 refinement Hierarchy of Model Reductions 011_levc reduction MAPK models from the SBML model repository 4 graphical operations delete/merge molecules/reactions subgraph morphisms A graphical method for reducing and relating models [Gay Fages Soliman 2010 ECCB, Bioinformatics] 14

15 Overview of the Tutorial 1. Introduction " Transposing programming concepts to the analysis of living processes 2. Rule-based modeling of biochemical systems " Syntax: molecules, reactions, regulations, SBML/SBGN Biocham notations " Semantics: Boolean, Differential and Stochastic interpretations of reactions " Static analyses: consistency, influence graph circuits, protein functions,& " Examples in cell signaling, gene expression, virus infection, cell cycle 3. Temporal Logic based formalization of biological properties " Qualitative model-checking in propositional Computation Tree Logic CTL " Quantitative model-checking in Linear Time Logic LTL(R) " Parameter search in high dimension w.r.t. LTL(R) specifications " Robustness and sensitivity analyses w.r.t. LTL(R) specifications 4. Conclusion 15

16 Cell Molecules " Small molecules: covalent bonds kcal/mol 70% water 1% ions 6% amino acids (20), nucleotides (5), fats, sugars, ATP, ADP, & " Macromolecules: hydrogen bonds, ionic, hydrophobic, Waals 1-5 kcal/mol Stability and bindings determined by the number of weak bonds: 3D shape 20% proteins ( amino acids) RNA ( nucleotides AGCU) DNA ( nucleotides AGCT) 16

17 Formal Genes: Syntax " Part of DNA #E2 " Activation binding of promotion factor #E2-(E2f13-DP12) " Repression (inhibition) Genes and signals [Ptashne Gann 01] binding of another molecule #E2-Rep 17

18 Transcription and Translation Rules Activation #E2 + E2f13 DP12 => #E2 E2f13 DP12 Repression #E2 + Rep => #E2 Rep Genes and signals [Ptashne Gann 01] 18

19 Transcription and Translation Rules Activation #E2 + E2f13 DP12 => #E2 E2f13 DP12 Repression #E2 + Rep => #E2 Rep Transcription _ =[#E2 E2F13 DP12]=> prnacyca 19

20 Transcription and Translation Rules Activation #E2 + E2f13 DP12 => #E2 E2f13 DP12 Repression #E2 + Rep => #E2 Rep Transcription _ =[#E2 E2F13 DP12]=> prnacyca (Alternative) Splicing prnacyca => mrnacyca (prnacyca => mrnacyca2) 20

21 Transcription and Translation Rules Activation #E2 + E2f13 DP12 => #E2 E2f13 DP12 Repression #E2 + Rep => #E2 Rep Transcription _ =[#E2 E2F13 DP12]=> prnacyca (Alternative) Splicing prnacyca => mrnacyca Translation mrnacyca => mrnacyca::cyt (prnacyca => mrnacyca2) mrnacyca::cyt + ribosome::cyt => cyca::cyt + ribosome::cyt (mrnacyca2::cyt + ribosome::cyt => cyca2::cyt + ribosome::cyt) 21

22 Formal Proteins: Syntax " Cyclin dependent kinase 1 Cdk1 (free, inactive) 22

23 Formal Proteins: Syntax " Cyclin dependent kinase 1 Cdk1 (free, inactive) " Complex Cdk1-Cyclin B Cdk1 CycB (low activity) 23

24 Formal Proteins: Syntax " Cyclin dependent kinase 1 Cdk1 (free, inactive) " Complex Cdk1-Cyclin B Cdk1 CycB (low activity) " Phosphorylated form Cdk1~{thr161} CycB at site threonine 161 (high activity) 24

25 Formal Proteins " Cyclin dependent kinase 1 Cdk1 (free, inactive) " Complex Cdk1-Cyclin B Cdk1 CycB (low activity) " Phosphorylated form Cdk1~{thr161} CycB at site threonine 161 (high activity) Mitosis-Promoting Factor phosphorylates actin in microtubules nuclear division 25

26 Elementary Rule Schemas " Complexation: A + B => A-B. Decomplexation A-B => A + B. cdk1+cycb => cdk1 cycb " Phosphorylation: A =[C]=> A~{p}. Dephosphorylation A~{p} =[C]=> A. Cdk1 CycB =[Myt1]=> Cdk1~{thr161} CycB Cdk1~{thr14,tyr15} CycB =[Cdc25~{Nterm}]=> Cdk1 CycB " Synthesis: _ =[C]=> A. Degradation: A =[C]=> _. _=[#E2 E2f13 Dp12]=>cycA cyce =[@UbiPro]=> _ (not for cyce cdk2 which is stable) " Transport: A::L1 => A::L2. Cdk1~{p} CycB::cytoplasm=>Cdk1~{p} CycB::nucleus 26

27 Biocham Syntax of Objects Entities E == name E E E~{p1,,pn} name of molecular compound or #gene binding site : binding operator for protein complexes, gene binding sites, & Associative and commutative. ~{ }: modification operator for phosphorylated sites, & Set of modified sites (Associative, Commutative, Idempotent). Objects O == E E::location location: symbolic compartment (nucleus, cytoplasm, membrane, & ) dynamic volume 27

28 Biocham Syntax of Rules Solutions S ::= _ O + S i*o + S + : solution operator (Associative, Commutative, Neutral element _) Rules R ::= S => S kinetic expression for R Abbreviations for catalytic reactions: A =[C]=> B stands for A+C => B+C reversible reactions: A <=> B stands for A=>B and B=>A, Syntax compatible with the Systems Biology Markup Language SBML Import/export exchange format for reaction models Biomodels.net: repository of 241 curated SBML models of cell processes 28

29 Semantics of Rule-based Models Reaction rule k*[a]*[b] for A+B => C " Differential Semantics: concentrations Ordinary Differential Equations da/dt = -k*[a]*[b] db/dt = -k*[a]*[b] dc/dt = k*[a]*[b] Hybrid automata (for kinetics with conditional expressions) 29

30 Semantics of Rule-based Models Reaction rule k*[a]*[b] for A+B => C " Differential Semantics: concentrations Ordinary Differential Equations da/dt = -k*[a]*[b] db/dt = -k*[a]*[b] dc/dt = k*[a]*[b] Hybrid automata (for kinetics with conditional expressions) " Stochastic Semantics: numbers of molecules Continuous time Markov chain A, B p A--, B--, C++ 30

31 Semantics of Rule-based Models Reaction rule k*[a]*[b] for A+B => C " Differential Semantics: concentrations Ordinary Differential Equations da/dt = -k*[a]*[b] db/dt = -k*[a]*[b] dc/dt = k*[a]*[b] Hybrid automata (for kinetics with conditional expressions) " Stochastic Semantics: numbers of molecules Continuous time Markov chain A, B p A--, B--, C++ " Boolean Semantics: presence-absence of molecules Asynchronous Transition System A, B C, A/ A, B/ B 31

Computational Methods in Systems and Synthetic Biology

Computational Methods in Systems and Synthetic Biology Computational Methods in Systems and Synthetic Biology François Fages EPI Contraintes, Inria Paris-Rocquencourt, France 1 / 62 Need for Abstractions in Systems Biology Models are built in Systems Biology

More information

Type Inference in Systems Biology

Type Inference in Systems Biology Type Inference in Systems Biology François Fages, Sylvain Soliman Firstname.Lastname@inria.fr Projet Contraintes, INRIA Rocquencourt, BP105, 78153 Le Chesnay Cedex, France. http://contraintes.inria.fr

More information

Activation of a receptor. Assembly of the complex

Activation of a receptor. Assembly of the complex Activation of a receptor ligand inactive, monomeric active, dimeric When activated by growth factor binding, the growth factor receptor tyrosine kinase phosphorylates the neighboring receptor. Assembly

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells

Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Life Sciences 1a: Section 3B. The cell division cycle Objectives Understand the challenges to producing genetically identical daughter cells Understand how a simple biochemical oscillator can drive the

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus:

Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: m Eukaryotic mrna processing Newly made RNA is called primary transcript and is modified in three ways before leaving the nucleus: Cap structure a modified guanine base is added to the 5 end. Poly-A tail

More information

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370

Chapter 2 The Chemistry of Biology. Dr. Ramos BIO 370 Chapter 2 The Chemistry of Biology Dr. Ramos BIO 370 2 Atoms, Bonds, and Molecules Matter - all materials that occupy space and have mass Matter is composed of atoms. Atom simplest form of matter not divisible

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

Gene Control Mechanisms at Transcription and Translation Levels

Gene Control Mechanisms at Transcription and Translation Levels Gene Control Mechanisms at Transcription and Translation Levels Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9

More information

AI in Biological Modelling

AI in Biological Modelling AI in Biological Modelling François Fages To cite this version: François Fages. AI in Biological Modelling. 2016. HAL Id: hal-01409753 https://hal.inria.fr/hal-01409753v2 Submitted on 11 May 2017 HAL is

More information

CELL CYCLE AND DIFFERENTIATION

CELL CYCLE AND DIFFERENTIATION CELL CYCLE AND DIFFERENTIATION Dewajani Purnomosari Department of Histology and Cell Biology Faculty of Medicine Universitas Gadjah Mada d.purnomosari@ugm.ac.id WHAT IS CELL CYCLE? 09/12/14 d.purnomosari@ugm.ac.id

More information

Introduction. Gene expression is the combined process of :

Introduction. Gene expression is the combined process of : 1 To know and explain: Regulation of Bacterial Gene Expression Constitutive ( house keeping) vs. Controllable genes OPERON structure and its role in gene regulation Regulation of Eukaryotic Gene Expression

More information

BMD645. Integration of Omics

BMD645. Integration of Omics BMD645 Integration of Omics Shu-Jen Chen, Chang Gung University Dec. 11, 2009 1 Traditional Biology vs. Systems Biology Traditional biology : Single genes or proteins Systems biology: Simultaneously study

More information

CHAPTER 2 THE CHEMICAL BASIS OF LIFE

CHAPTER 2 THE CHEMICAL BASIS OF LIFE CHAPTER 2 THE CHEMICAL BASIS OF LIFE CHAPTER OVERVIEW This chapter introduces very basic concepts of chemistry, emphasizing the structure of atoms and how they combine (form bonds). The types of bonds,

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Networks & pathways. Hedi Peterson MTAT Bioinformatics

Networks & pathways. Hedi Peterson MTAT Bioinformatics Networks & pathways Hedi Peterson (peterson@quretec.com) MTAT.03.239 Bioinformatics 03.11.2010 Networks are graphs Nodes Edges Edges Directed, undirected, weighted Nodes Genes Proteins Metabolites Enzymes

More information

Unit 1: Chemistry - Guided Notes

Unit 1: Chemistry - Guided Notes Scientific Method Notes: Unit 1: Chemistry - Guided Notes 1 Common Elements in Biology: Atoms are made up of: 1. 2. 3. In order to be stable, an atom of an element needs a full valence shell of electrons.

More information

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter 9/10/2008 1 Learning Objectives Explain why a cell cycle was selected for during evolution

More information

Influence Networks compared with Reaction Networks: Semantics, Expressivity and Attractors

Influence Networks compared with Reaction Networks: Semantics, Expressivity and Attractors Influence Networks compared with Reaction Networks: Semantics, Expressivity and Attractors François Fages, Thierry Martinez, David Rosenblueth, Sylvain Soliman To cite this version: François Fages, Thierry

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11

UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 UNIT 6 PART 3 *REGULATION USING OPERONS* Hillis Textbook, CH 11 REVIEW: Signals that Start and Stop Transcription and Translation BUT, HOW DO CELLS CONTROL WHICH GENES ARE EXPRESSED AND WHEN? First of

More information

86 Part 4 SUMMARY INTRODUCTION

86 Part 4 SUMMARY INTRODUCTION 86 Part 4 Chapter # AN INTEGRATION OF THE DESCRIPTIONS OF GENE NETWORKS AND THEIR MODELS PRESENTED IN SIGMOID (CELLERATOR) AND GENENET Podkolodny N.L. *1, 2, Podkolodnaya N.N. 1, Miginsky D.S. 1, Poplavsky

More information

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA)

Quiz answers. Allele. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 17: The Quiz (and back to Eukaryotic DNA) http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Quiz answers Kinase: An enzyme

More information

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2

Cellular Neuroanatomy I The Prototypical Neuron: Soma. Reading: BCP Chapter 2 Cellular Neuroanatomy I The Prototypical Neuron: Soma Reading: BCP Chapter 2 Functional Unit of the Nervous System The functional unit of the nervous system is the neuron. Neurons are cells specialized

More information

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper.

Old FINAL EXAM BIO409/509 NAME. Please number your answers and write them on the attached, lined paper. Old FINAL EXAM BIO409/509 NAME Please number your answers and write them on the attached, lined paper. Gene expression can be regulated at several steps. Describe one example for each of the following:

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 2 The Chemistry of Biology Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization

16 The Cell Cycle. Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization The Cell Cycle 16 The Cell Cycle Chapter Outline The Eukaryotic Cell Cycle Regulators of Cell Cycle Progression The Events of M Phase Meiosis and Fertilization Introduction Self-reproduction is perhaps

More information

Gene Network Science Diagrammatic Cell Language and Visual Cell

Gene Network Science Diagrammatic Cell Language and Visual Cell Gene Network Science Diagrammatic Cell Language and Visual Cell Mr. Tan Chee Meng Scientific Programmer, System Biology Group, Bioinformatics Institute Overview Introduction Why? Challenges Diagrammatic

More information

nutrients growth & division repellants movement

nutrients growth & division repellants movement Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Outline 1. Cell Signaling: Physiology 2. Cell Signaling: Molecular Biology 3. Chemical

More information

Network Dynamics and Cell Physiology. John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute

Network Dynamics and Cell Physiology. John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Network Dynamics and Cell Physiology John J. Tyson Department of Biological Sciences & Virginia Bioinformatics Institute Signal Transduction Network Hanahan & Weinberg (2000) Gene Expression Signal-Response

More information

Biological Pathways Representation by Petri Nets and extension

Biological Pathways Representation by Petri Nets and extension Biological Pathways Representation by and extensions December 6, 2006 Biological Pathways Representation by and extension 1 The cell Pathways 2 Definitions 3 4 Biological Pathways Representation by and

More information

Modelling Biochemical Reaction Networks. Lecture 1: Overview of cell biology

Modelling Biochemical Reaction Networks. Lecture 1: Overview of cell biology Modelling Biochemical Reaction Networks Lecture 1: Overview of cell biology Marc R. Roussel Department of Chemistry and Biochemistry Types of cells Prokaryotes: Cells without nuclei ( bacteria ) Very little

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Energy Transformation and Metabolism (Outline)

Energy Transformation and Metabolism (Outline) Energy Transformation and Metabolism (Outline) - Definitions & Laws of Thermodynamics - Overview of energy flow ecosystem - Biochemical processes: Anabolic/endergonic & Catabolic/exergonic - Chemical reactions

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms. Subject Area - 3: Science and Technology and Engineering Education Standard Area - 3.1: Biological Sciences Organizing Category - 3.1.A: Organisms and Cells Course - 3.1.B.A: BIOLOGY Standard - 3.1.B.A1:

More information

Describe how proteins and nucleic acids (DNA and RNA) are related to each other.

Describe how proteins and nucleic acids (DNA and RNA) are related to each other. Name Date Molecular Biology Review Part 1 IB Papers Topic 2.1 Molecules to Metabolism Living organisms control their composition by a complex web of chemical interactions. Be able to: Explain how molecular

More information

Chemistry in Biology Section 1 Atoms, Elements, and Compounds

Chemistry in Biology Section 1 Atoms, Elements, and Compounds Name Chemistry in Biology Section 1 Atoms, Elements, and Compounds Date Main Idea Details Scan the headings and boldfaced words in Section 1 of the chapter. Predict two things that you think might be discussed.

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

Chemistry Basics. Matter anything that occupies space and has mass Energy the ability to do work. Chemical Electrical Mechanical Radiant. Slide 2.

Chemistry Basics. Matter anything that occupies space and has mass Energy the ability to do work. Chemical Electrical Mechanical Radiant. Slide 2. Chemistry Basics Matter anything that occupies space and has mass Energy the ability to do work Chemical Electrical Mechanical Radiant Slide 2.1 Composition of Matter Elements Fundamental units of matter

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond

the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Chemical structure Covalent bond Ionic bond Chemical structure the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together Covalent bond bond formed by the sharing of valence electrons between atoms Ionic bond

More information

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2:

Richik N. Ghosh, Linnette Grove, and Oleg Lapets ASSAY and Drug Development Technologies 2004, 2: 1 3/1/2005 A Quantitative Cell-Based High-Content Screening Assay for the Epidermal Growth Factor Receptor-Specific Activation of Mitogen-Activated Protein Kinase Richik N. Ghosh, Linnette Grove, and Oleg

More information

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø

`1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø `1AP Biology Study Guide Chapter 2 v Atomic structure is the basis of life s chemistry Ø Living and non- living things are composed of atoms Ø Element pure substance only one kind of atom Ø Living things

More information

A Brief Overview of Biochemistry. And I mean BRIEF!

A Brief Overview of Biochemistry. And I mean BRIEF! A Brief Overview of Biochemistry And I mean BRIEF! Introduction A. Chemistry deals with the composition of substances and how they change. B. A knowledge of chemistry is necessary for the understanding

More information

Unit 2: Basic Chemistry

Unit 2: Basic Chemistry Unit 2: Basic Chemistry I. Matter and Energy A. Matter anything that occupies space and has mass (weight) B. Energy the ability to do work 1. Chemical 2. Electrical 3. Mechanical 4. Radiant C. Composition

More information

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics Margaret A. Daugherty Fall 2004 What is an enzyme? General Properties Mostly proteins, but some are actually RNAs Biological catalysts

More information

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis

From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis From Petri Nets to Differential Equations An Integrative Approach for Biochemical Network Analysis David Gilbert drg@brc.dcs.gla.ac.uk Bioinformatics Research Centre, University of Glasgow and Monika Heiner

More information

How to Build a Living Cell in Software or Can we computerize a bacterium?

How to Build a Living Cell in Software or Can we computerize a bacterium? How to Build a Living Cell in Software or Can we computerize a bacterium? Tom Henzinger IST Austria Turing Test for E. coli Fictional ultra-high resolution video showing molecular processes inside the

More information

week: 4 Date: Microscopes Cell Structure Cell Function Standards None 1b, 1h 1b, 1h, 4f, 5a 1a, 1c, 1d, 1e, 1g, 1j

week: 4 Date: Microscopes Cell Structure Cell Function Standards None 1b, 1h 1b, 1h, 4f, 5a 1a, 1c, 1d, 1e, 1g, 1j July, 2004 week: 1 Topics Course introduction Lab Safety week: 2 Introduction to chemistry Chapter summarizing Note Taking week: 3 Biochemistry: Compounds of life week: 4 Microscopes Cell Structure Cell

More information

Introduction to Bioinformatics

Introduction to Bioinformatics CSCI8980: Applied Machine Learning in Computational Biology Introduction to Bioinformatics Rui Kuang Department of Computer Science and Engineering University of Minnesota kuang@cs.umn.edu History of Bioinformatics

More information

Biology Midterm Review

Biology Midterm Review Biology Midterm Review Unit 1 Keystone Objectives: A.1.1, A.1.2, B.4.1.1 1.1 Biology explores life from the global to the microscopic level. Put the levels of organization in order, starting with subatomic

More information

Introduction to Mathematical Physiology I - Biochemical Reactions

Introduction to Mathematical Physiology I - Biochemical Reactions Introduction to Mathematical Physiology I - Biochemical Reactions J. P. Keener Mathematics Department Math Physiology p.1/28 Introduction The Dilemma of Modern Biology The amount of data being collected

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ch 2 chemical basis of life Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Fill in the blank or provide a short answer: 1) When a change in matter

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

2. Draw two water molecules. Using a dotted line, show a hydrogen bond that could form between them.

2. Draw two water molecules. Using a dotted line, show a hydrogen bond that could form between them. Biology Final Review Packet Directions: Answer the questions below. You may use any notes, worksheets, or your textbook to find the answers. The questions are divided up based on the different units we

More information

Unit Two Chemistry of the Human Body

Unit Two Chemistry of the Human Body I. Introduction to atoms Unit Two Chemistry of the Human Body A. Chemistry is the branch of science that concerns itself with the structure of matter, including the interaction between atoms. 1. Atoms-

More information

Lecture 10: Cyclins, cyclin kinases and cell division

Lecture 10: Cyclins, cyclin kinases and cell division Chem*3560 Lecture 10: Cyclins, cyclin kinases and cell division The eukaryotic cell cycle Actively growing mammalian cells divide roughly every 24 hours, and follow a precise sequence of events know as

More information

ENV SCI 22 GROUP QUIZ WEEK 2

ENV SCI 22 GROUP QUIZ WEEK 2 ENV SCI 22 GROUP QUIZ WEEK 2 ph OF ACIDS AND BASES 1) A decrease of one unit in the ph scale above represents a tenfold increase in the hydrogen ion concentration of a solution. For example, a solution

More information

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on Regulation and signaling Overview Cells need to regulate the amounts of different proteins they express, depending on cell development (skin vs liver cell) cell stage environmental conditions (food, temperature,

More information

Biology 2018 Final Review. Miller and Levine

Biology 2018 Final Review. Miller and Levine Biology 2018 Final Review Miller and Levine bones blood cells elements All living things are made up of. cells If a cell of an organism contains a nucleus, the organism is a(n). eukaryote prokaryote plant

More information

Biology I Fall Semester Exam Review 2014

Biology I Fall Semester Exam Review 2014 Biology I Fall Semester Exam Review 2014 Biomolecules and Enzymes (Chapter 2) 8 questions Macromolecules, Biomolecules, Organic Compunds Elements *From the Periodic Table of Elements Subunits Monomers,

More information

Unit 2: Chemistry Test Review

Unit 2: Chemistry Test Review Name: Period: Unit 2: Chemistry Test Review 1. List the three states of matter. 2. Describe an atom in terms of its nucleus, valence,shell, electrons, protons, and neutrons. 3. Define the term element

More information

Number of questions TEK (Learning Target) Biomolecules & Enzymes

Number of questions TEK (Learning Target) Biomolecules & Enzymes Unit Biomolecules & Enzymes Number of questions TEK (Learning Target) on Exam 8 questions 9A I can compare and contrast the structure and function of biomolecules. 9C I know the role of enzymes and how

More information

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105

Chapter 2: Chemistry. What does chemistry have to do with biology? Vocabulary BIO 105 Chapter 2: Chemistry What does chemistry have to do with biology? BIO 105 Vocabulary 1. Matter anything that takes up space and has mass Atoms are the smallest units of matter that can participate in chemical

More information

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d

Chapter 1. DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d Chapter 1 1. Matching Questions DNA is made from the building blocks adenine, guanine, cytosine, and. Answer: d 2. Matching Questions : Unbranched polymer that, when folded into its three-dimensional shape,

More information

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1:

Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Berg Tymoczko Stryer Biochemistry Sixth Edition Chapter 1: Biochemistry: An Evolving Science Tips on note taking... Remember copies of my lectures are available on my webpage If you forget to print them

More information

Formative/Summative Assessments (Tests, Quizzes, reflective writing, Journals, Presentations)

Formative/Summative Assessments (Tests, Quizzes, reflective writing, Journals, Presentations) Biology Curriculum Map 2017-18 2 Weeks- Introduction to Biology: Scientific method, lab safety, organizing and analyzing data, and psuedoscience. This unit establishes the fundamental nature of scientific

More information

Name Period. Final Exam Study Guide

Name Period. Final Exam Study Guide Name Period Chapter 6-1 Chromosomes Final Exam Study Guide 1. What is the structure of chromosomes(what are they made of and what is on them)? How many do we have? When are they copied? 2. What is an autosome

More information

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04

Patrick: An Introduction to Medicinal Chemistry 5e Chapter 04 01) Which of the following statements is not true about receptors? a. Most receptors are proteins situated inside the cell. b. Receptors contain a hollow or cleft on their surface which is known as a binding

More information

The Chemistry of Life

The Chemistry of Life The Chemistry of Life Things you should be able to do 1. Describe how the unique properties of water support life on Earth. 2. Explain how carbon is uniquely suited to form biological macromolecules. 3.

More information

Simulation of Gene Regulatory Networks

Simulation of Gene Regulatory Networks Simulation of Gene Regulatory Networks Overview I have been assisting Professor Jacques Cohen at Brandeis University to explore and compare the the many available representations and interpretations of

More information

Nature of matter. Chemical bond is a force that joins atoms

Nature of matter. Chemical bond is a force that joins atoms Nature of matter Atom the smallest unit of matter that cannot be broken down by chemical means The subatomic particles of an atom consist of protons, neutrons and electrons Element is a pure substance

More information

UNIT 1: BIOCHEMISTRY

UNIT 1: BIOCHEMISTRY UNIT 1: BIOCHEMISTRY UNIT 1: Biochemistry Chapter 6.1: Chemistry of Life I. Atoms, Ions, and Molecules A. Living things consist of atoms of different elements 1. An atom is the smallest basic unit of matter

More information

Matter and Substances Section 3-1

Matter and Substances Section 3-1 Matter and Substances Section 3-1 Key Idea: All matter is made up of atoms. An atom has a positively charges core surrounded by a negatively charged region. An atom is the smallest unit of matter that

More information

Control of Gene Expression in Prokaryotes

Control of Gene Expression in Prokaryotes Why? Control of Expression in Prokaryotes How do prokaryotes use operons to control gene expression? Houses usually have a light source in every room, but it would be a waste of energy to leave every light

More information

Regulation of gene expression. Premedical - Biology

Regulation of gene expression. Premedical - Biology Regulation of gene expression Premedical - Biology Regulation of gene expression in prokaryotic cell Operon units system of negative feedback positive and negative regulation in eukaryotic cell - at any

More information

Molecular Biology - Translation of RNA to make Protein *

Molecular Biology - Translation of RNA to make Protein * OpenStax-CNX module: m49485 1 Molecular Biology - Translation of RNA to make Protein * Jerey Mahr Based on Translation by OpenStax This work is produced by OpenStax-CNX and licensed under the Creative

More information

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845) Valley Central School District 944 State Route 17K Montgomery, NY 12549 Telephone Number: (845)457-2400 ext. 18121 Fax Number: (845)457-4254 Advance Placement Biology Presented to the Board of Education

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP

Dynamical Modeling in Biology: a semiotic perspective. Junior Barrera BIOINFO-USP Dynamical Modeling in Biology: a semiotic perspective Junior Barrera BIOINFO-USP Layout Introduction Dynamical Systems System Families System Identification Genetic networks design Cell Cycle Modeling

More information

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016

Boolean models of gene regulatory networks. Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Boolean models of gene regulatory networks Matthew Macauley Math 4500: Mathematical Modeling Clemson University Spring 2016 Gene expression Gene expression is a process that takes gene info and creates

More information

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes 1/ 223 SPA for quantitative analysis: Lecture 6 Modelling Biological Processes Jane Hillston LFCS, School of Informatics The University of Edinburgh Scotland 7th March 2013 Outline 2/ 223 1 Introduction

More information

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter:

Chapter 2. Introduction: Chapter Chemical Basis of Life. Structure of Matter: Chapter 2.1-2.2 Read text 2.1 and describe why chemistry is important in understanding life. Read text 2.2 and discuss how atomic structure determines how atoms interact. Also describe the types of chemical

More information

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results?

Slide 1 / Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 1 / 57 1 Describe the setup of Stanley Miller s experiment and the results. What was the significance of his results? Slide 2 / 57 2 Explain how dehydration synthesis and hydrolysis are related.

More information

Biology Spring Final Exam Study Guide

Biology Spring Final Exam Study Guide Name: Hour: Basic Biology Skills Graphing Know the keys to creating a graph Know how to interpret a graph Independent variable Dependent variable Biology Spring Final Exam Study Guide Levels of Organization

More information

Assignment Checklist Assignment will be collected on the first day of class in August.

Assignment Checklist Assignment will be collected on the first day of class in August. AP BIOLOGY REQUIRED SUMMER ASSIGNMENT In order to facilitate our chances of covering the vast amount of material required in the Advanced Placement Biology curriculum, the following assignment must be

More information

Dr. Fred Cross, Rockefeller (KITP Bio Networks 3/26/2003) 1

Dr. Fred Cross, Rockefeller (KITP Bio Networks 3/26/2003) 1 Outline Cell growth as the driver for cell cycle (in microbes): coordination of growth and division A basic principle organizing cell cycle control: why cyclin-dependent kinase activity must oscillate

More information

2011 The Simple Homeschool Simple Days Unit Studies Cells

2011 The Simple Homeschool Simple Days Unit Studies Cells 1 We have a full line of high school biology units and courses at CurrClick and as online courses! Subscribe to our interactive unit study classroom and make science fun and exciting! 2 A cell is a small

More information

Unit 2: The Properties of Water, Organic Macromolecules, Enzymes, Digestion (questions)

Unit 2: The Properties of Water, Organic Macromolecules, Enzymes, Digestion (questions) Table 1: ph Values of Common Substances 1. Observe Table 1, which substance has the highest concentration of H+ ions? a. Water b. Baking soda solution c. Lemon juice d. Sodium hydroxide solution 2. Which

More information

2. In regards to the fluid mosaic model, which of the following is TRUE?

2. In regards to the fluid mosaic model, which of the following is TRUE? General Biology: Exam I Sample Questions 1. How many electrons are required to fill the valence shell of a neutral atom with an atomic number of 24? a. 0 the atom is inert b. 1 c. 2 d. 4 e. 6 2. In regards

More information

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 1: BIOCHEMISTRY UNIT. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 1: BIOCHEMISTRY UNIT A. Top 10 If you learned anything from this unit, you should have learned: 1. All living matter made up of CHONPS 2. Bonds a. covalent bonds are strong b. hydrogen

More information

Living and nonliving matter is composed of atoms.

Living and nonliving matter is composed of atoms. Chemistry Topics Covered Atomic structure and interactions Properties of Water Biological Molecules: carbohydrates, lipids, nucleic acids, and proteins Central Dogma: DNA à RNA à Protein Protein Structure:

More information

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) 1 Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1) Focus Standards BIO1.LS1.2 Evaluate comparative models of various cell types with a focus on organic molecules

More information