Photosynthesis: Life from Light and Air

Size: px
Start display at page:

Download "Photosynthesis: Life from Light and Air"

Transcription

1 Photosynthesis: Life from Light and Air

2 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) get their energy from eating others eat food = other organisms = organic molecules make energy through respiration Autotrophs (Plants) produce their own energy (from self ) convert energy of sunlight build organic molecules (CHO) from CO 2 make energy & synthesize sugars through photosynthesis

3 How are they connected? Heterotrophs making energy & organic molecules from ingesting organic molecules glucose + oxygen carbon + water + energy dioxide C 6 H 12 O 6 + 6O 2 6CO 2 + 6H 2 O + ATP oxidation = exergonic Autotrophs making energy & organic molecules from light energy carbon dioxide + water + energy glucose + oxygen 6CO 2 + 6H 2 O + light C 6 H 12 O 6 6O energy + 2 reduction = endergonic Where s the ATP?

4 What does it mean to be a plant Need to collect light energy transform it into chemical energy store light energy in a stable form to be moved around glucose the plant or stored need to get building block atoms from the environment C,H,O,N,P,K,S,Mg produce all organic molecules needed for growth ATP CO 2 N K P carbohydrates, proteins, lipids, nucleic acids H 2 O

5 Plant structure Obtaining raw materials sunlight leaves = solar collectors CO 2 stomates = gas exchange H 2 O uptake from roots nutrients N, P, K, S, Mg, Fe uptake from roots

6 stomate transpiration gas exchange

7 leaves Chloroplasts cross section of leaf absorb sunlight & CO 2 CO 2 chloroplasts in plant cell chloroplast chloroplasts contain chlorophyll make energy & sugar

8 Plant structure Chloroplasts double membrane stroma fluid-filled interior thylakoid sacs grana stacks Thylakoid membrane contains chlorophyll molecules electron transport chain ATP synthase gradient built up within thylakoid sac chloroplast stroma ATP H+ H+ H+ outer membrane thylakoid granum H+ thylakoid inner membrane

9 Photosynthesis Light reactions light-dependent reactions energy conversion reactions convert solar energy to chemical energy ATP & NADPH Calvin cycle light-independent reactions sugar building reactions It s not the Dark Reactions! uses chemical energy (ATP & NADPH) to reduce CO 2 & synthesize C 6 H 12 O 6

10 Light reactions Electron Transport Chain like in cellular respiration proteins in organelle membrane electron acceptors NADPH proton ( ) gradient across inner membrane find the double membrane! ATP synthase enzyme chloroplast ATP H+ H+ H+ H+ H+ H+ thylakoid

11 ETC of Respiration Mitochondria transfer chemical energy from food molecules into chemical energy of ATP use electron carrier NADH generates H 2 O

12 ETC of Photosynthesis Chloroplasts transform light energy into chemical energy of ATP use electron carrier NADPH generates O 2

13 The ATP that Jack built photosynthesis respiration sunlight breakdown of C 6 H 12 O 6 moves the electrons runs the pump pumps the protons builds the gradient drives the flow of protons through ATP synthase bonds P i to ADP generates the ATP ADP + P i ATP that evolution built

14 Pigments of photosynthesis Chlorophylls & other pigments embedded in thylakoid membrane arranged in a photosystem collection of molecules structure-function relationship How does this molecular structure fit its function?

15 A Look at Light The spectrum of color V I B G Y O R

16 Light: absorption spectra Photosynthesis gets energy by absorbing wavelengths of light chlorophyll a absorbs best in red & blue wavelengths & least in green accessory pigments with different structures absorb light of different wavelengths chlorophyll b, carotenoids, xanthophylls Why are plants green?

17 Photosystems of photosynthesis 2 photosystems in thylakoid membrane collections of chlorophyll molecules act as light-gathering molecules Photosystem II reaction chlorophyll a center P 680 = absorbs 680nm wavelength red light Photosystem I chlorophyll b P 700 = absorbs 700nm wavelength red light antenna pigments

18 chlorophyll a Photosystem II ETC of Photosynthesis chlorophyll b Photosystem I

19 ETC of Photosynthesis sun 1 e Photosystem II P680 chlorophyll a

20 Inhale, baby! ETC of Photosynthesis chloroplast H+ H+ H+ thylakoid ATP H+ H+ H+ Plants SPLIT water! 2 1 e O H O H H H e e fill the e vacancy e - e - +H Photosystem II P680 chlorophyll a

21 ETC of Photosynthesis chloroplast H+ H+ H+ thylakoid ATP H+ H+ H+ 2 1 e 3 4 ATP to Calvin Cycle energy to build carbohydrates Photosystem II P680 chlorophyll a ATP ADP + P i

22 ETC of Photosynthesis e sun 5 e e Photosystem II P680 chlorophyll a Photosystem I P700 chlorophyll b

23 ETC of Photosynthesis electron carrier e 6 5 sun Photosystem II P680 chlorophyll a Photosystem I P700 chlorophyll b $$ in the bank reducing power!

24 ETC of Photosynthesis sun sun split H 2 O O H + H H+ + to Calvin Cycle ATP

25 ETC of Photosynthesis ETC uses light energy to produce ATP & NADPH go to Calvin cycle PS II absorbs light excited electron passes from chlorophyll to primary electron acceptor need to replace electron in chlorophyll enzyme extracts electrons from H 2 O & supplies them to chlorophyll splits H 2 O O combines with another O to form O 2 O 2 released to atmosphere and we breathe easier!

26 Experimental evidence Where did the O 2 come from? radioactive tracer = O 18 Experiment 1 6CO 2 + 6H 2 O + light C 6 H 12 O 6 6O energy + 2 Experiment 2 6CO 2 + 6H 2 O + light C 6 H 12 O 6 6O energy + 2 Proved O 2 came from H 2 O not CO 2 = plants split H 2 O!

27 Noncyclic Photophosphorylation Light reactions elevate electrons in 2 steps (PS II & PS I) PS II generates energy as ATP PS I generates reducing power as NADPH ATP

28 Cyclic photophosphorylation If PS I can t pass electron to NADP it cycles back to PS II & makes more ATP, but no NADPH coordinates light reactions to Calvin cycle Calvin cycle uses more ATP than NADPH ATP 18 ATP + 12 NADPH 1 C 6 H 12 O 6

29 Photophosphorylation cyclic photophosphorylation NADP NONcyclic photophosphorylation ATP

30 Photosynthesis summary Where did the energy come from? Where did the electrons come from? Where did the H 2 O come from? Where did the O 2 come from? Where did the O 2 go? Where did the come from? Where did the ATP come from? What will the ATP be used for? Where did the NADPH come from? What will the NADPH be used for? stay tuned for the Calvin cycle

31 Photosynthesis: The Calvin Cycle Life from Air

32 Whoops! Wrong Calvin The Calvin Cycle 1950s 1961

33 Remember what it means to be a plant Need to produce all organic molecules necessary for growth carbohydrates, lipids, proteins, nucleic acids Need to store chemical energy (ATP) produced from light reactions in a more stable form that can be moved around plant saved for a rainy day carbon + water + energy glucose + oxygen dioxide 6CO 2 + 6H 2 O + light C 6 H 12 O 6 6O energy + 2

34 Light reactions Convert solar energy to chemical energy ATP energy ATP NADPH reducing power What can we do now? build stuff!! photosynthesis

35 How is that helpful? Want to make C 6 H 12 O 6 synthesis How? From what? What raw materials are available? CO 2 carbon fixation NADPH NADP reduces CO 2 C 6 H 12 O 6 NADP

36 From CO 2 C 6 H 12 O 6 CO 2 has very little chemical energy fully oxidized C 6 H 12 O 6 contains a lot of chemical energy highly reduced Synthesis = endergonic process put in a lot of energy Reduction of CO 2 C 6 H 12 O 6 proceeds in many small uphill steps each catalyzed by a specific enzyme using energy stored in ATP & NADPH

37 From Light reactions to Calvin cycle Calvin cycle chloroplast stroma Need products of light reactions to drive synthesis reactions ATP NADPH stroma ATP thylakoid

38 starch, sucrose, cellulose & more C C C = = Calvin cycle 3. Regeneration of RuBP RuBP 5C ribulose bisphosphate 3 ATP 3 ADP used to make glucose C C C C C C C C C C C C H H H C C C C C C C C C H H H C C C C C C C C C C C C C C C 5C 3C 6 NADP 2. Reduction C 1C CO 2 RuBisCo ribulose bisphosphate carboxylase glyceraldehyde-3-p G3P PGA C C C phosphoglycerate 1. Carbon fixation 3C 6 ATP 6 NADPH 6 ADP C 3C C 6C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C

39 Remember G3P? glycolysis glucose C-C-C-C-C-C fructose-1,6bp P-C-C-C-C-C-C-P 2 2 ATP ADP DHAP P-C-C-C G3P C-C-C-P glyceraldehyde 3-phosphate 2 2 NAD + 4 ADP Photosynthesis pyruvate C-C-C 4 ATP

40 To G3P and Beyond! To G3P and beyond! Glyceraldehyde-3-P end product of Calvin cycle energy rich 3 carbon sugar C3 photosynthesis G3P is an important intermediate G3P glucose carbohydrates lipids phospholipids, fats, waxes amino acids proteins nucleic acids DNA, RNA

41 RuBisCo Enzyme which fixes carbon from air ribulose bisphosphate carboxylase the most important enzyme in the world! it makes life out of air! definitely the most abundant enzyme I m green with envy! It s not easy being green!

42 Accounting The accounting is complicated 3 turns of Calvin cycle = 1 G3P 3 CO 2 1 G3P (3C) 6 turns of Calvin cycle = 1 C 6 H 12 O 6 (6C) 6 CO 2 1 C 6 H 12 O 6 (6C) 18 ATP + 12 NADPH 1 C 6 H 12 O 6 any ATP left over from light reactions will be used elsewhere by the cell

43 Photosynthesis summary Light reactions produced ATP produced NADPH consumed H 2 O produced O 2 as byproduct Calvin cycle consumed CO 2 produced G3P (sugar) regenerated ADP regenerated NADP ADP NADP

44 Light Reactions H 2 O + light ATP O energy + NADP 2 sunlight H 2 O Energy Building Reactions NADPH ATP produces ATP produces NADPH releases O 2 as a waste product O 2

45 Calvin Cycle CO 2 + ATP + NADPH C 6 H 12 O 6 + ADP + NADP ADP NADP NADPH ATP CO 2 Sugar Building Reactions builds sugars uses ATP & NADPH recycles ADP & NADP back to make more ATP & NADPH sugars

46 Putting it all together CO 2 + H 2 O + energy light C 6 H 12 O 6 + O 2 sunlight H 2 O Energy Building Reactions ADP NADP NADPH CO 2 Sugar Building Reactions Plants make both: energy ATP & NADPH sugars ATP O 2 sugars

47 Energy cycle sun even though this equation is a bit of a lie it makes a better story CO 2 H 2 O Photosynthesis CO + 2 H 2 O + energy light C 6 H 12 O + 6 O 2 plants animals, plants ATP C 6 H 12 O 6 + O 2 energy + CO 2 + H 2 O Cellular Respiration glucose O 2 The Great Circle of Life,Mufasa! ATP

48 Summary of photosynthesis 6CO 2 + 6H 2 O + light C 6 H 12 O 6 6O energy + 2 Where did the CO 2 come from? Where did the CO 2 go? Where did the H 2 O come from? Where did the H 2 O go? Where did the energy come from? What s the energy used for? What will the C 6 H 12 O 6 be used for? Where did the O 2 come from? Where will the O 2 go?

49 Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth each year photosynthesis captures 121 billion tons of CO 2 synthesizes 160 billion tons of carbohydrate heterotrophs are dependent on plants as food source for fuel & raw materials

Ch. 10- Photosynthesis: Life from Light and Air

Ch. 10- Photosynthesis: Life from Light and Air Ch. 10- Photosynthesis: Life from Light and Air 2007-2008 Ch. 10 Photosynthesis: Life from Light and Air 2007-2008 Energy needs of life All life needs a constant input of energy consumers Heterotrophs

More information

Photosynthesis: Life from Light and Air

Photosynthesis: Life from Light and Air http://www.youtube.com/watch?v=wi60tqa8jfe Photosynthesis: Life from Light and Air 2011-2012 Energy needs of life All life needs a constant input of energy consumers producers Heterotrophs (Animals) obtain

More information

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up: Warm-up Objective: Explain how photosynthesis converts light energy into chemical energy. Warm-up: In the light reactions, what is the electron donor? Where do the electrons end up? 2006-2007 Photosynthesis:

More information

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air

Ch. 10 Photosynthesis: The Calvin Cycle Life from Air Ch. 10 Photosynthesis: The Calvin Cycle Life from Air 2007-2008 Whoops! Wrong Calvin The Calvin Cycle 1950s 1961 Remember what it means to be a plant Need to produce all organic molecules necessary for

More information

Photosynthesis: The Calvin Cycle

Photosynthesis: The Calvin Cycle Whoops! Wrong Calvin 1950s 1961 Photosynthesis: The Calvin Cycle Remember what it means to be a plant Need to produce all organic molecules necessary for growth carbohydrates, lipids, proteins, nucleic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

AP Biology

AP Biology Chapter 10. Photosynthesis: Life from Light Energy needs of life All life needs a constant input of energy Heterotrophs get their energy from eating others consumers of other organisms consume organic

More information

Photosynthesis: Life from Light AP Biology

Photosynthesis: Life from Light AP Biology Photosynthesis: Life from Light Supporting a biosphere On global scale, photosynthesis is the most important process for the continuation of life on Earth u each year photosynthesis synthesizes 160 billion

More information

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain

Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain a review Located in the thylakoid membranes. Chlorophyll have Mg + in the center. Chlorophyll pigments harvest energy (photons) by absorbing certain wavelengths (blue-420 nm and red-660 nm are most important).

More information

AP Biology. Photosynthesis

AP Biology. Photosynthesis Photosynthesis Redox Reactions break bonds & move electrons from one molecule to another as electrons move they carry energy with them that energy is stored in another bond, released as heat or harvested

More information

Photosynthesis and Life

Photosynthesis and Life 7-1 Chapter 7 Photosynthesis and Life During photosynthesis Organisms use the energy of light to build highenergy organic molecules. Plants, algae, and some bacteria can do this. Can make their own food

More information

build stuff!! Stomates Warm-up Remember what it means to be a Photosynthesis: The Calvin Cycle Life from Air Autotrophs Light reactions

build stuff!! Stomates Warm-up Remember what it means to be a Photosynthesis: The Calvin Cycle Life from Air Autotrophs Light reactions Warm-up Objective: Describe how the chemical products of the light-trapping reactions couple to the synthesis of carbohydrates. Warm-up: What is the advantage of the light reaction producing H and ATP

More information

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to

The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to 1 The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg Energy Conversions Photosynthesis Chapter 10 Pg. 184 205 Life on Earth is solar-powered by autotrophs Autotrophs make their own food and have no need to consume other organisms. They are the ultimate source

More information

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum

pigments AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions Visible light is part of electromagnetic spectrum AP BIOLOGY PHOTOSYNTHESIS Chapter 10 Light Reactions http://vilenski.org/science/safari/cellstructure/chloroplasts.html Sunlight is made up of many different wavelengths of light Your eyes see different

More information

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars).

Photosynthesis. Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Photosynthesis Photosynthesis is the process of harnessing the energy of sunlight to make carbohydrates (sugars). Plants do photosynthesis to make their own food (sugars) and are called, photoautotrophs.

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

1. Plants and other autotrophs are the producers of the biosphere

1. Plants and other autotrophs are the producers of the biosphere 1. Plants and other autotrophs are the producers of the biosphere Photosynthesis nourishes almost all of the living world directly or indirectly. All organisms require organic compounds for energy and

More information

PHOTOSYNTHESIS. https://www.youtube.com/watch?v=pme blshpbsu

PHOTOSYNTHESIS. https://www.youtube.com/watch?v=pme blshpbsu PHOTOSYNTHESIS https://www.youtube.com/watch?v=pme blshpbsu Energy needs of life All life needs a constant input of energy Heterotrophs (Animals) get their energy from eating others eat food = other organisms

More information

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs

8.2 Photosynthesis Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs 8.2 Photosynthesis 8.2.1 - Draw and label a diagram showing the structure of a chloroplast as seen in electron micrographs double membrane starch grain grana thylakoid internal membrane - location of the

More information

THE BASICS OF PHOTOSYNTHESIS

THE BASICS OF PHOTOSYNTHESIS THE BASICS OF PHOTOSYNTHESIS Almost all plants are photosynthetic autotrophs, as are some bacteria and protists Autotrophs generate their own organic matter through photosynthesis Sunlight energy is transformed

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs self-feeders Capture free energy from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic

More information

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars

6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2. sun. Occurs in chloroplasts ATP. enzymes CO 2 O 2 H 2 O. sugars 4.2 8.2 Overview Photosynthesis: of Photosynthesis An Overview Photosynthesis process by which plants make food using energy from the sun Plants are autotrophs that make their own source of chemical energy.

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis 1 2 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by Cyanobacteria

More information

PHOTOSYNTHESIS. Light Reaction Calvin Cycle

PHOTOSYNTHESIS. Light Reaction Calvin Cycle PHOTOSYNTHESIS Light Reaction Calvin Cycle Photosynthesis Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds Carbon

More information

Harvesting energy: photosynthesis & cellular respiration part 1

Harvesting energy: photosynthesis & cellular respiration part 1 Harvesting energy: photosynthesis & cellular respiration part 1 Agenda I. Overview (Big Pictures) of Photosynthesis & Cellular Respiration II. Making Glucose - Photosynthesis III. Making ATP - Cellular

More information

Photosynthesis. Dr. Bertolotti

Photosynthesis. Dr. Bertolotti Photosynthesis Dr. Bertolotti Photosynthesis: Life from Light and Air How do plants and other organisms capture energy from the sun? What is ATP and why is it useful in cells? Plants are energy producers

More information

Photosynthesis and Cellular Respiration

Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration Photosynthesis and Cellular Respiration All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs:

More information

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration

(A) Calvin cycle (B) Cyclic electron transfer (C) Non-cyclic electron transfer (D) Photorespiration (E) Cellular respiration AP Biology - Problem Drill 08: Photosynthesis No. 1 of 10 #01 1. What term does the statement below refer to? In a photosynthesis process, an electron is excited from P700 and delivered to its receptor,

More information

Photosynthesis

Photosynthesis Student Expectations: Cellular Energy Understand that cellular energy is temporarily stored in the nucleotide ATP (adenosine triphosphate) Describe how energy is released by ATP When the outer phosphate

More information

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2

Photosynthesis 6CO 2 + 6H 2 O C 6 H 12 O 6 + 6O 2 PHOTOSYNTHESIS Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules (glucose). photons SUN

More information

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview.

Bellringer 11/12/ CO H Light C 6 H 12 O 6 + 6O 2. Law of conservation. Recall: Photosynthesis Overview. Photosynthesis Bellringer A.1 Identify the following as: heterotroph, autotroph, photosynthesis reactant, or photosynthesis product State Biology Standards H.B.3A1-3 and H.B.2A.1 A.1 Plants take in carbon

More information

AP Biology. Chloroplasts: sites of photosynthesis in plants

AP Biology. Chloroplasts: sites of photosynthesis in plants The summary equation of photosynthesis including the source and fate of the reactants and products. How leaf and chloroplast anatomy relates to photosynthesis. How photosystems convert solar energy to

More information

PHOTOSYNTHESIS. Chapter 10

PHOTOSYNTHESIS. Chapter 10 PHOTOSYNTHESIS Chapter 10 Modes of Nutrition Autotrophs Capture from physical sources in the environment Photosynthetic organisms = sunlight Chemosynthetic organisms = small inorganic molecules (occurs

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) 3. Plant structures: organ, tissue, cells, sub-cellular organelle,

More information

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B.

Photosynthesis. I. Photosynthesis overview A. Purpose B. Location. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Photosynthesis I. Photosynthesis overview A. Purpose B. Location II. III. The light vs. the dark reaction Chloroplasts pigments A. Light absorption B. Types IV. Light reactions A. Photosystems B. Photophosphorylation

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Photosynthesis occurs in plants, algae, certain other

More information

Lecture 9: Photosynthesis

Lecture 9: Photosynthesis Lecture 9: Photosynthesis I. Characteristics of Light A. Light is composed of particles that travel as waves 1. Comprises a small part of the electromagnetic spectrum B. Radiation varies in wavelength

More information

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy.

1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. PHOTOSYNTHESIS A. INTRODUCTION 1. Photosynthesis is the process of making a simple organic molecule from inorganic compounds (molecules) utilizing light energy. a. It takes energy input for synthesis.

More information

Chapter 10 Photosynthesis

Chapter 10 Photosynthesis Chapter 10 Photosynthesis Autotrophs and Heterotrophs Autotrophs are organisms that make their own food. They obtain everything they need by using CO 2 and inorganic compounds from the environment. Heterotrophs

More information

Chapter 10. Photosynthesis

Chapter 10. Photosynthesis Chapter 10 Photosynthesis Overview: The Process That Feeds the Biosphere Photosynthesis is the process that converts solar energy into chemical energy Directly or indirectly, photosynthesis nourishes almost

More information

Sunday, August 25, 2013 PHOTOSYNTHESIS

Sunday, August 25, 2013 PHOTOSYNTHESIS PHOTOSYNTHESIS PREFACE The sun is the ultimate source of energy. The sun powers nearly all life forms. Photosynthesis converts solar energy into chemical energy. Photoautotrophs use solar energy to synthesize

More information

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis

Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Overview. Photosynthesis Photosynthesis Photosynthesis Overview Chapter 8 Energy for all life on Earth ultimately comes from photosynthesis. 6CO2 + 12H2O C6H12O6 + 6H2O + 6O2 Oxygenic photosynthesis is carried out by: cyanobacteria,

More information

Chapter 8: Cellular Energy

Chapter 8: Cellular Energy Chapter 8: Cellular Energy Section 1: How Organisms Obtain Energy Transformation of Energy All cellular activities require Energy!! ( The ability to do work). The study of flow and the transformation of

More information

Photosynthesis. From Sunlight to Sugar

Photosynthesis. From Sunlight to Sugar Photosynthesis From Sunlight to Sugar What is Photosynthesis? Photosynthesis is a process that captures energy from sunlight to make sugars used as food for producers. The light energy is stored as chemical

More information

Metabolism 2 Photosynthesis

Metabolism 2 Photosynthesis Metabolism 2 Photosynthesis Light energy is trapped in the form of high energy electrons. High energy electrons are used to synthesize ATP and reduce CO 2 to form carbohydrates. Oxygen is produced as a

More information

PHOTOSYNTHESIS. Botany Department B.N.D. College

PHOTOSYNTHESIS. Botany Department B.N.D. College PHOTOSYNTHESIS Botany Department B.N.D. College Photosynthesis An anabolic, endergonic, carbon dioxide (CO 2 ) requiring process that uses light energy (photons) and water (H 2 O) to produce organic macromolecules

More information

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy.

Overview - the process that feeds the biosphere. Photosynthesis: transformation of solar energy into chemical energy. Chapter 7 Capturing Solar Energy: Photosynthesis Overview - the process that feeds the biosphere Photosynthesis: transformation of solar energy into chemical energy. Responsible for O 2 in our atmosphere

More information

Chapter 8 Photosynthesis

Chapter 8 Photosynthesis Chapter 8 Photosynthesis 8-1 NRG and Living Things n Where does the NRG we use come from. n Directly or indirectly from the sun n Plants get their NRG directly from the sun n How? n Plants use photosynthesis

More information

1 Which of the following organisms do NOT carry on photosynthesis?

1 Which of the following organisms do NOT carry on photosynthesis? 1 Which of the following organisms do NOT carry on photosynthesis? plants algae some bacteria 2 3 animals The correct description of the relationship between photosynthesis and the living world is. herbivores,

More information

PHOTOSYNTHESIS Chapter 6

PHOTOSYNTHESIS Chapter 6 PHOTOSYNTHESIS Chapter 6 5.1 Matter and Energy Pathways in Living Systems Chapter 5 Photosynthesis & Cellular Respiration 1 2 5.1 Matter and Energy Pathways in Living Systems In this section you will:

More information

Unit 4.2: Photosynthesis - Sugar as Food

Unit 4.2: Photosynthesis - Sugar as Food Unit 4.2: Photosynthesis - Sugar as Food Lesson Objectives Outline the stages of photosynthesis. Describe the chloroplast and its role in photosynthesis. List the steps of the light reactions. Describe

More information

Photosynthesis in Detail. 3/19/2014 Averett

Photosynthesis in Detail. 3/19/2014 Averett Photosynthesis in Detail 1 In photosynthesis many chemical reactions, enzymes and ions work together in a precise order. Enzymes Biological catalyst Substance that initiates or speeds up the rate of a

More information

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast

Photosynthesis Lecture 7 Fall Photosynthesis. Photosynthesis. The Chloroplast. Photosynthetic prokaryotes. The Chloroplast Photosynthesis Lecture 7 Fall 2008 Photosynthesis Photosynthesis The process by which light energy from the sun is converted into chemical energy 1 Photosynthesis Inputs CO 2 Gas exchange occurs through

More information

Energy Exchanges Exam: What to Study

Energy Exchanges Exam: What to Study Energy Exchanges Exam: What to Study Here s what you will need to make sure you understand in order to prepare for our exam: Free Energy Conceptual understanding of free energy as available energy in a

More information

6.3 Overview of Photosynthesis

6.3 Overview of Photosynthesis 6.3 Overview of Photosynthesis Chloroplast location of photosynthesis in plants and protists 3 membranes 2 make up the stroma Semifluid matrix Location of sugar production 1 makes up the thylakoid membrane

More information

Photosynthesis Prep Test

Photosynthesis Prep Test Photosynthesis Prep Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. What are the three parts of an ATP molecule? a. adenine, thylakoid, and a phosphate

More information

Vital metabolism for survival of life in the earth. Prof Adinpunya Mitra Agricultural & Food Engineering Department

Vital metabolism for survival of life in the earth. Prof Adinpunya Mitra Agricultural & Food Engineering Department Vital metabolism for survival of life in the earth Prof Adinpunya Mitra Agricultural & Food Engineering Department THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS Almost all

More information

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy.

4.1 Chemical Energy and ATP. KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP KEY CONCEPT All cells need chemical energy. 4.1 Chemical Energy and ATP The chemical energy used for most cell processes is carried by ATP. Molecules in food store chemical

More information

Energy Transfer. Photosynthesis

Energy Transfer. Photosynthesis Energy Transfer Photosynthesis Energy All living organisms use energy. Energy is needed for metabolism to function. When organisms use energy they use it in the chemical form, ATP (adenosine triphosphate)

More information

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources

Section 1 The Light Reactions. Section 2 The Calvin Cycle. Resources How to Use This Presentation To View the presentation as a slideshow with effects select View on the menu bar and click on Slide Show. To advance through the presentation, click the right-arrow key or

More information

Photosynthesis. (in C 3 plants)

Photosynthesis. (in C 3 plants) Photosynthesis (in C 3 plants) WHAT DO I REMEMBER FROM GCSE ABOUT PHOTOSYNTHESIS? PS WS Photosynthesis uses sunlight energy to create complex organic compounds, initially glucose, from inorganic compounds.

More information

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2

6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 6CO 2 + 6H 2 O + Sunlight C 6 H 12 O 6 +6O 2 Process Location Reactants (Starting) Products (Ending) Light Reactions Calvin Cycle Introduction to Photosynthesis Mrs. Meyer Target SWBAT describe the reactants

More information

Photosynthesis Overview

Photosynthesis Overview Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis. 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by:

More information

Photosynthesis is the main route by which that energy enters the biosphere of the Earth.

Photosynthesis is the main route by which that energy enters the biosphere of the Earth. Chapter 5-Photosynthesis Photosynthesis is the main route by which that energy enters the biosphere of the Earth. To sustain and power life on Earth, the captured energy has to be released and used in

More information

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg

Chapter 5: Photosynthesis: The Energy of Life pg : Pathways of Photosynthesis pg UNIT 2: Metabolic Processes Chapter 5: Photosynthesis: The Energy of Life pg. 210-240 5.2: Pathways of Photosynthesis pg. 220-228 Light Dependent Reactions Photosystem II and I are the two light capturing

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John

WJEC UNIT 3. ATP & Photosynthesis. Tyrone. R.L. John WJEC UNIT 3 ATP & Photosynthesis 1 Adenosine Triphosphate (ATP) Revision from unit 1 1. ATP is a nucleotide. Label the components of the ATP molecule below: In the space below draw a simplified diagram

More information

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Photosynthesis. Chapter 10. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 10 Photosynthesis PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Overview:

More information

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select.

Cellular Energy. How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration. Click on a lesson name to select. Section 1: How Organisms Obtain Energy Section 2: Photosynthesis Section 3: Cellular Respiration Click on a lesson name to select. Section 1 How Organisms Obtain Energy Transformation of Energy Energy

More information

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work)

Energy can be transformed from one form to another. FREE ENERGY (available for work) vs. HEAT (not available for work) PHOTOSYNTHESIS Energy can be transformed from one form to another FREE ENERGY (available for work) vs. HEAT (not available for work) THE SUN: MAIN SOURCE OF ENERGY FOR LIFE ON EARTH THE BASICS OF PHOTOSYNTHESIS

More information

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs

1. Which of these types of organisms produce the biosphere's food supply? A. autotrophs and heterotrophs Sample Questions: Chapter 7 1 Which of these types of organisms produce the biosphere's food supply? A autotrophs and heterotrophs B consumers and heterotrophs C heterotrophs D autotrophs E consumers 2

More information

CHAPTER 8 PHOTOSYNTHESIS

CHAPTER 8 PHOTOSYNTHESIS CHAPTER 8 PHOTOSYNTHESIS Con. 8.1 Photosynthesis process by which plants use light to make food molecules from carbon dioxide and water (chlorophyll) 6CO 2 + 12H 2 O + Light C 6 H 12 O 6 + 6O 2 + 6H 2

More information

Outline - Photosynthesis

Outline - Photosynthesis Outlin Photosynthesis Photosynthesis 1. An Overview of Photosynthesis & Respiration 2. Autotrophs and producers 3. Electromagnetic Spectrum & light energy 4. Chloroplasts: Structure and Function 5. Photosynthetic

More information

Heat. Sunlight. Electron Transport System O 2. Photosystem ATP H 2 O. ADP+P i NADP+ NADPH NAD + NADH. Calvin Cycle CO 2. Krebs Cycle. ADP+Pi.

Heat. Sunlight. Electron Transport System O 2. Photosystem ATP H 2 O. ADP+P i NADP+ NADPH NAD + NADH. Calvin Cycle CO 2. Krebs Cycle. ADP+Pi. Module 2F - Photosynthesis Photosynthesis As we saw in the previous module, all cells can break down organic molecules and use the energy that is released to make. In addition, some cells can manufacture

More information

Photosynthesis. All Materials Cmassengale

Photosynthesis. All Materials Cmassengale Photosynthesis All Materials Cmassengale I. Capturing the Energy of Life A. All organisms require energy B. Some organisms (autotrophs) obtain energy directly from the sun and store it in organic compounds

More information

Chapter 7 PHOTOSYNTHESIS

Chapter 7 PHOTOSYNTHESIS Chapter 7 PHOTOSYNTHESIS Photosynthesis Photosynthesis is the process of harnessing energy from sunlight to produce sugars. Photosynthesis equation: Energy + 6 CO 2 + 6 H 2 O C 6 H 12 O 6 + 6 O 2 C 6 H

More information

Photosynthesis (Outline)

Photosynthesis (Outline) Photosynthesis (Outline) 1. Overview of photosynthesis 2. Producers, consumers, and decomposers of the ecosystem (source of carbon and energy) (Autotrophs: photo-autotrophs, chemo-autotrophs, electro-autotrophs,

More information

Question Answer Mark Guidance 1 (a) (i) 2 max

Question Answer Mark Guidance 1 (a) (i) 2 max Question Answer Mark Guidance 1 (a) (i) Mark the first answer on each prompt line. If the answer is correct and an additional answer is given that is incorrect or contradicts the A inner membrane (of,

More information

Photosynthesis Review Packet

Photosynthesis Review Packet Photosynthesis Review Packet Model 1 Chloroplast 6CO2 + 12H2O + sunlight energy C6H12O6 + 6O2 + 6H2O 12 H2O 6 CO2 6 O2 C6H12O6 1. Consider the organelle illustrated in Model 1. a. What is the name of the

More information

Photosynthesis. Chapter 8

Photosynthesis. Chapter 8 Photosynthesis Chapter 8 Photosynthesis Overview Energy for all life on Earth ultimately comes from photosynthesis 6CO 2 + 12H 2 O C 6 H 12 O 6 + 6H 2 O + 6O 2 Oxygenic photosynthesis is carried out by

More information

Autotrophs and Heterotrophs

Autotrophs and Heterotrophs Section 8-1 Notes Energy and Life Energy is the ability to do work. Living things depend on energy. Without the ability to obtain and use energy, life would cease to exist. Where does the energy that living

More information

Photosynthesis and Cellular Respiration Unit

Photosynthesis and Cellular Respiration Unit Photosynthesis and Cellular Respiration Unit All cellular activities require energy. Directly or indirectly nearly all energy for life comes from the sun. Autotrophs: organisms that can make their own

More information

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes

Chapter 7. Introduction. Introduction. Photosynthesis: Using Light to Make Food. Plants, algae, and certain prokaryotes Chapter 7 hotosynthesis: Using to Make Food oweroint Lectures for Campbell Biology: Concepts & Connections, Seventh Edition Reece, Taylor, Simon, and Dickey Lecture by Edward J. Zalisko Introduction lants,

More information

Photosynthesis Prep Test 2

Photosynthesis Prep Test 2 Photosynthesis Prep Test 2 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Energy is released from ATP when a. a phosphate group is added. b. adenine bonds

More information

LIGHT DEPENDENT & INDEPENDENT REACTIONS

LIGHT DEPENDENT & INDEPENDENT REACTIONS LIGHT DEPENDENT & INDEPENDENT REACTIONS Photosynthesis is a two stage process Light dependent reactions o requires DIRECT light energy omakes energy carrier molecules that are used in the dark reaction

More information

Chapter 8 Photosynthesis Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 8 Photosynthesis Lecture Outline. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 8 Photosynthesis Lecture Outline Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 8.1 Overview of Photosynthesis Photosynthesis converts solar energy

More information

Photosynthesis Thursday, July 7, 2011

Photosynthesis Thursday, July 7, 2011 Photosynthesis Photosynthesis in Overview Process by which plants and other autotrophs store the energy of sunlight into sugars. Requires sunlight, water, and carbon dioxide. Overall equation: 6 CO 2

More information

Cellular Energy: Photosythesis

Cellular Energy: Photosythesis Cellular Energy: hotosythesis Cellular respiration and photosynthesis are chemical reactions that provide kinetic and potential energy for cells Sunlight energy hotosynthesis in chloroplasts Glucose +

More information

Photosynthesis. Light-dependent Reactions

Photosynthesis. Light-dependent Reactions Photosynthesis Light-dependent Reactions video http://www.youtube.com/watch?v=hj_wkgnl 6MI&feature=related Overview Photosynthesis transforms the radiant energy from the sun into the chemical energy of

More information

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October

2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of October Name: Class: _ Date: _ 2015 AP Biology PRETEST Unit 3: Cellular Energetics Week of 19-23 October Multiple Choice Identify the choice that best completes the statement or answers the question. 1) Which

More information

A + B = C C + D = E E + F = A

A + B = C C + D = E E + F = A Photosynthesis - Plants obtain energy directly from the sun - Organisms that do this are autotrophs (make their own food from inorganic forms) - Photosynthesis is a series of chemical reactions where the

More information

Where It Starts: Photosynthesis. Chapter 5

Where It Starts: Photosynthesis. Chapter 5 Where It Starts: Photosynthesis Chapter 5 Photosynthesis Metabolic Pathways Converts light energy to chemical energy. Photoautotrophs Organisms that can perform photosynthesis Cyanobacteria (prokaryotic-no

More information

Chapter 10: PHOTOSYNTHESIS

Chapter 10: PHOTOSYNTHESIS Chapter 10: PHOTOSYNTHESIS 1. Overview of Photosynthesis 2. Light Absorption 3. The Light Reactions 4. The Calvin Cycle 1. Overview of Photosynthesis Chapter Reading pp. 185-190, 206-207 What is Photosynthesis?

More information

Bio 111 Study Guide Chapter 8 Photosynthesis

Bio 111 Study Guide Chapter 8 Photosynthesis Bio 111 Study Guide Chapter 8 Photosynthesis BEFORE CLASS: Reading: Read the whole chapter from pp. 161-179. Figure 8.16 puts all of the light reactions together for you. Study it and understand it well!

More information

Photosynthesis. light

Photosynthesis. light Photosynthesis light 6CO + 6H 0 C 6 H 1 O 6 + 6O light Carbon dioxide + water sugar + oxygen Chlorophyll pigment that absorbs light energy Absorbs red and blue light Reflects green and yellow light Chlorophyll

More information

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc.

AN OVERVIEW OF PHOTOSYNTHESIS. Copyright 2009 Pearson Education, Inc. AN OVERVIEW OF PHOTOSYNTHESIS Copyright 2009 Pearson Education, Inc. Introduction: Plant Power Plants use water and atmospheric carbon dioxide to produce a simple sugar and liberate oxygen Earth s plants

More information

Overview of Photosynthesis

Overview of Photosynthesis Overview of Photosynthesis Introduction to Biochemistry - Part II 1 Autotrophs & Heterotrophs The energy available in most food comes from the sun, whether directly or indirectly Plants and some other

More information

Edexcel (B) Biology A-level

Edexcel (B) Biology A-level Edexcel (B) Biology A-level Topic 5: Energy for Biological Processes Notes Aerobic Respiration Aerobic respiration as splitting of the respiratory substrate, to release carbon dioxide as a waste product

More information

Photosynthesis. Chapter 8, Section #2. SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis.

Photosynthesis. Chapter 8, Section #2. SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis. Photosynthesis Chapter 8, Section #2 SC.912.L.18.7 Identify the reactants, products, and basic functions of photosynthesis. Essential Questions 1.What are the two phases of photosynthesis? 2.What is the

More information