7.014 Quiz I Handout

Size: px
Start display at page:

Download "7.014 Quiz I Handout"

Transcription

1 7.014 Quiz I andout Quiz I announcements: Quiz I: Friday, February 27 12:05 12:55 Walker Gym, rd floor (room 5040) **This will be a closed book exam** Quiz Review Session: Wednesday, February 25 7:00 9:00 pm room pen Tutoring Session: Thursday, February 26 4:00 6:00 pm room 66156

2 Question 1 Shown below are the structures of three amino acids; they are shown in alphabetical order. 2 2 Phenylalanine Threonine (Phe) (Thr) a) ircle the side chain group on each amino acid. Tyrosine (Tyr) b) Using the blanks below, rank these three in order of the hydrophobicity of their side chains. i) Most ydrophobic ii) Intermediate iii) Least ydrophobic c) Explain why (i) is more hydrophobic than (ii). d) Explain why (ii) is more hydrophobic than (iii). Question 2 From the diagram below, P P 2 2 Lys 2 2 Tyr Arg Asp Glu a) ircle the strongest interaction that exists between: i) the side chain of Lys and the phosphate group of GDP van der Waals covalent hydrogen bond ionic 2

3 Question 2, continued ii) the side chain of Glu and the ribose group of GDP van der Waals covalent hydrogen bond ionic iii) the side chain of Tyr and the guanine base of GDP van der Waals covalent hydrogen bond ionic b) You make mutations in the GDPbinding pocket of the G protein and examine their effects on the binding of GDP. onsider the size and the nature (e.g. charge, polarity, hydrophilicity, hydrophobicity) of the amino acid side chains and give the most likely reason why each mutation has the stated effect. onsider each mutation independently. i) Arg is mutated to a Lys, resulting in a G protein that still binds GDP. ii) Asp is mutated to a Tyr, resulting in a G protein that cannot bind GDP. Question Short answer. Some possibly useful equations can be found at the end of this exam. a) onsider the following reaction: (1) A B G = 1 kcal/mol o i) What is the G for this reaction when [A] = [B] = [] = 10 mm and T = 25 º? Show your work. ii) Suppose you add an enzyme that catalyzes reaction (1). Make each of the following statements true by circling the appropriate underlined phrase. (4 circles total) becomes more runs faster. The forward reaction stays just as thermodynamically spontaneous and proceeds at the same rate. becomes less runs slower. becomes more runs faster. The reverse reaction stays just as thermodynamically spontaneous and proceeds at the same rate. becomes less runs slower.

4 Question, continued b) onsider the reaction: (2) X Y K 2 = [Y] at equilibrium [X] Given the following: () ATP ADP P i (4) X ATP Y ADP P i G = 7.5 kcal/mol at 25 o o i) What is the K eq for the coupled reaction (4) in terms of the K eq of reaction (2), at 25? Show your work. ii) Provide a plausible mechanism by which the cell could couple the energy from reaction () to drive reaction (2). You need not go into chemical detail; just describe the process clearly. Question 4 Part 1. True or False. If false, explain why. a) Most of the ATP produced from the aerobic metabolism of glucose results from glycolysis. b) In yeast cells under anaerobic conditions (no oxygen), the rate of glucose consumption is less than that under aerobic conditions. c) Glycolysis (glucose >2 pyruvate) occurs under aerobic and anaerobic conditions. d) Under anaerobic conditions (no oxygen), the citric acid cycle degrades acetyl coenzyme A to 2 and 2, producing AD and FAD 2. e) Electron transport produces ATP directly from the transfer of electrons from AD to 2. f) In eukaryotic cells, glycolysis occurs in the cytosol, whereas the reaction of the citric acid cycle and oxidative phosphorylation take place only in the mitochondria. g) During fermentation, pyruvate is converted to ethanol and 2 to use up excess oxygen. h) During glycolysis and respiration, glucose reacts directly with 2 to form 2 and 2. 4

5 Question 4, continued Part 2. Short Answer a) Pyruvate is a very versatile molecule. Give three pathways for pyruvate. For each pathway list the end product and whether AD or AD is formed. PATWAY ED PRDUTS AD or AD ADDITIAL ATPs GEERATED b) Explain briefly how is ATP formed during photosynthesis. c) Explain briefly, what carbon fixation is and what process in plants leads to carbon fixation. Part 2. Short Answer, continued d) When exposed to light, plant cells show net absorption of 2 and net production of 2. In the dark, they show net production of 2 and net absorption of 2. i) What biochemical process is responsible for the plant's absorption of 2 and production of 2 in the dark? Explain briefly. ii) Does this process continue when the plant is exposed to light? If so, why aren't net production of 2 and absorption of 2 seen under these conditions? Explain briefly. 5

6 Shown below is the portion of the diagram from page 8 which shows the electron transport pathway. In this pathway, electrons are transferred from AD to 2 ; the energy of this reaction is coupled to pumping of. AD (FAD 2 ) AD (FAD) 2 e drug X 2 e electron transport proton pumping (in space A) (in space B) 2 e drug Y Two drugs, drug X and drug Y, can pick up electrons from particular intermediates in this pathway. This is shown above. 2 e 2 e) You treat cells carrying out respiration with a saturating dose of drug X, so that all the electrons which would normally continue along the pathway are captured by drug X. Under these conditions: Will the cells continue to consume 2? Will the cells continue to produce 2? Will the rate of ATP synthesis increase or decrease or stay the same? Explain your reasoning. 2 f) You treat cells carrying out respiration with a saturating dose of drug Y, so that all the electrons which would normally continue along the pathway are captured by drug Y. Under these conditions: Will the cells continue to consume 2? Will the cells continue to produce 2? Will the rate of ATP synthesis increase or decrease or stay the same? Explain your reasoning. 6

7 STRUTURES F AMI AIDS ALAIE (ala) ARGIIE (arg) ASPARAGIE (as) 2 ASPARTI AID (asp) 2 S YSTEIE (cys) 2 2 GLUTAMI AID (glu) 2 2 GLUTAMIE (gl) 2 GLYIE (gly) 2 ISTIDIE (his) 2 ISLEUIE (ile) 2 LEUIE (leu) LYSIE (lys) 2 2 S METIIE (met) TREIE (thr) 2 2 PEYLALAIE (phe) TRYPTPA (trp) PRLIE (pro) TYRSIE (tyr) 2 SERIE (ser) VALIE (val) 7

8 Thermodynamics: For the reaction: A B K eq D with G o as its standard free energy at equilibrium: G o = _ RT ln [][D] [A][B] where: if T = 25 º then RT = 0.59 kcal mol if T = 7 º then RT = 0.61 kcal mol under any conditions: G = G o RT ln [][D] [A][B] Solutions to Practice Quiz I Question 1 a) 2 (Phe) (Thr) 2 (Tyr) b) i) most hydrophobic: phenylalanine ii) intermediate tyrosine iii) least hydrophobic threonine c) Phe is more hydrophobic than tyr because tyr has a hydrophilic group that phe lacks ( can form bonds). d) Tyr is more hydrophobic than thr because, although both have s, tyr has more nonpolar s than thr. 8

9 Question 2 a) i) van der Waals covalent hydrogen bond ionic ii) van der Waals covalent hydrogen bond ionic iii) van der Waals covalent hydrogen bond ionic b) i) Arg and Lys are both positively charged, thus the ionic interaction with the phosphate group is preserved. The side chains of both amino acids are also of similar size. Question ii) Tyr is much larger than Asp. Although Tyr can form a hydrogen bond, GDP will no longer fit into the binding pocket. The Tyr side chain is also much more hydrophobic than the Asp side chain. a) i) (remember that 10mM = 0.01M) G = G 0 RTln [] [A][ B] becomes : G = 1 (0.59) ln 0.01 (0.01)(0.01) = 1 (0.59) ln(100) = 1.71 kcal mol ii) Both the forward & reverse reactions stay just as thermodynamically spontaneous and both run faster. b) i) K 4 = [Y][ ADP][ P i ] [ X][ ATP] = K 2 [ADP][ P i ] [ ATP] = K 2 e G 0 RT = K 2 e =.x10 5 (K 2 ) Question 4 Part 1 ii) Several possibilities, here are 2: (1) common intermediate: ATP Q > ADP Pi Q* then X Q* > Y Q (2) both reactions catalyzed by the same enzyme so that the energy is coupled a) False. Most of the ATP produced from the aerobic metabolism of glucose results from respiration. b) False. In yeast cells under anaerobic conditions (no oxygen), the rate of glucose consumption is greater than that under aerobic conditions. c) True. d) False. The citric acid cycle does not occur under anaerobic conditions. The statement is true as written of aerobic conditions. 9

10 Question 4 Part 1, continued e) False. Electron transport from AD to 2 proceeds through many intermediates leading to the production of a proton gradient which drives ATP synthesis. f) True. g) False. Pyruvate is converted to ethanol and 2 to regenerate AD. h) False. Glucose and its derivatives are oxidized by AD and FAD. The resulting AD and FAD 2 carry electron to 2 via the electron transport chain, producing 2. Part 2 a) Pyruvate is a very versatile molecule. Give three pathways for pyruvate. For each pathway list the end product and whether AD or AD is formed. 1. fermentation Lactic acid AD none 2. fermentation ethanol AD none. respiration 2 AD 4 b) ATP is generated by photophosphorylation using the energy from the electrochemical proton gradient formed by the passing of electrons through the photosystems. c) arbon fixation is changing 2 to an organic form by covalently binding it to an organic molecule, usually a sugar. ne example is seen in mesophyll cells where a 2 is added to the sugar ribulose1,5bisphosphate (RuBP) by the enzyme rubisco to form phosphoglycerate. This is the first part of the alvinbenson ycle, also referred to as the dark reactions, because they are lightindependent. d) When exposed to light, plant cells show net absorption of 2 and net production of 2. In the dark, they show net production of 2 and net absorption of 2 i) What biochemical process is responsible for the plant's absorption of 2 and production of 2 in the dark? Explain briefly. Respiration. The plant cells are using 2 to oxidize stored carbohydrates to 2, in order to produce energy. ii) Does this process continue when the plant is exposed to light? If so, why is no net production of 2 and absorption of 2 seen under these conditions? Explain briefly. Yes, the plant always needs energy from respiration to perform cellular reactions. In the light, the rate of photosynthesis is greater than the rate of respiration, so result is net 2 production and net 2 absorption. In the dark, there is no photosynthesis, so the basal respiration level predominates ( 2 absorption and 2 production). e) won t consume 2 ; will produce 2 ; ATP will decrease because no pumped. f) won t consume 2 ; will produce 2 ; ATP will stay the same because still pumped. 10

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells?

7.012 Problem Set 1. i) What are two main differences between prokaryotic cells and eukaryotic cells? ame 7.01 Problem Set 1 Section Question 1 a) What are the four major types of biological molecules discussed in lecture? Give one important function of each type of biological molecule in the cell? b)

More information

Bio 111 Exam #2. Version A 11/13/06. Question Value Score 1 23 TOTAL: 100. Your Name: Solutions can be found in the Biochemistry 5 handout.

Bio 111 Exam #2. Version A 11/13/06. Question Value Score 1 23 TOTAL: 100. Your Name: Solutions can be found in the Biochemistry 5 handout. Bio 111 Exam #2 Version A 11/13/06 Your ame: TA's ame: Lab Section Write your initials on every page in the space provided. This exam has 11 pages including this coversheet. heck that you have pages 111.

More information

7.012 Problem Set 1 Solutions

7.012 Problem Set 1 Solutions ame TA Section 7.012 Problem Set 1 Solutions Your answers to this problem set must be inserted into the large wooden box on wheels outside 68120 by 4:30 PM, Thursday, September 15. Problem sets will not

More information

L L. Figure by MIT OCW.

L L. Figure by MIT OCW. MIT Biology Department 7.012: Introductory Biology Fall 20 Instructors: Professor Eric ander, Professor Robert A. Weinberg, Dr. laudette Gardel ame: Question 1 7.012 Problem Set 2 Please print out this

More information

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration: Harvesting Chemical Energy. 9.1 Catabolic pathways yield energy by oxidizing organic fuels Cellular Respiration: Harvesting Chemical Energy 9.1 Catabolic pathways yield energy by oxidizing organic fuels 9.2 Glycolysis harvests chemical energy by oxidizing glucose to pyruvate 9.3 The citric acid

More information

7.014 Problem Set 2. [substrate] mm Initial reaction velocity* mmol/min

7.014 Problem Set 2. [substrate] mm Initial reaction velocity* mmol/min ame ection 7.014 Problem et 2 Answers to this problem set are to be turned in at the box outside 68120 by 4:00 pm Wednesday, February 20. Problem sets will not be accepted late. olutions will be posted

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

Essential Question: How does energy flow through the processes of Photosynthesis and Cellular Respiration? Page 92. Cellular Respiration ENERGY ATP

Essential Question: How does energy flow through the processes of Photosynthesis and Cellular Respiration? Page 92. Cellular Respiration ENERGY ATP Essential Question: How does energy flow through the processes of Photosynthesis and Cellular Respiration? Page 92 ATP Cellular Respiration ENERGY Photosynthesis Page 92 Essential Question: How does energy

More information

Unit 1C Practice Exam (v.2: KEY)

Unit 1C Practice Exam (v.2: KEY) Unit 1C Practice Exam (v.2: KEY) 1. Which of the following statements concerning photosynthetic pigments (chlorophylls a and b, carotenes, and xanthophylls) is correct? (PT1-12) a. The R f values obtained

More information

Metabolism Review. A. Top 10

Metabolism Review. A. Top 10 A. Top 10 Metabolism Review 1. Energy production through chemiosmosis a. pumping of H+ ions onto one side of a membrane through protein pumps in an Electron Transport Chain (ETC) b. flow of H+ ions across

More information

Photosynthesis and cellular respirations

Photosynthesis and cellular respirations The Introduction of Biology Defining of life Basic chemistry, the chemistry of organic molecules Classification of living things History of cells and Cells structures and functions Photosynthesis and cellular

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body

METABOLISM. What is metabolism? Categories of metabolic reactions. Total of all chemical reactions occurring within the body METABOLISM What is metabolism? METABOLISM Total of all chemical reactions occurring within the body Categories of metabolic reactions Catabolic reactions Degradation pathways Anabolic reactions Synthesis

More information

Energy for Life 12/11/14. Light Absorption in Chloroplasts

Energy for Life 12/11/14. Light Absorption in Chloroplasts Energy for Life Biochemical pathways A series of reactions where the products of one reaction is used in the next reaction Light Absorption in Chloroplasts Chloroplasts Two membranes Grana- layered stacks

More information

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this

This is an example of cellular respiration, which can be used to make beer and wine using different metabolic pathways For these reasons we call this Chapter 6 Carvings from ancient Egypt show barley being crushed and mixed with water (left) and then put into closed vessels (centre) where airless conditions are suitable for the production of alcohol

More information

AP Bio-Ms.Bell Unit#3 Cellular Energies Name

AP Bio-Ms.Bell Unit#3 Cellular Energies Name AP Bio-Ms.Bell Unit#3 Cellular Energies Name 1. Base your answer to the following question on the image below. 7. Base your answer to the following question on Which of the following choices correctly

More information

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy. Problem Set 2-Answer Key BILD1 SP16 1) How does an enzyme catalyze a chemical reaction? Define the terms and substrate and active site. An enzyme lowers the energy of activation so the reaction proceeds

More information

Energy Transformation. Metabolism = total chemical reactions in cells.

Energy Transformation. Metabolism = total chemical reactions in cells. Energy Transformation Metabolism = total chemical reactions in cells. metabole = change Metabolism is concerned with managing the material and energy resources of the cell -Catabolism -Anabolism -Catabolism

More information

Photosynthesis and Cellular Respiration Practice Test Name

Photosynthesis and Cellular Respiration Practice Test Name Photosynthesis and Cellular Respiration Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which H+ has just passed through the

More information

State state describe

State state describe Warm-Up State the products of the light-dependent reaction of photosynthesis, state which product has chemical energy, and describe how that product is made. KREBS ETC FADH 2 Glucose Pyruvate H 2 O NADH

More information

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP:

Cell Energy: The Big Picture. So, What Exactly is ATP. Adenosine Triphosphate. Your turn to Practice converting ATP to ADP: Understanding How Living Things Obtain and Use Energy. Cell Energy: The Big Picture Most Autotrophs produce food (sugar) using light energy during Photosynthesis. Then, both Autotrophs and Heterotroph

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Center for Academic Services & Advising

Center for Academic Services & Advising March 2, 2017 Biology I CSI Worksheet 6 1. List the four components of cellular respiration, where it occurs in the cell, and list major products consumed and produced in each step. i. Hint: Think about

More information

Cellular Energetics Review

Cellular Energetics Review Cellular Energetics Review 1. What two molecules are formed when a phosphate is removed from ATP? 2. Describe how photosynthesis and cellular respiration are reverse processes. 3. What is the function

More information

Biochemical Pathways

Biochemical Pathways Biochemical Pathways Living organisms can be divided into two large groups according to the chemical form in which they obtain carbon from the environment. Autotrophs can use carbon dioxide from the atmosphere

More information

Energy for biological processes

Energy for biological processes 1 Energy transfer When you have finished revising this topic, you should: be able to explain the difference between catabolic and anabolic reactions be able to describe the part played by in cell metabolism

More information

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell

The Life of a Cell. The Chemistry of Life. A View of the Cell. Cellular Transport and the Cell Cycle. Energy in a Cell The Life of a Cell The Chemistry of Life A View of the Cell Cellular Transport and the Cell Cycle Energy in a Cell Chapter 9 Energy in a Cell 9.1: The Need for Energy 9.1: Section Check 9.2: Photosynthesis:

More information

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe.

Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms Obtain Energy Transformation of Energy! Energy is the ability to do work.! Thermodynamics is the study of the flow and transformation of energy in the universe. Section 1 How Organisms

More information

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration

Cellular respiration. How do living things stay alive? Cellular Respiration Burning. Photosynthesis. Cellular Respiration How do living things stay alive? Cellular Respiration Burning Happens in ALL living things inside cells and has the main goal of producing ATP the fuel of life It does not matter whether the organisms

More information

Cellular Respiration. Pg 231

Cellular Respiration. Pg 231 Cellular Respiration Pg 231 Define cellular respiration. The process by which mitochondria break down food molecules to produce ATP is called cellular respiration. In plants breaking sugar (glucose) to

More information

Respiration and Photosynthesis

Respiration and Photosynthesis Respiration and Photosynthesis Cellular Respiration Glycolysis The Krebs Cycle Electron Transport Chains Anabolic Pathway Photosynthesis Calvin Cycle Flow of Energy Energy is needed to support all forms

More information

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 107 Week 6 RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES Bio 107 Week 6 Procedure 7.2 Label test tubes well, including group name 1) Add solutions listed to small test tubes 2)

More information

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned:

REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS. A. Top 10 If you learned anything from this unit, you should have learned: Period Date REVIEW 3: METABOLISM UNIT RESPIRATION & PHOTOSYNTHESIS A. Top 10 If you learned anything from this unit, you should have learned: 1. Energy production through chemiosmosis a. pumping of H+

More information

Energy in the World of Life

Energy in the World of Life Cellular Energy Energy in the World of Life Sustaining life s organization requires ongoing energy inputs Assembly of the molecules of life starts with energy input into living cells Energy Conversion

More information

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration

Chapter 5. The Chloroplast. 5.1 Matter and Energy Pathways in Living Systems. Photosynthesis & Cellular Respiration Chapter 5 Photosynthesis & Cellular Respiration 5.1 Matter and Energy Pathways in Living Systems Both cellular respiration and photosynthesis are examples of biological processes that involve matter &

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

Cellular Energy Section 8.1 How Organisms Obtain Energy

Cellular Energy Section 8.1 How Organisms Obtain Energy Cellular Energy Section 8.1 How Organisms Obtain Energy Scan Section 1 of the chapter and make a list of three general ways in which cells use energy. 1. 2. 3. Review metabolism Use your book or dictionary

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

Respiration and Photosynthesis. The Ying and Yang of Life.

Respiration and Photosynthesis. The Ying and Yang of Life. Respiration and Photosynthesis The Ying and Yang of Life. Why? You ve always been told that you must eat and breathe. Why? In this unit we will attempt to answer those questions. 1 st Law of Thermodynamics

More information

AP Biology Big Idea 2 Unit Study Guide

AP Biology Big Idea 2 Unit Study Guide Name: Period: AP Biology Big Idea 2 Unit Study Guide This study guide highlights concepts and terms covered in the evolution unit. While this study guide is meant to be inclusive, any term or concept covered

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food

More information

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Lecture Series 9 Cellular Pathways That Harvest Chemical Energy Reading Assignments Review Chapter 3 Energy, Catalysis, & Biosynthesis Read Chapter 13 How Cells obtain Energy from Food Read Chapter 14

More information

Energy and Cellular Metabolism

Energy and Cellular Metabolism 1 Chapter 4 About This Chapter Energy and Cellular Metabolism 2 Energy in biological systems Chemical reactions Enzymes Metabolism Figure 4.1 Energy transfer in the environment Table 4.1 Properties of

More information

Chapter 4: Cellular Metabolism (Sections 1,3,5,6) KEY CONCEPT All cells need chemical energy.

Chapter 4: Cellular Metabolism (Sections 1,3,5,6) KEY CONCEPT All cells need chemical energy. KEY CONCEPT All cells need chemical energy. ! The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical energy in their bonds. Starch molecule Glucose molecule

More information

Unit 3: Cell Energy Guided Notes

Unit 3: Cell Energy Guided Notes Enzymes Unit 3: Cell Energy Guided Notes 1 We get energy from the food we eat by breaking apart the chemical bonds where food is stored. energy is in the bonds, energy is the energy we use to do things.

More information

Chapter 6- An Introduction to Metabolism*

Chapter 6- An Introduction to Metabolism* Chapter 6- An Introduction to Metabolism* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. The Energy of Life

More information

Be sure to understand:

Be sure to understand: Learning Targets & Focus Questions for Unit 6: Bioenergetics Chapter 8: Thermodynamics Chapter 9: Cell Resp Focus Q Ch. 10: Photosynthesis Chapter 8 (141-150) 1. I can explain how living systems adhere

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

Pathways that Harvest and Store Chemical Energy

Pathways that Harvest and Store Chemical Energy 6 Pathways that Harvest and Store Chemical Energy Energy is stored in chemical bonds and can be released and transformed by metabolic pathways. Chemical energy available to do work is termed free energy

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

Lectures by Kathleen Fitzpatrick

Lectures by Kathleen Fitzpatrick Chapter 10 Chemotrophic Energy Metabolism: Aerobic Respiration Lectures by Kathleen Fitzpatrick Simon Fraser University Figure 10-1 Figure 10-6 Conversion of pyruvate The conversion of pyruvate to acetyl

More information

Energy and the Cell. All living things need energy to survive and do work.

Energy and the Cell. All living things need energy to survive and do work. Energy and the Cell EQ: How do cells acquire energy? EQ: Why is the relationship between plants and animals essential to life? All living things need energy to survive and do work. Organisms who depend

More information

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions

CP Biology Unit 5 Cell Energy Study Guide. Electron Carriers Electron Transport Chain Fermentation Glycolysis Krebs cycle Light-Dependent Reactions Name: KEY CP Biology Unit 5 Cell Energy Study Guide Vocabulary to know: ATP ADP Aerobic Anaerobic ATP Synthases Cellular Respiration Chlorophyll Chloroplast Electron Carriers Electron Transport Chain Fermentation

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Name Date Class CHAPTER 5 TEST PREP PRETEST Photosynthesis and Cellular Respiration In the space provided, write the letter of the term or phrase that best completes each statement or best answers each

More information

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November

2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of November Name: Class: Date: 2015 Biology Unit #3 Quiz 1 Photosynthesis, Cellular Respiration and Fermentation Week of 02-09 November 1 Which of the following statements is true for all cells? a They use solar energy

More information

Biology Chapter 8 Test: Cellular Energy

Biology Chapter 8 Test: Cellular Energy Class: Date: Biology Chapter 8 Test: Cellular Energy True/False Indicate whether the statement is true or false. 1. During the light-independent reactions of photosynthesis, light energy is used to split

More information

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following?

GR QUIZ WITH ANS KEY Cellular Processes. Part I: Multiple Choice. 1. In leaf cell, the synthesis of ATP occurs in which of the following? GR QUIZ WITH ANS KEY Cellular Processes Part I: Multiple Choice 1. In leaf cell, the synthesis of ATP occurs in which of the following? I. Ribosomes II. Mitochondria III. Chloroplasts A. I only B. II only

More information

AHL Topic 8 IB Biology Miss Werba

AHL Topic 8 IB Biology Miss Werba CELL RESPIRATION & PHOTOSYNTHESIS AHL Topic 8 IB Biology Miss Werba TOPIC 8 CELL RESPIRATION & PHOTOSYNTHESIS 8.1 CELL RESPIRATION 1. STATE that oxidation involves the loss of electrons from an element,

More information

7.014 Quiz III Handout

7.014 Quiz III Handout 7.014 Quiz III Handout Quiz III: Wednesday, April 14 12:05-12:55 Walker Gym **This will be a closed book exam** Quiz Review Session: Tuesday, April 13 7:00-9:00 pm room 54-100 Open Tutoring Session: Monday,

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Cellular Energy: Respiration. Goals: Anaerobic respiration

Cellular Energy: Respiration. Goals: Anaerobic respiration Cellular Energy: Respiration Anaerobic respiration Goals: Define and describe the 3 sets of chemical reactions that comprise aerobic cellular respiration Describe the types of anaerobic respiration Compare

More information

Problem Set 1

Problem Set 1 2006 7.012 Problem Set 1 Due before 5 PM on FRIDAY, September 15, 2006. Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. For each of the following parts, pick

More information

Bio102 Problems Photosynthesis

Bio102 Problems Photosynthesis Bio102 Problems Photosynthesis 1. Why is it advantageous for chloroplasts to have a very large (in surface area) thylakoid membrane contained within the inner membrane? A. This limits the amount of stroma

More information

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman Some illustrations are courtesy of McGraw-Hill.

METABOLISM CHAPTER 04 BIO 211: ANATOMY & PHYSIOLOGY I. Dr. Lawrence G. Altman  Some illustrations are courtesy of McGraw-Hill. BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. CELLULAR METABOLISM Dr. Lawrence G. Altman

More information

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars!

CELL METABOLISM OVERVIEW Keep the big picture in mind as we discuss the particulars! BIO 211: ANATOMY & PHYSIOLOGY I CHAPTER 04 CELLULAR METABOLISM 1 Please wait 20 seconds before starting slide show. Mouse click or Arrow keys to navigate. Hit ESCAPE Key to exit. Dr. Lawrence G. Altman

More information

BIS Office Hours

BIS Office Hours BIS103-001 001 ffice ours TUE (2-3 pm) Rebecca Shipman WED (9:30-10:30 am) TUE (12-1 pm) Stephen Abreu TUR (12-1 pm) FRI (9-11 am) Steffen Abel Lecture 2 Topics Finish discussion of thermodynamics (ΔG,

More information

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration

Ch. 4 Cells and Energy. Photosynthesis and Cellular Respiration Ch. 4 Cells and Energy Photosynthesis and Cellular Respiration 1 2 4.1 Chemical Energy and ATP Living organisms need energy Most comes indirectly from sun! Some change sunlight into organic compounds Others

More information

Metabolism Test D [50 marks]

Metabolism Test D [50 marks] Metabolism Test D [50 marks] 1. A cricket was placed in a respirometer at constant temperature for ten minutes. The soap bubble moved along the pipette. [Source: International Baccalaureate Organization

More information

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per

Cell Energy Notes ATP THE ENDOSYMBIOTIC THEORY. CELL ENERGY Cells usable source of is called ATP stands for. Name Per Cell Energy Notes Name Per THE ENDOSYMBIOTIC THEORY The Endosymbiotic theory is the idea that a long time ago, engulfed other prokaryotic cells by. This resulted in the first First proposed by Explains

More information

2.A.2- Capture and Storage of Free Energy

2.A.2- Capture and Storage of Free Energy 2.A.2- Capture and Storage of Free Energy Big Idea 2: Biological systems utilize free energy and molecular building blocks to grow, to reproduce, and to maintain dynamic homeostasis. EU 2.A- Growth, reproduction

More information

Review Questions - Lecture 5: Metabolism, Part 1

Review Questions - Lecture 5: Metabolism, Part 1 Review Questions - Lecture 5: Metabolism, Part 1 Questions: 1. What is metabolism? 2. What does it mean to say that a cell has emergent properties? 3. Define metabolic pathway. 4. What is the difference

More information

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation

Cellular Energetics. Photosynthesis, Cellular Respiration and Fermentation Cellular Energetics Photosynthesis, Cellular Respiration and Fermentation TEKS B.4 Science concepts. The student knows that cells are the basic structures of all living things with specialized parts that

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AP Exam Chapters 9 and 10; Photosynthesis and Respiration Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Carbon dioxide (CO2) is released

More information

Activity: Identifying forms of energy

Activity: Identifying forms of energy Activity: Identifying forms of energy INTRODUCTION TO METABOLISM Metabolism Metabolism is the sum of all chemical reactions in an organism Metabolic pathway begins with a specific molecule and ends with

More information

Exam III. Please read through each question carefully, and make sure you provide all of the requested information.

Exam III. Please read through each question carefully, and make sure you provide all of the requested information. 09-107 onors Chemistry ame Exam III Please read through each question carefully, and make sure you provide all of the requested information. 1. A series of octahedral metal compounds are made from 1 mol

More information

Energy Metabolism exergonic reaction endergonic reaction Energy of activation

Energy Metabolism exergonic reaction endergonic reaction Energy of activation Metabolism Energy Living things require energy to grow and reproduce Most energy used originates from the sun Plants capture 2% of solar energy Some captured energy is lost as metabolic heat All energy

More information

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen

Cellular Respiration. Mitochondria Rule! Mr. Kurt Kristensen Cellular Respiration Mitochondria Rule! Mr. Kurt Kristensen Harvard Biovisions Mitochondria Summer Session Week 1: Cellular Respiration Students should. 1) Understand the locations, and functions of the

More information

Answer Key Evening Exam 2v1

Answer Key Evening Exam 2v1 Page 1 of 11 Evening Exam 2 ame: Chem 250 Answer Key Evening Exam 2v1 This exam is composed of 40 questions. As discussed in the course syllabus, honesty and integrity are absolute essentials for this

More information

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive

ATP. Chapter 4. Photosynthesis. Cell Respiration. Energy of Life. All organisms need energy in order to survive ATP Chapter 4 Photosynthesis Energy of Life All organisms need energy in order to survive 2 Major groups of organisms: A. autotrophs make their own food Ex: plants B. heterotrophs must eat others living

More information

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully.

Metabolism. Fermentation vs. Respiration. End products of fermentations are waste products and not fully. Outline: Metabolism Part I: Fermentations Part II: Respiration Part III: Metabolic Diversity Learning objectives are: Learn about respiratory metabolism, ATP generation by respiration linked (oxidative)

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Unit 5 Cellular Energy

Unit 5 Cellular Energy Unit 5 Cellular Energy I. Enzymes (159) 1.Are CATALYSTS: Speed up chemical reactions that would otherwise happen too slowly to support life. Catalysts DO NOT make reactions happen that couldn t happen

More information

Chapter 8.1. How Organisms Obtain Energy

Chapter 8.1. How Organisms Obtain Energy Chapter 8.1 How Organisms Obtain Energy Main Idea All living organisms use energy to carry out all biological processes. Energy Energy is the ability to do work. Quick Review: Heterotrophs are organisms

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reactions, light-dependent, Calvin cycle, thylakoid, photosystem II, oxygen, light-harvesting, two, chloroplasts,

More information

All organisms require a constant expenditure of energy to maintain the living state - "LIFE".

All organisms require a constant expenditure of energy to maintain the living state - LIFE. CELLULAR RESPIRATION All organisms require a constant expenditure of energy to maintain the living state - "LIFE". Where does the energy come from and how is it made available for life? With rare exception,

More information

1.9 Practice Problems

1.9 Practice Problems 1.9 Practice Problems 1. Solution: B It s not only chlorophyll a but a combination of pigments. 2. Solution: D See at what wavelength rate of photosynthesis is the highest. 3. Solution: D It s a fact.

More information

PHOTOSYNTHESIS STARTS WITH

PHOTOSYNTHESIS STARTS WITH Name Date Period PHOTOSYNTHESIS STARTS WITH 1. Molecules that collect light energy are called _P. 2. Chlorophyll a and b absorb _B -_V and _R wavelengths of light best. 3. _C is the main light absorbing

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

Name Date Class. Photosynthesis and Respiration

Name Date Class. Photosynthesis and Respiration Concept Mapping Photosynthesis and Respiration Complete the Venn diagram about photosynthesis and respiration. These terms may be used more than once: absorbs, Calvin cycle, chlorophyll, CO 2, H 2 O, Krebs

More information

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H +

Chapter 15 part 2. Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry. ATP 4- + H 2 O ADP 3- + P i + H + Biochemistry I Introduction to Metabolism Bioenergetics: Thermodynamics in Biochemistry ATP 4- + 2 ADP 3- + P i 2- + + Chapter 15 part 2 Dr. Ray 1 Energy flow in biological systems: Energy Transformations

More information

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested

THIS IS. In photosynthesis A) Carbon gets oxidized B) Carbon gets reduced C) Carbon gets metabolized D) Carbon gets digested THIS IS With Your Host... table Column A Column B Column C Column D Column E Column F 100 100 100 100 100 100 200 200 200 200 200 200 300 300 300 300 300 300 400 400 400 400 400 400 In photosynthesis A)

More information

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air Ch. 10 Photosynthesis: The Calvin Cycle Life from Air 2007-2008 Whoops! Wrong Calvin The Calvin Cycle 1950s 1961 Remember what it means to be a plant Need to produce all organic molecules necessary for

More information

Oxidative Phosphorylation versus. Photophosphorylation

Oxidative Phosphorylation versus. Photophosphorylation Photosynthesis Oxidative Phosphorylation versus Photophosphorylation Oxidative Phosphorylation Electrons from the reduced cofactors NADH and FADH 2 are passed to proteins in the respiratory chain. In eukaryotes,

More information

PHOTOSYNTHESIS & RESPIRATION

PHOTOSYNTHESIS & RESPIRATION PHOTOSYNTHESIS & RESPIRATION There are two basic patterns by which organisms transform energy. AUTOTROPHIC PATTERN Light energy is transformed to chemical energy that can be used by the cell. AUTOTROPHIC

More information

UNIT 2: CELLS Chapter 4: Cells and Energy

UNIT 2: CELLS Chapter 4: Cells and Energy CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be stamped after each assigned

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

Chem 250 Evening Exam 2

Chem 250 Evening Exam 2 Page 1 of 10 Evening Exam 2 ame:: Chem 250 Evening Exam 2 This exam is composed of 40 questions. As discussed in the course syllabus, honesty and integrity are absolute essentials for this class. In fairness

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Photosynthesis and Cellular Respiration Note-taking Guide

Photosynthesis and Cellular Respiration Note-taking Guide Photosynthesis and Cellular Respiration Note-taking Guide Preview to Photosynthesis glucose, reectlons, light-dependent, Calvin cycle, thylakoid, oxygen, light-harvesting, two, chloroplasts, photosynthesis,

More information