Video Data Analysis. Video Data Analysis, B-IT. Lecture plan:

Size: px
Start display at page:

Download "Video Data Analysis. Video Data Analysis, B-IT. Lecture plan:"

Transcription

1 Vdeo Data Analss Image eatures Spatal lterng Lecture plan:. Medan lterng. Derental lters 3. Image eatures -> > mage edges 4. Edge detectors usng rst-order dervatve 5. Edge detectors usng second-order order dervatve 6. Buldng the LoG operator Marna Kolesnk

2 Medan lterng Readng: :4.3 For a values u u..u a the medan s the value stuated n the mddle poston o the sorted sequence o these a values. Medan lter replaces each pel value wth the medan o the values ound n the local neghborhood. Algorthm: Medan lter - Compute the medan med o the values n a n n neghborhood o : { : [ a a]; a n / } - Assgn g med Marna Kolesnk

3 Eample o medan lterng Image corrupted wth mpulse nose Marna Kolesnk

4 Nose reducton b spatal lterng Readng: :5.3 Algorthm: Adaptve Medan Flterng Three-purpose algorthm: - remove salt-andpepper nose; -smooth other nose; - reduce mage dstorton; Marna Kolesnk

5 Nose reducton b spatal lterng Readng: :5.3 Level A checks whether the medan value tsel s an mpulsve nose. Level B checks whether the center gra-value s an mpulsve nose. The medan lter perorms well the mpulse nose s not large P a P b <.. Adaptve medan lter can handle probabltes larger than these. Marna Kolesnk

6 Nose reducton n color mages Modcaton o the adaptve lterng or color mages. R Flter R G G Flter B B Flter Poor dea! The orderng o n vectors based on the cumulatve dstance uncton: R n j The ncreasng orderng o generates the ordered set o j scalar quanttes vectors { R R... R } {... } n n Gven a set o n vectors the vector medan s dened as satsng: j j j j Marna Kolesnk

7 Nose removal n colour mages K The Vector Medan Flterng where VMF: K K K K s the Kernel Functon whch s the uncton o the dstance between the central pel and the vector medan. Marna Kolesnk

8 Nose removal n colour mages Impulsve nose removal based on the Vector Medan and the Peer Group. The Peer Group P s the set o m neghbors o the central pel whose dstance to the central pel s not eceedng d: The peer d W j group j P m d : j Algorthm: Impulsve nose removal - I there est a Peer Group o at least m pels than the central pel s not corrupted b nose - otherwse appl the VMF or an other nose reducton algorthm; Marna Kolesnk

9 Sharpenng b spatal derentaton Readng: :3.7 Averagng leads to mage blurrng and s analogous to ntegraton. Logcall sharpenng could be accomplshed b spatal derentaton.. Frst dervatve s non-ero along the entre ramp thck-lne response the second one s at the onset and the end.. Second dervatve responses stronger to solated varatons. 3. Second dervatve generates double response to an solated pont. Concluson: Second dervatve produces stronger response to ne detals ncludng nose! than the rst one. Marna Kolesnk

10 Lecture 4 Marna Kolesnk Sharpenng usng rst and second dervatves Laplacan s an sotropc or rotaton nvarant operator. Second dervatves produce shaper response to dscontnutes and better emphase ne detals. Second dervatves are mplemented usng a Laplacan: 4 Readng: :3.7 Sharpenng b spatal Sharpenng b spatal derentaton derentaton

11 Lecture 4 Marna Kolesnk Laplacan Laplacan masks masks Readng: :3.7 Flter masks mplementng the dgtal Laplacan and ther etenson that ncludes the dagonal members: The lter masks are sotropc or rotatons n ncrements o 9. Laplacan s not separable the lter matr has rank rank necessar and sucent condton or the separaton. Image o the North Pole o the moon let ltered wth Laplacan mask center and scaled or dspla purposes rght.

12 Lecture 4 Marna Kolesnk Sharpenng masks Sharpenng masks Sharpenng b subtracton addton o the Laplacan: coecent or the postve central coecent or the negatve central g 9 5 Readng: :3.7 Sharpenng lter masks :

13 Edges as mage eatures Readng: 5:4. What are mage eatures? The term mage eature reers to two possble enttes: - a global propert o an mage global eature. - a part o the mage wth some specal propertes local eature. Denton: Image eatures are local meanngul detectable parts o the mage. Meanngul means that the eatures are assocated to nterestng scene elements c.. sharp ntenst varatons or edges created b object contours; regons wth unorm ntenst etc. Detectable means that there est locaton algorthms detectng them. Output o these algorthms s a collecton o eature descrptors. The latter are used b hgher-level programs or mage analss c.. segmentaton matchng trackng etc. Usuall eature etracton s an ntermedate step not the goal o the vson sstem. Marna Kolesnk

14 Image Edges Readng: 5:4. Denton: Edge ponts or edges are pels at whch mage ntenst undergoes a sharp varaton. Edge s a propert attrbuted to an ndvdual pel and computed n ts neghborhood. The problem o Edge Detecton: Gven an mage o acquston nose locate the edges most lkel to be generated b scene elements not b nose. Edge detecton s tpcall a three steps procedure:. Nose smoothng.. Edge enhancement. 3. Edge localaton. Marna Kolesnk

15 Image Edges Readng: 5:4. Marna Kolesnk

16 Edge detectors Readng: :. Marna Kolesnk

17 Lecture 4 Marna Kolesnk Edge detectors: Edge detectors: gradent operator gradent operator G G mag G G tan φ Frst dervatves n mage processng are mplemented usng the gradent. Image edges can be descrbed n terms o the gradent s magntude and drecton: Edge magntude s the magntude o the gradent. Edge drecton s perpendcular to the drecton o the gradent. Readng: :3.7;. : 4.3 G G Q: s the appromate magntude an sotropc operator? The magntude o the gradent s an sotropc operator.

18 Lecture 4 Marna Kolesnk Gradent operators Gradent operators 3: G G mask a For Sobel operator: Readng: :. Prewtt operator: Denotng mage regon as: Robert s crossderence operator:

19 Sobel operators Sobel masks Readng: :3.7. Marna Kolesnk

20 Lecture 4 Marna Kolesnk Dagonal operators Dagonal operators Readng: :3.7. Prewtt operator: Sobel operator: Dagonal Sobel masks:

21 Edge detectors usng second-order order dervatve Zero-crossngs are easer to detect Readng: :3.7.; :4.3.3 Marna Kolesnk

22 Readng: :3.7. Edge detectors usng second-order order dervatve Laplacan: Marna Kolesnk

23 Zero-crossngs Step : Gaussan smoothng nose reducton: Readng: :3.7. :4.3.3 G r r e σ r Step : Computaton o the second dervatve the Laplacan o Gaussanwth respect to r: G r σ r σ c e σ 4 σ Step 3: Edge localaton - LoG lter; - Marr-Hldreth lter; - Mecan-hat operator Marna Kolesnk

24 Zero-crossngs The LoG operator: The LoG convoluton: G c σ σ 4 σ [ G σ ] e σ Readng: :3.7. :4.3.3 C s a scalng constant normalng the sum o LoG coecents to ero. Convoluton masks become larger or larger σ. 77 LoG lter mask Marna Kolesnk

25 Zero-crossngs Readng: :3.7. :4.3.3 NB: -Se o lter masks s crucal or the LoG-lterng. - Zero-crossngs are thnner than Sobel edges Marna Kolesnk

26 Zero-crossngs Zero-levels n the convolved mage dene the poston o edges thereore the nal step o edge detecton s: Step 3: Identcaton o eros n the LoG mage. Algorthm: Zero-crossng detector Readng: :3.7. : For each possble pel check the sgn and ts three neghbors n a wndow. - I the change o polartes occur n the wndow assgn an edge label ero-crossng to. To avod the detectng o non-sgncant egdes n regons wth almost unorm ntenst an addtonal condton s recommended: - assgn edge labels onl to those ero-crossngs wth sucentl strong value o the rst dervatve. Marna Kolesnk

27 Zero-crossngs Readng: :4.3.3 Marna Kolesnk

28 Lecture 4 Marna Kolesnk Implementaton o the Implementaton o the LoG LoG operator operator Readng: 3:6..4 Q: Is the LoG operator separable? σ σ σ σ σ t t j k k j k k e C t c e t C t c where j c c j c c j c e j K j c j j c p h [ ] [ ] [ ] [ ] g g g u c u c u c u c The mplementaton o the LoG operator takes place n two runs each one contanng two parallel processes:

29 - The wdth o the postve part o the LoG: w σ - Optmal samplng nterval: τ. 74σ - Number o dscreet samples or the postve part: W 3.8 W 4 - The wdth o the LoG kernel: n 3W 3 Buldng the nteger LoG kernel Readng: 3:6..4 From the samplng theorem o the sgnal theor the ampltude spectrum o the LoG-lter s ero or the spatal requenc ω and has ts mamum at: ω ω / σ m The ampltude decreases practcall to ero at cuto requenc: ωg 3ω m Samplng nterval whch satses the samplng theorem s gven b: π πσ τ. 74σ ω g 3 The number o dscreet samples whch alls nsde the postve part o the LoG-lter s then: W w σ 3.8 τ.74σ The LoG-kernel should have at least 3 pels to avod alasng: n 3W 3 pels Marna Kolesnk

30 Buldng the nteger LoG kernel Readng: 3:6..4 The coecents o the two dscreet -D convoluton kernels are determned b samplng the contnuous varable t or nteger values k n the range between [-.5W.5W] : k σ t k τ wth W n / 3 Substtutng nto the kernel unctons: n W s the kernel se n pels t h t C ep[ t σ h t C ep[ t σ ] σ ] We obtan: 8 k 4 k c k C ep[ ] C 8 3k n ep[ 4 3k W W 4 k 6 c k ep[ ] ep[ 4 3k n ] πw W n π or k [ n / ; n / ] n ] Marna Kolesnk

31 Buldng the nteger LoG kernel Readng: 3:6..4 The coecents have to sats: : C c k : C c k Interpretaton: or a constant gra value the result must be ero Interpretaton: the result o smoothng a constant gra value must gve the orgnal value. To sats these two condtons the computed coecents are corrected b the value C /n or the uncton c t and b the value -C /n or the unctons c t. Marna Kolesnk

32 Buldng the nteger LoG kernel Readng: 3:6..4 Algorthm: Computaton o the LoG-lter coecents Input nteger value n the wdth o the samplng wndow Marna Kolesnk

33 Zero-Crossngs: Summar Readng: :4.3 Advantages:. Zero-crossng edges are thnner than the gradent edges.. Fndng o ero-crossngs s ver robust. 3. Large local area are taken nto account. 4. Due to Gaussan smoothng erocrossngs are robust to nose. 5. Produce sngle-pck response per edge. 6. Scale-space propert. 7. Is supported b neurophsologcal evdence Dsadvantages:. Zero-edges orm closed loops.. Due to smoothng sharp corners are lost. 3. The orentaton o edges s lost. 4. Computatonall etensve. Marna Kolesnk

34 Buldng the nteger LoG kernel Readng: 3:6..4 The LoG-lter can be appromated b the derence o two Gaussans called the DoG-lter also separable!: σ G σ c σ σ 4 σ For a gven LoG the best appromaton s obtaned when: e σ σ σ γ ; σ γσ or.6 There est neurophslogcal evdence that retnal ganglon cells perorm ver smlar to LoG DoG operatons: each ganglon cell responds to lght stmul n a local neghborhood called the receptve eld whch has a center-surround organaton o two complementar tpes o-center and on-center. Marna Kolesnk

ADAPTIVE IMAGE FILTERING

ADAPTIVE IMAGE FILTERING Why adaptve? ADAPTIVE IMAGE FILTERING average detals and contours are aected Averagng should not be appled n contour / detals regons. Adaptaton Adaptaton = modyng the parameters o a prrocessng block accordng

More information

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider:

Fourier Transform. Additive noise. Fourier Tansform. I = S + N. Noise doesn t depend on signal. We ll consider: Flterng Announcements HW2 wll be posted later today Constructng a mosac by warpng mages. CSE252A Lecture 10a Flterng Exampel: Smoothng by Averagng Kernel: (From Bll Freeman) m=2 I Kernel sze s m+1 by m+1

More information

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant

Tutorial 2. COMP4134 Biometrics Authentication. February 9, Jun Xu, Teaching Asistant Tutoral 2 COMP434 ometrcs uthentcaton Jun Xu, Teachng sstant csjunxu@comp.polyu.edu.hk February 9, 207 Table of Contents Problems Problem : nswer the questons Problem 2: Power law functon Problem 3: Convoluton

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Mathematical Economics MEMF e ME. Filomena Garcia. Topic 2 Calculus

Mathematical Economics MEMF e ME. Filomena Garcia. Topic 2 Calculus Mathematcal Economcs MEMF e ME Flomena Garca Topc 2 Calculus Mathematcal Economcs - www.seg.utl.pt/~garca/economa_matematca . Unvarate Calculus Calculus Functons : X Y y ( gves or each element X one element

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11

ECE 472/572 - Digital Image Processing. Roadmap. Questions. Lecture 6 Geometric and Radiometric Transformation 09/27/11 ECE 472/572 - Dgtal Image Processng Lecture 6 Geometrc and Radometrc Transformaton 09/27/ Roadmap Introducton Image format vector vs. btmap IP vs. CV vs. CG HLIP vs. LLIP Image acquston Percepton Structure

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

The Fourier Transform

The Fourier Transform e Processng ourer Transform D The ourer Transform Effcent Data epresentaton Dscrete ourer Transform - D Contnuous ourer Transform - D Eamples + + + Jean Baptste Joseph ourer Effcent Data epresentaton Data

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

Mathematics Primer for Vector Fields

Mathematics Primer for Vector Fields Mathematcs Prmer or Vector Felds B Dr Eugene Patrons Ths s the second n a seres o artcles dealng wth coaxal cables operatng n the requenc span rom drect current through the mcrowave regon In order to make

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014

PHYS 1443 Section 004 Lecture #12 Thursday, Oct. 2, 2014 PHYS 1443 Secton 004 Lecture #1 Thursday, Oct., 014 Work-Knetc Energy Theorem Work under rcton Potental Energy and the Conservatve Force Gravtatonal Potental Energy Elastc Potental Energy Conservaton o

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

CISE301: Numerical Methods Topic 2: Solution of Nonlinear Equations

CISE301: Numerical Methods Topic 2: Solution of Nonlinear Equations CISE3: Numercal Methods Topc : Soluton o Nonlnear Equatons Dr. Amar Khoukh Term Read Chapters 5 and 6 o the tetbook CISE3_Topc c Khoukh_ Lecture 5 Soluton o Nonlnear Equatons Root ndng Problems Dentons

More information

Practical Newton s Method

Practical Newton s Method Practcal Newton s Method Lecture- n Newton s Method n Pure Newton s method converges radly once t s close to. It may not converge rom the remote startng ont he search drecton to be a descent drecton rue

More information

PART 8. Partial Differential Equations PDEs

PART 8. Partial Differential Equations PDEs he Islamc Unverst of Gaza Facult of Engneerng Cvl Engneerng Department Numercal Analss ECIV 3306 PAR 8 Partal Dfferental Equatons PDEs Chapter 9; Fnte Dfference: Ellptc Equatons Assocate Prof. Mazen Abualtaef

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

A Quantum Gauss-Bonnet Theorem

A Quantum Gauss-Bonnet Theorem A Quantum Gauss-Bonnet Theorem Tyler Fresen November 13, 2014 Curvature n the plane Let Γ be a smooth curve wth orentaton n R 2, parametrzed by arc length. The curvature k of Γ s ± Γ, where the sgn s postve

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking

SE 263 R. Venkatesh Babu. Mean-Shift Object Tracking Mean-Shft Object Trackng Comancu, D. Ramesh, V. Meer, P. Kernel-based object trackng, PAMI, Ma 3 Non-Rgd Object Trackng Man Sldes from : Yaron Ukrantz & Bernard Sarel Mean-Shft Object Trackng General Framework:

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

1. Fundamentals 1.1 Probability Theory Sample Space and Probability Random Variables Limit Theories

1. Fundamentals 1.1 Probability Theory Sample Space and Probability Random Variables Limit Theories 1. undamentals 1.1 robablt Theor 1.1.1 Sample Space and robablt 1.1.2 Random Varables 1.1.3 Lmt Theores 1.1 robablt Theor A statstcal model probablt model deals wth eperment whose outcome s not precsel

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

6 Supplementary Materials

6 Supplementary Materials 6 Supplementar Materals 61 Proof of Theorem 31 Proof Let m Xt z 1:T : l m Xt X,z 1:t Wethenhave mxt z1:t ˆm HX Xt z 1:T mxt z1:t m HX Xt z 1:T + mxt z 1:T HX We consder each of the two terms n equaton

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

MATH 567: Mathematical Techniques in Data Science Lab 8

MATH 567: Mathematical Techniques in Data Science Lab 8 1/14 MATH 567: Mathematcal Technques n Data Scence Lab 8 Domnque Gullot Departments of Mathematcal Scences Unversty of Delaware Aprl 11, 2017 Recall We have: a (2) 1 = f(w (1) 11 x 1 + W (1) 12 x 2 + W

More information

Phys102 General Physics II

Phys102 General Physics II Electrc Potental/Energy Phys0 General Physcs II Electrc Potental Topcs Electrc potental energy and electrc potental Equpotental Surace Calculaton o potental rom eld Potental rom a pont charge Potental

More information

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM

ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM ELASTIC WAVE PROPAGATION IN A CONTINUOUS MEDIUM An elastc wave s a deformaton of the body that travels throughout the body n all drectons. We can examne the deformaton over a perod of tme by fxng our look

More information

Image Processing for Bubble Detection in Microfluidics

Image Processing for Bubble Detection in Microfluidics Image Processng for Bubble Detecton n Mcrofludcs Introducton Chen Fang Mechancal Engneerng Department Stanford Unverst Startng from recentl ears, mcrofludcs devces have been wdel used to buld the bomedcal

More information

Tracking with Kalman Filter

Tracking with Kalman Filter Trackng wth Kalman Flter Scott T. Acton Vrgna Image and Vdeo Analyss (VIVA), Charles L. Brown Department of Electrcal and Computer Engneerng Department of Bomedcal Engneerng Unversty of Vrgna, Charlottesvlle,

More information

Lecture 12: Discrete Laplacian

Lecture 12: Discrete Laplacian Lecture 12: Dscrete Laplacan Scrbe: Tanye Lu Our goal s to come up wth a dscrete verson of Laplacan operator for trangulated surfaces, so that we can use t n practce to solve related problems We are mostly

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION

CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING INTRODUCTION CONTRAST ENHANCEMENT FOR MIMIMUM MEAN BRIGHTNESS ERROR FROM HISTOGRAM PARTITIONING N. Phanthuna 1,2, F. Cheevasuvt 2 and S. Chtwong 2 1 Department of Electrcal Engneerng, Faculty of Engneerng Rajamangala

More information

1 Derivation of Point-to-Plane Minimization

1 Derivation of Point-to-Plane Minimization 1 Dervaton of Pont-to-Plane Mnmzaton Consder the Chen-Medon (pont-to-plane) framework for ICP. Assume we have a collecton of ponts (p, q ) wth normals n. We want to determne the optmal rotaton and translaton

More information

GEMINI GEneric Multimedia INdexIng

GEMINI GEneric Multimedia INdexIng GEMINI GEnerc Multmeda INdexIng Last lecture, LSH http://www.mt.edu/~andon/lsh/ Is there another possble soluton? Do we need to perform ANN? 1 GEnerc Multmeda INdexIng dstance measure Sub-pattern Match

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing

Pop-Click Noise Detection Using Inter-Frame Correlation for Improved Portable Auditory Sensing Advanced Scence and Technology Letters, pp.164-168 http://dx.do.org/10.14257/astl.2013 Pop-Clc Nose Detecton Usng Inter-Frame Correlaton for Improved Portable Audtory Sensng Dong Yun Lee, Kwang Myung Jeon,

More information

Generative classification models

Generative classification models CS 675 Intro to Machne Learnng Lecture Generatve classfcaton models Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Data: D { d, d,.., dn} d, Classfcaton represents a dscrete class value Goal: learn

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Chapter 6. Operational Amplifier.  inputs can be defined as the average of the sum of the two signals. 6 Operatonal mpler Chapter 6 Operatonal mpler CC Symbol: nput nput Output EE () Non-nvertng termnal, () nvertng termnal nput mpedance : Few mega (ery hgh), Output mpedance : Less than (ery low) Derental

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

Lecture 10: Dimensionality reduction

Lecture 10: Dimensionality reduction Lecture : Dmensonalt reducton g The curse of dmensonalt g Feature etracton s. feature selecton g Prncpal Components Analss g Lnear Dscrmnant Analss Intellgent Sensor Sstems Rcardo Guterrez-Osuna Wrght

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

Week 9 Chapter 10 Section 1-5

Week 9 Chapter 10 Section 1-5 Week 9 Chapter 10 Secton 1-5 Rotaton Rgd Object A rgd object s one that s nondeformable The relatve locatons of all partcles makng up the object reman constant All real objects are deformable to some extent,

More information

IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER

IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER Sgnal & Image Processng : An Internatonal Journal (SIPIJ) Vol.5, No.4, August 2014 IMAGE DENOISING USING NEW ADAPTIVE BASED MEDIAN FILTER Suman Shrestha 1, 2 1 Unversty of Massachusetts Medcal School,

More information

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal

Systematic Error Illustration of Bias. Sources of Systematic Errors. Effects of Systematic Errors 9/23/2009. Instrument Errors Method Errors Personal 9/3/009 Sstematc Error Illustraton of Bas Sources of Sstematc Errors Instrument Errors Method Errors Personal Prejudce Preconceved noton of true value umber bas Prefer 0/5 Small over large Even over odd

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo olantono a.a. 3 4 Let s consder a two ports network o Two ports Network o L For passve network (.e. wthout nternal sources or actve devces), a general representaton can be made by a sutable

More information

CHAPTER 4d. ROOTS OF EQUATIONS

CHAPTER 4d. ROOTS OF EQUATIONS CHAPTER 4d. ROOTS OF EQUATIONS A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng by Dr. Ibrahm A. Assakka Sprng 00 ENCE 03 - Computaton Methods n Cvl Engneerng II Department o

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification

Department of Electrical & Electronic Engineeing Imperial College London. E4.20 Digital IC Design. Median Filter Project Specification Desgn Project Specfcaton Medan Flter Department of Electrcal & Electronc Engneeng Imperal College London E4.20 Dgtal IC Desgn Medan Flter Project Specfcaton A medan flter s used to remove nose from a sampled

More information

COMPUTATIONALLY EFFICIENT WAVELET AFFINE INVARIANT FUNCTIONS FOR SHAPE RECOGNITION. Erdem Bala, Dept. of Electrical and Computer Engineering,

COMPUTATIONALLY EFFICIENT WAVELET AFFINE INVARIANT FUNCTIONS FOR SHAPE RECOGNITION. Erdem Bala, Dept. of Electrical and Computer Engineering, COMPUTATIONALLY EFFICIENT WAVELET AFFINE INVARIANT FUNCTIONS FOR SHAPE RECOGNITION Erdem Bala, Dept. of Electrcal and Computer Engneerng, Unversty of Delaware, 40 Evans Hall, Newar, DE, 976 A. Ens Cetn,

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU

MIMA Group. Chapter 2 Bayesian Decision Theory. School of Computer Science and Technology, Shandong University. Xin-Shun SDU Group M D L M Chapter Bayesan Decson heory Xn-Shun Xu @ SDU School of Computer Scence and echnology, Shandong Unversty Bayesan Decson heory Bayesan decson theory s a statstcal approach to data mnng/pattern

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

Appendix B: Resampling Algorithms

Appendix B: Resampling Algorithms 407 Appendx B: Resamplng Algorthms A common problem of all partcle flters s the degeneracy of weghts, whch conssts of the unbounded ncrease of the varance of the mportance weghts ω [ ] of the partcles

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh

Computational Biology Lecture 8: Substitution matrices Saad Mneimneh Computatonal Bology Lecture 8: Substtuton matrces Saad Mnemneh As we have ntroduced last tme, smple scorng schemes lke + or a match, - or a msmatch and -2 or a gap are not justable bologcally, especally

More information

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness.

20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The first idea is connectedness. 20. Mon, Oct. 13 What we have done so far corresponds roughly to Chapters 2 & 3 of Lee. Now we turn to Chapter 4. The frst dea s connectedness. Essentally, we want to say that a space cannot be decomposed

More information

Interconnect Modeling

Interconnect Modeling Interconnect Modelng Modelng of Interconnects Interconnect R, C and computaton Interconnect models umped RC model Dstrbuted crcut models Hgher-order waveform n dstrbuted RC trees Accuracy and fdelty Prepared

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

A Novel Fuzzy logic Based Impulse Noise Filtering Technique

A Novel Fuzzy logic Based Impulse Noise Filtering Technique Internatonal Journal of Advanced Scence and Technology A Novel Fuzzy logc Based Impulse Nose Flterng Technque Aborsade, D.O Department of Electroncs Engneerng, Ladoke Akntola Unversty of Tech., Ogbomoso.

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Stochastic Analysis of Image Acquisition, Interpolation and Scale-space Smoothing

Stochastic Analysis of Image Acquisition, Interpolation and Scale-space Smoothing Stochastc Analyss of Image Acquston, Interpolaton and Scale-space Smoothng Kalle Åström, Anders Heyden Dept of Mathematcs, Lund Unversty Box 8, S- Lund, Sweden emal: kalle@maths.lth.se, heyden@maths.lth.se

More information

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography

CSci 6974 and ECSE 6966 Math. Tech. for Vision, Graphics and Robotics Lecture 21, April 17, 2006 Estimating A Plane Homography CSc 6974 and ECSE 6966 Math. Tech. for Vson, Graphcs and Robotcs Lecture 21, Aprl 17, 2006 Estmatng A Plane Homography Overvew We contnue wth a dscusson of the major ssues, usng estmaton of plane projectve

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Numerical Methods Solution of Nonlinear Equations

Numerical Methods Solution of Nonlinear Equations umercal Methods Soluton o onlnear Equatons Lecture Soluton o onlnear Equatons Root Fndng Prolems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods umercal Methods Bracketng Methods Open

More information

Video Data Analysis. Video Data Analysis, B-IT

Video Data Analysis. Video Data Analysis, B-IT Lecture Vdeo Data Analyss Deformable Snakes Segmentaton Neural networks Lecture plan:. Segmentaton by morphologcal watershed. Deformable snakes 3. Segmentaton va classfcaton of patterns 4. Concept of a

More information

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 0 Lecture 4 Small Sgnal Analss Small Sgnal Analss o BJT Ampler Eam Frda March 9 Eam Frda Aprl Revew Sesson or Eam : 6:00 p.m. on Thursda March 8 n Room Sweene 6 Revew rom Last Lecture Comparson o Gans

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Classification learning II

Classification learning II Lecture 8 Classfcaton learnng II Mlos Hauskrecht mlos@cs.ptt.edu 539 Sennott Square Logstc regresson model Defnes a lnear decson boundar Dscrmnant functons: g g g g here g z / e z f, g g - s a logstc functon

More information

CHAPTER 4. Vector Spaces

CHAPTER 4. Vector Spaces man 2007/2/16 page 234 CHAPTER 4 Vector Spaces To crtcze mathematcs for ts abstracton s to mss the pont entrel. Abstracton s what makes mathematcs work. Ian Stewart The man am of ths tet s to stud lnear

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n!

Probability Theory. The nth coefficient of the Taylor series of f(k), expanded around k = 0, gives the nth moment of x as ( ik) n n! 8333: Statstcal Mechancs I Problem Set # 3 Solutons Fall 3 Characterstc Functons: Probablty Theory The characterstc functon s defned by fk ep k = ep kpd The nth coeffcent of the Taylor seres of fk epanded

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Introduction to Antennas & Arrays

Introduction to Antennas & Arrays Introducton to Antennas & Arrays Antenna transton regon (structure) between guded eaves (.e. coaxal cable) and free space waves. On transmsson, antenna accepts energy from TL and radates t nto space. J.D.

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as:

This model contains two bonds per unit cell (one along the x-direction and the other along y). So we can rewrite the Hamiltonian as: 1 Problem set #1 1.1. A one-band model on a square lattce Fg. 1 Consder a square lattce wth only nearest-neghbor hoppngs (as shown n the fgure above): H t, j a a j (1.1) where,j stands for nearest neghbors

More information

Instituto Tecnológico de Aeronáutica FINITE ELEMENTS I. Class notes AE-245

Instituto Tecnológico de Aeronáutica FINITE ELEMENTS I. Class notes AE-245 Insttuto Tecnológco de Aeronáutca FIITE ELEMETS I Class notes AE-5 Insttuto Tecnológco de Aeronáutca 5. Isoparametrc Elements AE-5 Insttuto Tecnológco de Aeronáutca ISOPARAMETRIC ELEMETS Introducton What

More information

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder.

Consider the following passband digital communication system model. c t. modulator. t r a n s m i t t e r. signal decoder. PASSBAND DIGITAL MODULATION TECHNIQUES Consder the followng passband dgtal communcaton system model. cos( ω + φ ) c t message source m sgnal encoder s modulator s () t communcaton xt () channel t r a n

More information