Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant

Size: px
Start display at page:

Download "Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant"

Transcription

1 Tutoral 2 COMP434 ometrcs uthentcaton Jun Xu, Teachng sstant csjunxu@comp.polyu.edu.hk February 9, 207

2 Table of Contents Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

3 Outlne Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

4 Problem.a Understand some useful defntons n mage processng: ) pxel, ) mage, ) mage resoluton, d) gray-level mage.

5 Problem.a Dgtal Image Representaton Optcal mage denoted by (x,y) x and y are spatal co-ordnates lens mage CCD sensor (x,y) s the brghtness at poston (x,y) The ponts at whch an mage s sampled are known as pcture elements, or pxels. ometrc uthentcaton Lecture 3-6

6 Problem.a Dgtal Image Representaton pcture element (pxel) ometrc uthentcaton Lecture 3-7

7 Problem.a Dgtal Image Representaton x y (x,y) j,j column Contnuous row Dscrete n mage s a spatal presentaton of an object Matrx representng quantzed ntensty values. ometrc uthentcaton Lecture 3-8

8 Problem.a Image Resoluton Image resoluton: Measure of mage qualty (No. of pxels, M N) 280 x 960 (dgtal camera) 52 x 52 (vdeo camera) 256 x 256 (reasonable processng qualty) Dynamc range: Measure of the range of brghtness values bt (bnary mage) 8 bts (grey mage: 0 for black, 255 for whte) 2 bts (medcal magery) 6 bts (stronomcal magery) 24 bts (colour mage) Hgh Low ometrc uthentcaton Lecture 3-9

9 Problem.a Gray-Level Quantsaton 8 bpp 2 bpp For black and whte mages, a pxel s a sngle value nteger or floatng pont. For dsplay, normally 8 bts per pxel (bpp) s used. The human eye cannot resolve to ths accuracy. 32 gray levels are usually suffcent (5 bpp). t 4 bpp and below, false contourng can become apparent. ometrc uthentcaton Lecture 3-0

10 Problem.b What s mage hstogram? What are peaks and plans n mage hstogram? Compare the dfferences between two types of bmodal hstograms.

11 Problem.b Image Hstograms N j Plot of N j versus j: Shows the dstrbuton of mage pxels n terms of ther gray levels. Gray levels j0,,,255 N j number of pxels n mage wth gray level j ometrc uthentcaton Lecture 3- j

12 Problem.b modal Hstograms Lght object(s) aganst a darker background - whte hot Dark object(s) aganst a lghter background - black hot rght object Dark background ometrc uthentcaton Lecture

13 Problem.c Understand the pont operaton. Contrast enhancement s the man applcaton of pxel operaton. How many methods of contrast enhancement do you learn? Please compare them.

14 Problem.c Pont (Pxel) Operaton Pont operaton: functon s appled to every pxel n an mage, whch operates only on the pxel s current value. Thresholdng - mask may be created by settng a pxel value to or 0 dependng upon f the current value s above or below a certan threshold value. Input pxel value, I, mapped to output pxel value, O, va transfer functon T. OT(I) 255 OUTPUT Transfer functon 0 INPUT 255 ometrc uthentcaton Lecture 3-4

15 Problem.c Contrast Enhancement: Lnear Stretchng 255 OUTPUT 0 INPUT 255 ometrc uthentcaton Lecture 3-5

16 Problem.c rghtness ometrc uthentcaton Lecture 3-6

17 Problem.c Contrast Enhancement: Power Law Functon O I γ γ < to enhance contrast n dark regons γ > to enhance contrast n brght regons. ometrc uthentcaton Lecture 3-7

18 Problem.c Contrast Enhancement: Power Law Functon (γ 0.5) ometrc uthentcaton Lecture 3-8

19 Problem.c Contrast Enhancement: Power Law Functon (γ 3.0) ometrc uthentcaton Lecture 3-9

20 Problem.c Contrast Enhancement: Power Law Functon Look-up Table Transfer functon mplemented as a look-up table (LUT). Implemented n hardware or software. γ2 I O ometrc uthentcaton Lecture 3-20

21 Problem.c Contrast Enhancement: Hstogram Equalsaton Image hstograms consstng of peaks and low plans. Peaks many pxels concentrated n a few grey levels Plans small number of pxels dstrbuted over a wder range of grey levels ometrc uthentcaton Lecture 3-2

22 Problem.c Hstogram Equalsaton Expand pxels n peaks over a wder range of gray-levels. Squeeze low plans pxels nto a narrower range of gray levels. Flat hstogram ometrc uthentcaton Lecture 3-22

23 Problem.c Contrast Enhancement: Comparson Orgnal γ> Hstogram equalsaton ometrc uthentcaton Lecture 3-23

24 Problem.d (d) Why neghbourhood operatons? Gve the applcatons of group operatons.

25 Problem.d Why are Neghbourhoods Important? pxel Provde context for ndvdual pxels. Relatonshps between neghbours determne mage features. ometrc uthentcaton Lecture 3-25

26 Problem.d Neghbourhood Operatons Nose Reducton Edge Enhancement Zoomng ometrc uthentcaton Lecture 3-26

27 Outlne Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

28 Problem 2: Power law functon What s the power law functon? Gve the LUT when γ 0.5 n terms of the table n P3-20. Compare the two LUT and understand the mpact of the parameter γ 0.5.

29 Problem 2: Power law functonterms Contrast Enhancement: Power Law Functon O I γ γ < to enhance contrast n dark regons γ > to enhance contrast n brght regons. ometrc uthentcaton Lecture 3-7

30 Problem 2: Power law functonterms Contrast Enhancement: Power Law Functon (γ 0.5) ometrc uthentcaton Lecture 3-8

31 Problem 2: Power law functonterms Contrast Enhancement: Power Law Functon (γ 3.0) ometrc uthentcaton Lecture 3-9

32 Problem 2: Power law functonterms Contrast Enhancement: Power Law Functon Look-up Table Transfer functon mplemented as a look-up table (LUT). Implemented n hardware or software. γ2 I O ometrc uthentcaton Lecture 3-20

33 Problem 2: Power law functon I [ ] O I γ O [ ] [ ]

34 Outlne Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

35 Problem 3: Convoluton Please check the convoluton result n P3-33 and try to answer the queston n P3-34. Now there s an nput mage and a mask as below. Could you gve the convolved mage?

36 Problem 3: Convolutonterms Convoluton Conssts of flterng an mage usng a flter (mask). Mask s a small mage whose pxel values are called weghts. Weghts modfy relatonshps between pxels. Flter, mask or template Input mage,,2,3,4 C, 2, 2,2 2,3, C,2 C,3,2 2,4 C 2, 3, 3,2 3,3 2, C 2,2 C 2,2 3,4 2,3 C 4, 4,2 4,3 3, C 3,2 C 3,3 4,4 Convolved Image C ometrc uthentcaton Lecture 3-27

37 Problem 3: Convolutonterms Convoluton,,2,3,4 2, 2,2 2,3 2,4,,,2,2 3, 3,2 3,3 3,4 4, 4,2 4,3 4,4 2, 2, 2,2 2,2 C,,, +,2,2 + 2, 2, + 2,2 2,2 ometrc uthentcaton Lecture 3-28

38 Problem 3: Convolutonterms Convoluton,,2,,3,2,4 2, 2,2 2, 2,3,3, 2,2 2,4,4,2 3, 3,2 3,3 3,4 4, 4,2 4,3 4,4 2,3 2, 2,4 2,2 C,3,3, +,4,2 + 2,3 2, + 2,4 2,2 ometrc uthentcaton Lecture 3-29

39 Problem 3: Convolutonterms Convoluton,,2,3,4, 2,,2 2,2 2,3 2,4 2, 3, 2,2 3,2 3,3 3,4 4, 4,2 4,3 4,4 2,, 3, 2, 2,2,2 3,2 2,2 C 2, 2,, + 2,2,2 + 3, 2, + 3,2 2,2 ometrc uthentcaton Lecture 3-30

40 Problem 3: Convolutonterms ometrc uthentcaton Lecture 3-3 Mathematcal Notaton ,,, M k k N l l j l j k j l k C N M,, C, +,2,2 + 2, 2, + 2,2 2,2 ( ) 2 2, 2,,2, 2,2, 2 2, j j

41 Problem 3: Convolutonterms ometrc uthentcaton Lecture ,2 2,2 2, 2,,2,2,, 2,2,2,, 2 2,, 2 2,,,,,, C C j j j j j j M k k N l l j l j k j l k Summatons MN2 kl

42 Problem 3: Convolutonterms Convoluton Flter, mask or template Input mage Convolved Image C ometrc uthentcaton Lecture 3-33

43 Problem 3: Convolutonterms Convoluton Sze Image sze M N Mask sze M 2 N 2 Convoluton sze (M -M 2 +) (N - N 2 +) N N 2 N -N 2 + Typcal Mask szes 3 3, 5 5, 7 7, 9 9, What s the convolved mage sze for a mage and 7 7 mask? ometrc uthentcaton Lecture 3-34

44 Problem 3: Convoluton The convolved mage sze for a mage and a 7 7 mask s

45 Problem 3: Convoluton Mask Input mage

46 Problem 3: Convoluton Output mage

47 Outlne Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

48 Problem 4: Nose reducton There are two methods of nose reducton: low pass flter and medan flter (see P3: 37-46). Please gve the nose reducton results of the nput mage n Q3 by usng the two methods accordng to the condtons: a) the mask of low pass flter s 9, and b) the mask of medan flter s

49 Problem 4: Nose reductonterms Nose Reducton Nose vares above and below uncorrupted mage. ometrc uthentcaton Lecture 3-37

50 Problem 4: Nose reductonterms Nose Reducton-st prncples How do we reduce nose? Consder a unform -d mage and add nose. Focus on a pxel neghbourhood. Central pxel has been ncreased and neghbourng pxels have decreased C ometrc uthentcaton Lecture 3-38

51 Problem 4: Nose reductonterms Nose Reducton-st prncples veragng smoothes the nose fluctuatons. Consder the next pxel + Repeat for remander of pxels C C + ometrc uthentcaton Lecture 3-39

52 Problem 4: Nose reductonterms ometrc uthentcaton Lecture 3-40 Nose Reducton- Neghborhood Operatons ll pxels can be averaged by convolvng -d mage wth mask to gve enhanced mage C. Weghts of must equal one when added together. [ ] [ ] C C C 9 C Extend to two dmensons.

53 Problem 4: Nose reductonterms Nose Reducton Technque reles on hgh frequency nose fluctuatons beng blocked by flter. Hence, low-pass flter. Fne detal n mage may also be smoothed. alance between keepng mage fne detal and reducng nose. Example: Saturn mage coarse detal oat mage contans fne detal Nose reduced but fne detal also smoothed ometrc uthentcaton Lecture 3-4

54 Problem 4: Nose reductonterms Nose Reducton Consder a unform -d mage wth a step functon. Step functon corresponds to fne mage detal such as an edge. Low-pass flter blurs the edge ometrc uthentcaton Lecture 3-42

55 Problem 4: Nose reductonterms Nose Reducton-st prncples How do we reduce nose wthout averagng? Consder a unform -d mage and add nose. Focus on a pxel neghbourhood. Non-lnear operator? Medan flter! C ometrc uthentcaton Lecture 3-43

56 Problem 4: Nose reductonterms ometrc uthentcaton Lecture 3-44 Nose Reducton- Neghborhood Operatons ll pxels can be replaced by neghbourhood medan by convolvng -d mage wth medan flter to gve enhanced mage C. Extend to two dmensons. [ ] { } [ ] { } ,, medan,, medan + + C C C { },j C j l j k j N l l j M k k l k for all medan,,, :, :,

57 Problem 4: Nose reductonterms Nose reducton Orgnal Low-pass Medan ometrc uthentcaton Lecture 3-45

58 Problem 4: Nose reductonterms Low-pass Nose reducton Medan Low-pass: fne detal smoothed by averagng Medan: fne detal passed by flter ometrc uthentcaton Lecture 3-46

59 Problem 4: Nose reducton Input mage Low pass flter mask 9 Result a)

60 Problem 4: Nose reducton Input mage Medan flter mask Result b)

61 Outlne Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton Problem 4: Nose reducton Problem 5: Flter operatons

62 Problem 5: Flter operatons In P3: there are some examples of flter operatons. Please pont out the dfference of Low-pass flters, Hgh-pass flters and Edge enhancement flters. Notce that the 0 -Sum mask for Edge enhancement flters and -Sum for others.

63 Problem 5: Flter operatons Flter Operatons Low-Pass Flter Class: Image Enhancement/Restoraton Implementaton: Pxel group process and smooth an mage /9 /0 /6 ometrc uthentcaton Lecture 3-47

64 Problem 5: Flter operatons Flter Operatons 2 Hgh-Pass Flter Implementaton: Pxel group process and sharpen an mage Sobel Edge Enhancement Implementaton: Edge extracton Vertcal mask Horzontal mask ometrc uthentcaton Lecture 3-48

65 Problem 5: Flter operatons Flter Operatons 4 Shft and Dfference Edge Enhancement Implementaton: Vertcal, Horzontal and Dagonal Edge extracton Vertcal Horzontal Dagonal 5 Laplacan Edge Enhancement Implementaton: ll Edge extracton ometrc uthentcaton Lecture 3-49

66 Problem 5: Flter operatons Search: Edge-based lur Kernel Estmaton Usng Patch Prors. ICCP 203

67 Problems ny questons?

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider:

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider: Flterng Announcements HW2 wll be posted later today Constructng a mosac by warpng mages. CSE252A Lecture 10a Flterng Exampel: Smoothng by Averagng Kernel: (From Bll Freeman) m=2 I Kernel sze s m+1 by m+1

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane

A New Scrambling Evaluation Scheme based on Spatial Distribution Entropy and Centroid Difference of Bit-plane A New Scramblng Evaluaton Scheme based on Spatal Dstrbuton Entropy and Centrod Dfference of Bt-plane Lang Zhao *, Avshek Adhkar Kouch Sakura * * Graduate School of Informaton Scence and Electrcal Engneerng,

More information

GEMINI GEneric Multimedia INdexIng

GEMINI GEneric Multimedia INdexIng GEMINI GEnerc Multmeda INdexIng Last lecture, LSH http://www.mt.edu/~andon/lsh/ Is there another possble soluton? Do we need to perform ANN? 1 GEnerc Multmeda INdexIng dstance measure Sub-pattern Match

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

CSE4210 Architecture and Hardware for DSP

CSE4210 Architecture and Hardware for DSP 4210 Archtecture and Hardware for DSP Lecture 1 Introducton & Number systems Admnstratve Stuff 4210 Archtecture and Hardware for DSP Text: VLSI Dgtal Sgnal Processng Systems: Desgn and Implementaton. K.

More information

Lecture Topics VMSC Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil.

Lecture Topics VMSC Prof. Dr.-Ing. habil. Hermann Lödding Prof. Dr.-Ing. Wolfgang Hintze. PD Dr.-Ing. habil. Lecture Topcs 1. Introducton 2. Sensor Gudes Robots / Machnes 3. Motvaton Model Calbraton 4. 3D Vdeo Metrc (Geometrcal Camera Model) 5. Grey Level Pcture Processng for Poston Measurement 6. Lght and Percepton

More information

Change Detection: Current State of the Art and Future Directions

Change Detection: Current State of the Art and Future Directions Change Detecton: Current State of the Art and Future Drectons Dapeng Olver Wu Electrcal & Computer Engneerng Unversty of Florda http://www.wu.ece.ufl.edu/ Outlne Motvaton & problem statement Change detecton

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Shifting and adding images

Shifting and adding images Preparaton for the examnaton 5LIN0 Vdeo processng Gerard de Haan Avalable materal: Lectures x h durng 7 weeks Book (Dgtal Vdeo Post Processng) Verson Dec. 04 Except Chapter 6 Questons n every chapter,

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

Improvement of Histogram Equalization for Minimum Mean Brightness Error

Improvement of Histogram Equalization for Minimum Mean Brightness Error Proceedngs of the 7 WSEAS Int. Conference on Crcuts, Systems, Sgnal and elecommuncatons, Gold Coast, Australa, January 7-9, 7 3 Improvement of Hstogram Equalzaton for Mnmum Mean Brghtness Error AAPOG PHAHUA*,

More information

IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER

IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER Sgnal & Image Processng : An Internatonal Journal (SIPIJ) Vol.5, No.4, August 2014 IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER Suman Shrestha 1, 2 1 Unversty of Massachusetts Medcal School,

More information

Transform Coding. Transform Coding Principle

Transform Coding. Transform Coding Principle Transform Codng Prncple of block-wse transform codng Propertes of orthonormal transforms Dscrete cosne transform (DCT) Bt allocaton for transform coeffcents Entropy codng of transform coeffcents Typcal

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH

Turbulence classification of load data by the frequency and severity of wind gusts. Oscar Moñux, DEWI GmbH Kevin Bleibler, DEWI GmbH Turbulence classfcaton of load data by the frequency and severty of wnd gusts Introducton Oscar Moñux, DEWI GmbH Kevn Blebler, DEWI GmbH Durng the wnd turbne developng process, one of the most mportant

More information

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11 ECE 472/572 - Dgtal Image Processng Lecture 6 Geometrc and Radometrc Transformaton 09/27/ Roadmap Introducton Image format vector vs. btmap IP vs. CV vs. CG HLIP vs. LLIP Image acquston Percepton Structure

More information

Computer Simulations of Parallel-to-Series Conversion in Solid State Frame Transfer Image Sensors. J. Bisschop

Computer Simulations of Parallel-to-Series Conversion in Solid State Frame Transfer Image Sensors. J. Bisschop 207 SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 3 Edted by G. Baccaran, M. Rudan - Bologna (Italy) September 26-28,988 - Tecnoprnt Computer Smulatons of Parallel-to-Seres Converson n Sold State

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

Research Article Green s Theorem for Sign Data

Research Article Green s Theorem for Sign Data Internatonal Scholarly Research Network ISRN Appled Mathematcs Volume 2012, Artcle ID 539359, 10 pages do:10.5402/2012/539359 Research Artcle Green s Theorem for Sgn Data Lous M. Houston The Unversty of

More information

Line Drawing and Clipping Week 1, Lecture 2

Line Drawing and Clipping Week 1, Lecture 2 CS 43 Computer Graphcs I Lne Drawng and Clppng Week, Lecture 2 Davd Breen, Wllam Regl and Maxm Peysakhov Geometrc and Intellgent Computng Laboratory Department of Computer Scence Drexel Unversty http://gcl.mcs.drexel.edu

More information

Chapter 8 SCALAR QUANTIZATION

Chapter 8 SCALAR QUANTIZATION Outlne Chapter 8 SCALAR QUANTIZATION Yeuan-Kuen Lee [ CU, CSIE ] 8.1 Overvew 8. Introducton 8.4 Unform Quantzer 8.5 Adaptve Quantzaton 8.6 Nonunform Quantzaton 8.7 Entropy-Coded Quantzaton Ch 8 Scalar

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

6 Supplementary Materials

6 Supplementary Materials 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton

More information

ADAPTIVE IMAGE FILTERING

ADAPTIVE IMAGE FILTERING Why adaptve? ADAPTIVE IMAGE FILTERING average detals and contours are aected Averagng should not be appled n contour / detals regons. Adaptaton Adaptaton = modyng the parameters o a prrocessng block accordng

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Quantifying Uncertainty

Quantifying Uncertainty Partcle Flters Quantfyng Uncertanty Sa Ravela M. I. T Last Updated: Sprng 2013 1 Quantfyng Uncertanty Partcle Flters Partcle Flters Appled to Sequental flterng problems Can also be appled to smoothng problems

More information

Power Efficient Design and Implementation of a Novel Constant Correction Truncated Multiplier

Power Efficient Design and Implementation of a Novel Constant Correction Truncated Multiplier APSIPA ASC 11 X an Power Effcent Desgn and Implementaton of a Novel Constant Correcton Truncated Multpler Yu Ren, Dong Wang, Lebo Lu, Shouy Yn and Shaojun We Tsnghua Unversty, Bejng E-mal: reneereny@gmal.com

More information

Case Study of Markov Chains Ray-Knight Compactification

Case Study of Markov Chains Ray-Knight Compactification Internatonal Journal of Contemporary Mathematcal Scences Vol. 9, 24, no. 6, 753-76 HIKAI Ltd, www.m-har.com http://dx.do.org/.2988/cms.24.46 Case Study of Marov Chans ay-knght Compactfcaton HaXa Du and

More information

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl

Suppose that there s a measured wndow of data fff k () ; :::; ff k g of a sze w, measured dscretely wth varable dscretzaton step. It s convenent to pl RECURSIVE SPLINE INTERPOLATION METHOD FOR REAL TIME ENGINE CONTROL APPLICATIONS A. Stotsky Volvo Car Corporaton Engne Desgn and Development Dept. 97542, HA1N, SE- 405 31 Gothenburg Sweden. Emal: astotsky@volvocars.com

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Guided Image Filtering

Guided Image Filtering Guded Image Flterng Kamng He Jan Sun Xaoou Tang The Chnese Unversty of Hong Kong Mcrosoft Research Asa The Chnese Unversty of Hong Kong Introducton Edge-preservng flterng An mportant topc n computer vson

More information

Video Data Analysis. Video Data Analysis, B-IT. Lecture plan:

Video Data Analysis. Video Data Analysis, B-IT. Lecture plan: Vdeo Data Analss Image eatures Spatal lterng Lecture plan:. Medan lterng. Derental lters 3. Image eatures -> > mage edges 4. Edge detectors usng rst-order dervatve 5. Edge detectors usng second-order order

More information

Linear Approximation with Regularization and Moving Least Squares

Linear Approximation with Regularization and Moving Least Squares Lnear Approxmaton wth Regularzaton and Movng Least Squares Igor Grešovn May 007 Revson 4.6 (Revson : March 004). 5 4 3 0.5 3 3.5 4 Contents: Lnear Fttng...4. Weghted Least Squares n Functon Approxmaton...

More information

Video Layer Extraction and Reconstruction

Video Layer Extraction and Reconstruction Vdeo Layer Extracton and Reconstructon Sylvan Pelleter 1, Françose Dbos 2 and Georges Koepfler 1 1 Unversty Pars Descartes, MAP5 (UMR CNRS 8145) 2 Unversty Pars Nord, LAGA (UMR CNRS 7539) MVA 2010-11 G.

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression

MACHINE APPLIED MACHINE LEARNING LEARNING. Gaussian Mixture Regression 11 MACHINE APPLIED MACHINE LEARNING LEARNING MACHINE LEARNING Gaussan Mture Regresson 22 MACHINE APPLIED MACHINE LEARNING LEARNING Bref summary of last week s lecture 33 MACHINE APPLIED MACHINE LEARNING

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

A Novel Fuzzy logic Based Impulse Noise Filtering Technique

A Novel Fuzzy logic Based Impulse Noise Filtering Technique Internatonal Journal of Advanced Scence and Technology A Novel Fuzzy logc Based Impulse Nose Flterng Technque Aborsade, D.O Department of Electroncs Engneerng, Ladoke Akntola Unversty of Tech., Ogbomoso.

More information

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980

Chat eld, C. and A.J.Collins, Introduction to multivariate analysis. Chapman & Hall, 1980 MT07: Multvarate Statstcal Methods Mke Tso: emal mke.tso@manchester.ac.uk Webpage for notes: http://www.maths.manchester.ac.uk/~mkt/new_teachng.htm. Introducton to multvarate data. Books Chat eld, C. and

More information

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking Mean-Shft Object Trackng Comancu, D. Ramesh, V. Meer, P. Kernel-based object trackng, PAMI, Ma 3 Non-Rgd Object Trackng Man Sldes from : Yaron Ukrantz & Bernard Sarel Mean-Shft Object Trackng General Framework:

More information

Grover s Algorithm + Quantum Zeno Effect + Vaidman

Grover s Algorithm + Quantum Zeno Effect + Vaidman Grover s Algorthm + Quantum Zeno Effect + Vadman CS 294-2 Bomb 10/12/04 Fall 2004 Lecture 11 Grover s algorthm Recall that Grover s algorthm for searchng over a space of sze wors as follows: consder the

More information

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY

PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 86 Electrcal Engneerng 6 Volodymyr KONOVAL* Roman PRYTULA** PARTICIPATION FACTOR IN MODAL ANALYSIS OF POWER SYSTEMS STABILITY Ths paper provdes a

More information

Image Processing for Bubble Detection in Microfluidics

Image Processing for Bubble Detection in Microfluidics Image Processng for Bubble Detecton n Mcrofludcs Introducton Chen Fang Mechancal Engneerng Department Stanford Unverst Startng from recentl ears, mcrofludcs devces have been wdel used to buld the bomedcal

More information

Microwave Diversity Imaging Compression Using Bioinspired

Microwave Diversity Imaging Compression Using Bioinspired Mcrowave Dversty Imagng Compresson Usng Bonspred Neural Networks Youwe Yuan 1, Yong L 1, Wele Xu 1, Janghong Yu * 1 School of Computer Scence and Technology, Hangzhou Danz Unversty, Hangzhou, Zhejang,

More information

Stochastic Analysis of Image Acquisition, Interpolation and Scale-space Smoothing

Stochastic Analysis of Image Acquisition, Interpolation and Scale-space Smoothing Stochastc Analyss of Image Acquston, Interpolaton and Scale-space Smoothng Kalle Åström, Anders Heyden Dept of Mathematcs, Lund Unversty Box 8, S- Lund, Sweden emal: kalle@maths.lth.se, heyden@maths.lth.se

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

arxiv:cs.cv/ Jun 2000

arxiv:cs.cv/ Jun 2000 Correlaton over Decomposed Sgnals: A Non-Lnear Approach to Fast and Effectve Sequences Comparson Lucano da Fontoura Costa arxv:cs.cv/0006040 28 Jun 2000 Cybernetc Vson Research Group IFSC Unversty of São

More information

STAT 3008 Applied Regression Analysis

STAT 3008 Applied Regression Analysis STAT 3008 Appled Regresson Analyss Tutoral : Smple Lnear Regresson LAI Chun He Department of Statstcs, The Chnese Unversty of Hong Kong 1 Model Assumpton To quantfy the relatonshp between two factors,

More information

Report on Image warping

Report on Image warping Report on Image warpng Xuan Ne, Dec. 20, 2004 Ths document summarzed the algorthms of our mage warpng soluton for further study, and there s a detaled descrpton about the mplementaton of these algorthms.

More information

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1

Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1 Dstrbutons 8/03/06 /06 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - outlne densty, dstrbuton, moments unform dstrbuton Posson process, eponental dstrbuton Pareto functon densty and dstrbuton

More information

Lecture 3: Shannon s Theorem

Lecture 3: Shannon s Theorem CSE 533: Error-Correctng Codes (Autumn 006 Lecture 3: Shannon s Theorem October 9, 006 Lecturer: Venkatesan Guruswam Scrbe: Wdad Machmouch 1 Communcaton Model The communcaton model we are usng conssts

More information

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011

Stanford University CS359G: Graph Partitioning and Expanders Handout 4 Luca Trevisan January 13, 2011 Stanford Unversty CS359G: Graph Parttonng and Expanders Handout 4 Luca Trevsan January 3, 0 Lecture 4 In whch we prove the dffcult drecton of Cheeger s nequalty. As n the past lectures, consder an undrected

More information

The Concept of Beamforming

The Concept of Beamforming ELG513 Smart Antennas S.Loyka he Concept of Beamformng Generc representaton of the array output sgnal, 1 where w y N 1 * = 1 = w x = w x (4.1) complex weghts, control the array pattern; y and x - narrowband

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for U Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Adjusted Control Lmts for U Charts Copyrght 207 by Taylor Enterprses, Inc., All Rghts Reserved. Adjusted Control Lmts for U Charts Dr. Wayne A. Taylor Abstract: U charts are used

More information

Probability Theory (revisited)

Probability Theory (revisited) Probablty Theory (revsted) Summary Probablty v.s. plausblty Random varables Smulaton of Random Experments Challenge The alarm of a shop rang. Soon afterwards, a man was seen runnng n the street, persecuted

More information

Quality Assessment of Restored Satellite Data. Based on Signal to Noise Ratio

Quality Assessment of Restored Satellite Data. Based on Signal to Noise Ratio Appled Mathematcal Scences, Vol. 0, 06, no. 49, 443-450 IKARI Ltd, www.m-hkar.com http://dx.do.org/0.988/ams.06.6448 ualty Assessment of Restored Satellte Data Based on Sgnal to Nose Rato Asmala Ahmad

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

F statistic = s2 1 s 2 ( F for Fisher )

F statistic = s2 1 s 2 ( F for Fisher ) Stat 4 ANOVA Analyss of Varance /6/04 Comparng Two varances: F dstrbuton Typcal Data Sets One way analyss of varance : example Notaton for one way ANOVA Comparng Two varances: F dstrbuton We saw that the

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Linear Regression Analysis: Terminology and Notation

Linear Regression Analysis: Terminology and Notation ECON 35* -- Secton : Basc Concepts of Regresson Analyss (Page ) Lnear Regresson Analyss: Termnology and Notaton Consder the generc verson of the smple (two-varable) lnear regresson model. It s represented

More information

Srednicki Chapter 34

Srednicki Chapter 34 Srednck Chapter 3 QFT Problems & Solutons A. George January 0, 203 Srednck 3.. Verfy that equaton 3.6 follows from equaton 3.. We take Λ = + δω: U + δω ψu + δω = + δωψ[ + δω] x Next we use equaton 3.3,

More information

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions

THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructions THE VIBRATIONS OF MOLECULES II THE CARBON DIOXIDE MOLECULE Student Instructons by George Hardgrove Chemstry Department St. Olaf College Northfeld, MN 55057 hardgrov@lars.acc.stolaf.edu Copyrght George

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

Linear Feature Engineering 11

Linear Feature Engineering 11 Lnear Feature Engneerng 11 2 Least-Squares 2.1 Smple least-squares Consder the followng dataset. We have a bunch of nputs x and correspondng outputs y. The partcular values n ths dataset are x y 0.23 0.19

More information

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor

Copyright 2017 by Taylor Enterprises, Inc., All Rights Reserved. Adjusted Control Limits for P Charts. Dr. Wayne A. Taylor Taylor Enterprses, Inc. Control Lmts for P Charts Copyrght 2017 by Taylor Enterprses, Inc., All Rghts Reserved. Control Lmts for P Charts Dr. Wayne A. Taylor Abstract: P charts are used for count data

More information

A be a probability space. A random vector

A be a probability space. A random vector Statstcs 1: Probablty Theory II 8 1 JOINT AND MARGINAL DISTRIBUTIONS In Probablty Theory I we formulate the concept of a (real) random varable and descrbe the probablstc behavor of ths random varable by

More information

Advances in Digital Imaging and Computer Vision

Advances in Digital Imaging and Computer Vision Advances n Dgtal Imagng and Computer Vson Lecture and Lab 9 th lecture Κώστας Μαριάς Αναπληρωτής Καθηγητής Επεξεργασίας Εικόνας Kostas Maras Advances n Dgtal Imagng and Computer Vson 1 Shape Analyss Ανάλυση

More information

COMPARING NOISE REMOVAL IN THE WAVELET AND FOURIER DOMAINS

COMPARING NOISE REMOVAL IN THE WAVELET AND FOURIER DOMAINS COMPARING NOISE REMOVAL IN THE WAVELET AND FOURIER DOMAINS Robert J. Barsant, and Jordon Glmore Department of Electrcal and Computer Engneerng The Ctadel Charleston, SC, 29407 e-mal: robert.barsant@ctadel.edu

More information

Perceptual Organization (IV)

Perceptual Organization (IV) Perceptual Organzaton IV Introducton to Coputatonal and Bologcal Vson CS 0--56 Coputer Scence Departent BGU Ohad Ben-Shahar Segentaton Segentaton as parttonng Gven: I - a set of age pxels H a regon hoogenety

More information

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS

BOUNDEDNESS OF THE RIESZ TRANSFORM WITH MATRIX A 2 WEIGHTS BOUNDEDNESS OF THE IESZ TANSFOM WITH MATIX A WEIGHTS Introducton Let L = L ( n, be the functon space wth norm (ˆ f L = f(x C dx d < For a d d matrx valued functon W : wth W (x postve sem-defnte for all

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

Open Access Study of Glass Fiber Textile Control Based on Image Processing and Neural Network

Open Access Study of Glass Fiber Textile Control Based on Image Processing and Neural Network Send Orders for Reprnts to reprnts@benthamscence.net The Open Automaton and Control Systems Journal, 2013, 5, 133-138 133 Open Access Study of Glass Fber Textle Control Based on Image Processng and Neural

More information

High Precision Edge Detection Algorithm for Mechanical Parts

High Precision Edge Detection Algorithm for Mechanical Parts MEASUREMENT SCIENCE REVIEW, 18, (018), No., 65-71 Journal homepage: http://www.degruyter.com/vew/j/msr Hgh Precson Edge Detecton Algorthm for Mechancal Parts Zhenyun Duan 1, Nng Wang 1, Jngshun Fu 1, Wenhu

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Aggregation of Social Networks by Divisive Clustering Method

Aggregation of Social Networks by Divisive Clustering Method ggregaton of Socal Networks by Dvsve Clusterng Method mne Louat and Yves Lechaveller INRI Pars-Rocquencourt Rocquencourt, France {lzennyr.da_slva, Yves.Lechevaller, Fabrce.Ross}@nra.fr HCSD Beng October

More information

Exam. Econometrics - Exam 1

Exam. Econometrics - Exam 1 Econometrcs - Exam 1 Exam Problem 1: (15 ponts) Suppose that the classcal regresson model apples but that the true value of the constant s zero. In order to answer the followng questons assume just one

More information

An Improved multiple fractal algorithm

An Improved multiple fractal algorithm Advanced Scence and Technology Letters Vol.31 (MulGraB 213), pp.184-188 http://dx.do.org/1.1427/astl.213.31.41 An Improved multple fractal algorthm Yun Ln, Xaochu Xu, Jnfeng Pang College of Informaton

More information

Convergence of random processes

Convergence of random processes DS-GA 12 Lecture notes 6 Fall 216 Convergence of random processes 1 Introducton In these notes we study convergence of dscrete random processes. Ths allows to characterze phenomena such as the law of large

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

DUE: WEDS FEB 21ST 2018

DUE: WEDS FEB 21ST 2018 HOMEWORK # 1: FINITE DIFFERENCES IN ONE DIMENSION DUE: WEDS FEB 21ST 2018 1. Theory Beam bendng s a classcal engneerng analyss. The tradtonal soluton technque makes smplfyng assumptons such as a constant

More information

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers

Psychology 282 Lecture #24 Outline Regression Diagnostics: Outliers Psychology 282 Lecture #24 Outlne Regresson Dagnostcs: Outlers In an earler lecture we studed the statstcal assumptons underlyng the regresson model, ncludng the followng ponts: Formal statement of assumptons.

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master degree n Mechancal Engneerng Numercal Heat and Mass Transfer 06-Fnte-Dfference Method (One-dmensonal, steady state heat conducton) Fausto Arpno f.arpno@uncas.t Introducton Why we use models and

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Exerments-I MODULE III LECTURE - 2 EXPERIMENTAL DESIGN MODELS Dr. Shalabh Deartment of Mathematcs and Statstcs Indan Insttute of Technology Kanur 2 We consder the models

More information

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong

Motion Perception Under Uncertainty. Hongjing Lu Department of Psychology University of Hong Kong Moton Percepton Under Uncertanty Hongjng Lu Department of Psychology Unversty of Hong Kong Outlne Uncertanty n moton stmulus Correspondence problem Qualtatve fttng usng deal observer models Based on sgnal

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Direct Inter-Mode Selection for H.264 Video Coding using Phase Correlation

Direct Inter-Mode Selection for H.264 Video Coding using Phase Correlation Drect Inter-Mode Selecton for H.64 Vdeo Codng usng Phase Correlaton Manoranjan Paul, Member, IEEE, Wes Ln, Senor member, IEEE, Chew Tong Lau, Member, IEEE, and Bu-sung Lee, Member, IEEE Abstract The H.64

More information

Cathy Walker March 5, 2010

Cathy Walker March 5, 2010 Cathy Walker March 5, 010 Part : Problem Set 1. What s the level of measurement for the followng varables? a) SAT scores b) Number of tests or quzzes n statstcal course c) Acres of land devoted to corn

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

CHAPTER III Neural Networks as Associative Memory

CHAPTER III Neural Networks as Associative Memory CHAPTER III Neural Networs as Assocatve Memory Introducton One of the prmary functons of the bran s assocatve memory. We assocate the faces wth names, letters wth sounds, or we can recognze the people

More information

Problems & Techniques

Problems & Techniques Vsual Moton Estmaton Problems & Technques Prnceton Unversty COS 429 Lecture Oct. 11, 2007 Harpreet S. Sawhney hsawhney@sarnoff.com Outlne 1. Vsual moton n the Real World 2. The vsual moton estmaton problem

More information