Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1

Size: px
Start display at page:

Download "Distributions /06. G.Serazzi 05/06 Dimensionamento degli Impianti Informatici distrib - 1"

Transcription

1 Dstrbutons 8/03/06 /06 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

2 outlne densty, dstrbuton, moments unform dstrbuton Posson process, eponental dstrbuton Pareto functon densty and dstrbuton resdual watng tme tal of dstrbuton, fttng hypoeponental dstrbuton (Erlang) smulaton hypereponental dstrbuton smulaton fttng G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

3 moments G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 3

4 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 4 varance and second order moment varance and second order moment varance σ of a dscrete random var. wth mean E[] ] [ ] [ ] [ ] [ ] [ ) ( E E E E E n n n n σ ] [ ] [ ) ( ) ( ) ( ) ( ) ( ] [ ] ) [( µ µ µµ µ µ µ µ µ µ µ σ E E d f d f d f d f E E varance σ of a contnuous random var. wth mean μ

5 unform dstrbuton Posson process eponental dstrbuton G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 5

6 unform dstrb. over the nterval (0,ma f ( ) ma) f( ) 0< < 0 0 ma ma ma ma ma F( ) dt 0 < E [ ] d ma 0 ma ma 0 ma ma ma ma F( ) densty 0 ma / ma dstrbuton 0 ma G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 6

7 Posson process random pont process whose assocated countng process N(t) satsfes: ndependent ncrements statonary ncrements P[one event n (t,th)] ho(h) P[two or more events n (t,th)] o(h) events occur sngly at a rate unform n tme the number of arrvals n any tme nterval t has a Posson dstrbuton wth mean t t P() t e P () t e 0 ( t) t G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 7!

8 Posson process when multple Posson streams are merged the resultng stream s a Posson stream wth ntensty equal to the sum of the ntenstes 3 3 a sngle Posson stream can be splt nto ndependent Posson streams p p 3 p p p p 3 3 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 8 p p p 3 3

9 eponental dstrbuton f () mean / e densty standard dev. / coeff.of varaton σ/µ 0 F() P [ ] 0 e a da e dstrbuton 0 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 9

10 ep. dstr. - memoryless property (random) P[ > t h > t] P[( > t h) ( P[ > t] > t)] e ( t h) e t e h P[ t > h] h tme last event arrval new event arrval : nterarrval tme, t tme unts elapsed snce last event, the dstrbuton of the remanng watng tme h s ndependent of t, the system s memoryless G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 0

11 eponental dstrbuton: percentles r th percentle P[ ( r) ] r 00 90% of values are less than 90-th percentle P[ ( 90)] 0. 9 e ( 90) 0. ( 90) log0. e ( 90) ( 90) log0. log0. 3 ( r) log ( 00 ) 00 r G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

12 eponentally dstrb.. sequence we can obtan a random devate of an EP() random varable by frst generatng a random number y from a unform dstrbuton over (0,) and then usng the relaton F - (y) y e log y e y y log y log( e [0 y ) log( random y) ] nput random ep. dstrb. 0 output G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

13 Pareto functon G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 3

14 Web performance ndces ces typcal phenomenon observed on the Internet for several performance ndces (download tmes, connecton tmes, fle szes, thn tme of web browser, ) etreme varablty of traffc characterstcs (arrval tmes, number and szes of downloaded fles, ) etreme varablty of performance ndces (download tmes, connecton tmes, ) teletraffc dstrbutons follow an eponental decay, Web traffc dstrbutons follow a power decay very hgh values of varables occur wth non neglgble probablty (heavy tal) G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 4

15 eponental vs heavy tal decrease esponenz. epon. 3 - coda heavy lunga tal , 0,0 3 0, effetto heavy coda tal effect lunga G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 5

16 Pareto functon Pareto eponental α α p() α α > 0 0< e α α F () P [ ] α h dh α [ h ] e α α α > mean value α α α α α f α nfnte varance f α nfnte mean G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 6

17 mean α α mean µ f() d α d α [ ] α α α α d α 0 < α α α α f α > mean α α α f α mean snce α [ ] G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 7

18 varance varanza varance σ : E[( E [ ]) ] E [ ] ( E [ ]) α α α α f () d f () d α d α d α α α α α α α > 0 0< α α se f se f α α α α α α > σ α α α α α α σ α pochè because [ ] G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 8

19 shape parameter α decreasng the value of α ncreases the porton of probablty mass that s present n the tal of the dstrbuton a random varable dstrbuted accordng to a Pareto functon wth α can gve rse to very large values wth a non neglgble probablty G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 9

20 Pareto - dstrb.. mean 0.95 dstrbuzone F() F() eponental varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 0

21 Pareto dstrb. mean dstrbuzone F() F() alfa alfa alfa alfa 0.5 alfa alfa eponental esponenzale varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

22 Pareto dens. mean 0 8 alfa denstà f() f() 6 4 alfa alfa alfa 0.5 alfa alfa esponenzale eponental varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb -

23 Pareto dens. mean denstà f() f() eponental varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 3

24 log dens.. of Pareto funct. mean 0 0 α α F() f() α α α 0.5 eponental G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 4

25 dstrbuton tal relablty R(t) of a system: probablty that the system survves untl tme t (F(t) unrelablty functon) R ( t) P( > t) F( t) F( t) hgh values are the most crtcal for performance (tal dstrbuton s very mportant) ep.dstrb. F( ) e Pareto dstrb. F( ) α 0< α 0< G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 5

26 tal of the dstrbutons, mean esp. F () e F () 0 0 e Pareto 3 LogLog complementary plot α F() - F() eponental eponental esponenzale Pareto coda lunga varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 6

27 fractals (self smlarty) G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 7

28 self-smlarty smlarty of web traffc from Wllnger-Pason Pason, Where Mathematcs meets the Internet, Notces of the Amercan Mathematcal Socety, 45(8), pp , 970, 998 Posson Pacet arrvals measured mean tme scale 00ms 6sec tme scale s 60sec tme scale 0s 600sec tme scale 60s G.Serazz 05/06 Dmensonamento h degl Impant Informatc dstrb - 8

29 Unform resdual watng tme resdual watng tme Pareto Eponental last event tme G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 9

30 resdual watng tme Y : tme between two consecutve events gven that t tme unts are elapsed snce the last event occurred, we want to compute the dstrbuton of Y, the resdual watng tme Y - t t Y tme arrval of last event arrval of new event φ ( ) lm y 0 P [ t y > t] y G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 30

31 resdual watng tme PA ( B) PAB ( ) PB ( ) Pt [ < t y] f( ) ( ) lm y 0 y P [ > t] F ( ) φ G Y (y t): condtonal probablty of the event Y y gven that the event >t has occurred GY ( y t) P[ Y y > t] P[ t y > t] P[( t y) ( > t)] P[ t < t y] P [ t y > t] P [ > t] P [ > t] t y Pt [ < t y] f( ) d t F( t) F( t) G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 3

32 resdual watng tme unform dstrb. ep. dstrb. Pareto dstrb. ma T ( t) T ( t) t T ( t) α t G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 3

33 resdual wat. tme: unform and ep. dstrbutons ma Y ma ma f() t ( t Y) dt ( t Y) f( t) dt FY ( ) FY ( ) Y ma Y ma ( ma ) ma z z z f( Y z) dz Y 0 ma Y ma f() t ( t Y) dt z f ( Y z) dz FY ( ) FY ( ) 0 0 Y Y z e z Y e 0 0 z e e dz z e dz Y e G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 33

34 resdual watng tme: Pareto dstrb. Y f() t ( t Y) dt z f( Y z) dz FY ( ) FY ( ) α α z[ α ( Y z) ] dz 0 ( α ) Y 0 α α α α ( Y z)[ ( Y z) ] dz Y ( Y z) dz ( α α α ) Y 0 0 α α α α α α Y α Y Y α αy Y ( α ) α Y α Y αy Y α α α α( α ) ( α ) Y α G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 34

35 hypereponental dstrbuton G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 35

36 hypereponental dstrbuton a process conssts of alternate phases that have eponental dstrbutons durng a sngle vst the process eperences one and only one of the many alternate phases α S α - - S - α S α α < 0 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 36

37 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 37 hypereponental dstrbuton hypereponental dstrbuton ) ( ] [ ) ( 0,,,,... ) ( t t e t P T t F t e t f α α α α >

38 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 38 hypereponental dstrbuton hypereponental dstrbuton. ] [ ] [ ] [ > varaton of coeff Var E E mean α α α α

39 hypoeponental dstrbuton (Erlang) G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 39

40 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 40 Erlang (hypoeponental) dstrbuton Erlang (hypoeponental) dstrbuton a process wth K sequental phases wth dentcal eponental dstrbutons ( stageerlang) > 0! ) ( ] [ ) ( 0,,,3,... )! ( ) ( ) ( r r t t r t e t P T t F t t e t f - S/ S/ S/ S/

41 eample of Erlang dstrbuton (mean) densty f() varable G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 4

42 G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 4 Erlang (hypoeponental) dstrbuton Erlang (hypoeponental) dstrbuton decreases varance the ncreases as S S varaton of coeff S S Var Var S S E E mean /. ] [ ] [ ] [ ] [ <

43 problem: eecuton tme of a web applcaton consder the global eecuton tme T of a transacton of a web applcaton on an ntranet web browser web server web applcaton db server each one of the three software components (mutually ndependent) have an average eecuton tme (response tme) of 0 ms, eponentally dstrbuted a complete eecuton of a command requre the sequental eecuton of 5 sw components (web server, web appl., db server, web appl., web server) compute the probablty that the complete eecuton tme requres more than 60 ms, more than 90 ms G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 43

44 problem: eecuton tme of a web applcaton the dstrbuton of the global eecuton tme T s an Erlang-5 mean E[ T ] 50 ms Var[ ] E[ T ] ms F( t) e t /0 t 0 t 0 3 t t 0 4 P[ T 60] F(60) P[ T > 60] F(60) 0.85 P[ T 90] F(90) P[ T > 90] F(90) G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 44

45 fttng: Erlang- dstrbuton the payload of the messages of an applcaton have the followng dstrbuton lenght (m ) crt frequency (f ) mean E[ ] 5 m f crt Var[ ] 5 ( m E[ ]) (5 54) crt E[ ] E[ ].77 Var[ ] Erlang wth E[ ] 54crt Var[ ] crt G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 45

46 fttng: Q-Q Q Q plot graphcal technque for determnng f two data sets come from populatons that have the same dstrbuton quantles of data set o oooo o o o o o o o o o o o o oo ooo o o oo o quantles of data set G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 46

47 fttng: Q-Q Q Q plot provde nsght nto the nature of the dfference between two samples the ponts of two data sets that come from two populatons wth the same dstrbuton should fall appromatvely along the reference lne the sample szes do not need to be equal probablty plot: the values of one data set are replaced wth the ones of a theoretcal dstrbuton e.g.: two data sets come from populatons whose dstrbutons dffer by a shft n locaton, the ponts should le along a straght lne that s dsplaced up/down from the reference lne G.Serazz 05/06 Dmensonamento degl Impant Informatc dstrb - 47

Probability and Random Variable Primer

Probability and Random Variable Primer B. Maddah ENMG 622 Smulaton 2/22/ Probablty and Random Varable Prmer Sample space and Events Suppose that an eperment wth an uncertan outcome s performed (e.g., rollng a de). Whle the outcome of the eperment

More information

Analysis of Discrete Time Queues (Section 4.6)

Analysis of Discrete Time Queues (Section 4.6) Analyss of Dscrete Tme Queues (Secton 4.6) Copyrght 2002, Sanjay K. Bose Tme axs dvded nto slots slot slot boundares Arrvals can only occur at slot boundares Servce to a job can only start at a slot boundary

More information

Applied Stochastic Processes

Applied Stochastic Processes STAT455/855 Fall 23 Appled Stochastc Processes Fnal Exam, Bref Solutons 1. (15 marks) (a) (7 marks) The dstrbuton of Y s gven by ( ) ( ) y 2 1 5 P (Y y) for y 2, 3,... The above follows because each of

More information

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology

Notes prepared by Prof Mrs) M.J. Gholba Class M.Sc Part(I) Information Technology Inverse transformatons Generaton of random observatons from gven dstrbutons Assume that random numbers,,, are readly avalable, where each tself s a random varable whch s unformly dstrbuted over the range(,).

More information

6. Stochastic processes (2)

6. Stochastic processes (2) Contents Markov processes Brth-death processes Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 Markov process Consder a contnuous-tme and dscrete-state stochastc process X(t) wth state space

More information

6. Stochastic processes (2)

6. Stochastic processes (2) 6. Stochastc processes () Lect6.ppt S-38.45 - Introducton to Teletraffc Theory Sprng 5 6. Stochastc processes () Contents Markov processes Brth-death processes 6. Stochastc processes () Markov process

More information

Chapter 3 Describing Data Using Numerical Measures

Chapter 3 Describing Data Using Numerical Measures Chapter 3 Student Lecture Notes 3-1 Chapter 3 Descrbng Data Usng Numercal Measures Fall 2006 Fundamentals of Busness Statstcs 1 Chapter Goals To establsh the usefulness of summary measures of data. The

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

Lecture 3: Probability Distributions

Lecture 3: Probability Distributions Lecture 3: Probablty Dstrbutons Random Varables Let us begn by defnng a sample space as a set of outcomes from an experment. We denote ths by S. A random varable s a functon whch maps outcomes nto the

More information

CS-433: Simulation and Modeling Modeling and Probability Review

CS-433: Simulation and Modeling Modeling and Probability Review CS-433: Smulaton and Modelng Modelng and Probablty Revew Exercse 1. (Probablty of Smple Events) Exercse 1.1 The owner of a camera shop receves a shpment of fve cameras from a camera manufacturer. Unknown

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Queueing Networks II Network Performance

Queueing Networks II Network Performance Queueng Networks II Network Performance Davd Tpper Assocate Professor Graduate Telecommuncatons and Networkng Program Unversty of Pttsburgh Sldes 6 Networks of Queues Many communcaton systems must be modeled

More information

Chapter 1. Probability

Chapter 1. Probability Chapter. Probablty Mcroscopc propertes of matter: quantum mechancs, atomc and molecular propertes Macroscopc propertes of matter: thermodynamcs, E, H, C V, C p, S, A, G How do we relate these two propertes?

More information

Queuing system theory

Queuing system theory Elements of queung system: Queung system theory Every queung system conssts of three elements: An arrval process: s characterzed by the dstrbuton of tme between the arrval of successve customers, the mean

More information

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X

3.1 Expectation of Functions of Several Random Variables. )' be a k-dimensional discrete or continuous random vector, with joint PMF p (, E X E X1 E X Statstcs 1: Probablty Theory II 37 3 EPECTATION OF SEVERAL RANDOM VARIABLES As n Probablty Theory I, the nterest n most stuatons les not on the actual dstrbuton of a random vector, but rather on a number

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Engineering Risk Benefit Analysis

Engineering Risk Benefit Analysis Engneerng Rsk Beneft Analyss.55, 2.943, 3.577, 6.938, 0.86, 3.62, 6.862, 22.82, ESD.72, ESD.72 RPRA 2. Elements of Probablty Theory George E. Apostolaks Massachusetts Insttute of Technology Sprng 2007

More information

Negative Binomial Regression

Negative Binomial Regression STATGRAPHICS Rev. 9/16/2013 Negatve Bnomal Regresson Summary... 1 Data Input... 3 Statstcal Model... 3 Analyss Summary... 4 Analyss Optons... 7 Plot of Ftted Model... 8 Observed Versus Predcted... 10 Predctons...

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 7 February 25, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 7 February 25, 2003 Prof. Yannis A. Korilis TCOM 501: Networkng Theory & Fundamentals Lecture 7 February 25, 2003 Prof. Yanns A. Korls 1 7-2 Topcs Open Jackson Networks Network Flows State-Dependent Servce Rates Networks of Transmsson Lnes Klenrock

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

A random variable is a function which associates a real number to each element of the sample space

A random variable is a function which associates a real number to each element of the sample space Introducton to Random Varables Defnton of random varable Defnton of of random varable Dscrete and contnuous random varable Probablty blt functon Dstrbuton functon Densty functon Sometmes, t s not enough

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

β0 + β1xi and want to estimate the unknown

β0 + β1xi and want to estimate the unknown SLR Models Estmaton Those OLS Estmates Estmators (e ante) v. estmates (e post) The Smple Lnear Regresson (SLR) Condtons -4 An Asde: The Populaton Regresson Functon B and B are Lnear Estmators (condtonal

More information

Equilibrium Analysis of the M/G/1 Queue

Equilibrium Analysis of the M/G/1 Queue Eulbrum nalyss of the M/G/ Queue Copyrght, Sanay K. ose. Mean nalyss usng Resdual Lfe rguments Secton 3.. nalyss usng an Imbedded Marov Chan pproach Secton 3. 3. Method of Supplementary Varables done later!

More information

First Year Examination Department of Statistics, University of Florida

First Year Examination Department of Statistics, University of Florida Frst Year Examnaton Department of Statstcs, Unversty of Florda May 7, 010, 8:00 am - 1:00 noon Instructons: 1. You have four hours to answer questons n ths examnaton.. You must show your work to receve

More information

Introduction to Random Variables

Introduction to Random Variables Introducton to Random Varables Defnton of random varable Defnton of random varable Dscrete and contnuous random varable Probablty functon Dstrbuton functon Densty functon Sometmes, t s not enough to descrbe

More information

Chapter 11: Simple Linear Regression and Correlation

Chapter 11: Simple Linear Regression and Correlation Chapter 11: Smple Lnear Regresson and Correlaton 11-1 Emprcal Models 11-2 Smple Lnear Regresson 11-3 Propertes of the Least Squares Estmators 11-4 Hypothess Test n Smple Lnear Regresson 11-4.1 Use of t-tests

More information

Lecture 17 : Stochastic Processes II

Lecture 17 : Stochastic Processes II : Stochastc Processes II 1 Contnuous-tme stochastc process So far we have studed dscrete-tme stochastc processes. We studed the concept of Makov chans and martngales, tme seres analyss, and regresson analyss

More information

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U)

ANSWERS. Problem 1. and the moment generating function (mgf) by. defined for any real t. Use this to show that E( U) var( U) Econ 413 Exam 13 H ANSWERS Settet er nndelt 9 deloppgaver, A,B,C, som alle anbefales å telle lkt for å gøre det ltt lettere å stå. Svar er gtt . Unfortunately, there s a prntng error n the hnt of

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Topic- 11 The Analysis of Variance

Topic- 11 The Analysis of Variance Topc- 11 The Analyss of Varance Expermental Desgn The samplng plan or expermental desgn determnes the way that a sample s selected. In an observatonal study, the expermenter observes data that already

More information

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method

Comparison of the Population Variance Estimators. of 2-Parameter Exponential Distribution Based on. Multiple Criteria Decision Making Method Appled Mathematcal Scences, Vol. 7, 0, no. 47, 07-0 HIARI Ltd, www.m-hkar.com Comparson of the Populaton Varance Estmators of -Parameter Exponental Dstrbuton Based on Multple Crtera Decson Makng Method

More information

RELIABILITY ASSESSMENT

RELIABILITY ASSESSMENT CHAPTER Rsk Analyss n Engneerng and Economcs RELIABILITY ASSESSMENT A. J. Clark School of Engneerng Department of Cvl and Envronmental Engneerng 4a CHAPMAN HALL/CRC Rsk Analyss for Engneerng Department

More information

Modeling and Simulation NETW 707

Modeling and Simulation NETW 707 Modelng and Smulaton NETW 707 Lecture 5 Tests for Random Numbers Course Instructor: Dr.-Ing. Magge Mashaly magge.ezzat@guc.edu.eg C3.220 1 Propertes of Random Numbers Random Number Generators (RNGs) must

More information

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition)

See Book Chapter 11 2 nd Edition (Chapter 10 1 st Edition) Count Data Models See Book Chapter 11 2 nd Edton (Chapter 10 1 st Edton) Count data consst of non-negatve nteger values Examples: number of drver route changes per week, the number of trp departure changes

More information

Hydrological statistics. Hydrological statistics and extremes

Hydrological statistics. Hydrological statistics and extremes 5--0 Stochastc Hydrology Hydrologcal statstcs and extremes Marc F.P. Berkens Professor of Hydrology Faculty of Geoscences Hydrologcal statstcs Mostly concernes wth the statstcal analyss of hydrologcal

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 where (x 1,..., x N ) X N, N s called the populaton sze, f(x) f (x) for at least one {1, 2,..., N}, and those dfferent from f(x) are called the tral dstrbutons n terms of mportance samplng. Dfferent ways

More information

Simulation and Probability Distribution

Simulation and Probability Distribution CHAPTER Probablty, Statstcs, and Relablty for Engneers and Scentsts Second Edton PROBABILIT DISTRIBUTION FOR CONTINUOUS RANDOM VARIABLES A. J. Clark School of Engneerng Department of Cvl and Envronmental

More information

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body

χ x B E (c) Figure 2.1.1: (a) a material particle in a body, (b) a place in space, (c) a configuration of the body Secton.. Moton.. The Materal Body and Moton hyscal materals n the real world are modeled usng an abstract mathematcal entty called a body. Ths body conssts of an nfnte number of materal partcles. Shown

More information

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models

Computation of Higher Order Moments from Two Multinomial Overdispersion Likelihood Models Computaton of Hgher Order Moments from Two Multnomal Overdsperson Lkelhood Models BY J. T. NEWCOMER, N. K. NEERCHAL Department of Mathematcs and Statstcs, Unversty of Maryland, Baltmore County, Baltmore,

More information

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010

Parametric fractional imputation for missing data analysis. Jae Kwang Kim Survey Working Group Seminar March 29, 2010 Parametrc fractonal mputaton for mssng data analyss Jae Kwang Km Survey Workng Group Semnar March 29, 2010 1 Outlne Introducton Proposed method Fractonal mputaton Approxmaton Varance estmaton Multple mputaton

More information

Suites of Tests. DIEHARD TESTS (Marsaglia, 1985) See

Suites of Tests. DIEHARD TESTS (Marsaglia, 1985) See Sutes of Tests DIEHARD TESTS (Marsagla, 985 See http://stat.fsu.edu/~geo/dehard.html NIST Test sute- 6 tests on the sequences of bts http://csrc.nst.gov/rng/ Test U0 Includes the above tests. http://www.ro.umontreal.ca/~lecuyer/

More information

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family

Using T.O.M to Estimate Parameter of distributions that have not Single Exponential Family IOSR Journal of Mathematcs IOSR-JM) ISSN: 2278-5728. Volume 3, Issue 3 Sep-Oct. 202), PP 44-48 www.osrjournals.org Usng T.O.M to Estmate Parameter of dstrbutons that have not Sngle Exponental Famly Jubran

More information

Meenu Gupta, Man Singh & Deepak Gupta

Meenu Gupta, Man Singh & Deepak Gupta IJS, Vol., o. 3-4, (July-December 0, pp. 489-497 Serals Publcatons ISS: 097-754X THE STEADY-STATE SOLUTIOS OF ULTIPLE PARALLEL CHAELS I SERIES AD O-SERIAL ULTIPLE PARALLEL CHAELS BOTH WITH BALKIG & REEGIG

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown

9.07 Introduction to Probability and Statistics for Brain and Cognitive Sciences Emery N. Brown 9.07 Introducton to Probablty and Statstcs for Bran and Cogntve Scences Emery N. Brown Lecture 6: Epectaton and Varance, Covarance and Correlaton, And Movement Generatng Functons I. Objectves Understand

More information

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1

j) = 1 (note sigma notation) ii. Continuous random variable (e.g. Normal distribution) 1. density function: f ( x) 0 and f ( x) dx = 1 Random varables Measure of central tendences and varablty (means and varances) Jont densty functons and ndependence Measures of assocaton (covarance and correlaton) Interestng result Condtonal dstrbutons

More information

Topic 23 - Randomized Complete Block Designs (RCBD)

Topic 23 - Randomized Complete Block Designs (RCBD) Topc 3 ANOVA (III) 3-1 Topc 3 - Randomzed Complete Block Desgns (RCBD) Defn: A Randomzed Complete Block Desgn s a varant of the completely randomzed desgn (CRD) that we recently learned. In ths desgn,

More information

Comparison of Regression Lines

Comparison of Regression Lines STATGRAPHICS Rev. 9/13/2013 Comparson of Regresson Lnes Summary... 1 Data Input... 3 Analyss Summary... 4 Plot of Ftted Model... 6 Condtonal Sums of Squares... 6 Analyss Optons... 7 Forecasts... 8 Confdence

More information

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics

ECONOMICS 351*-A Mid-Term Exam -- Fall Term 2000 Page 1 of 13 pages. QUEEN'S UNIVERSITY AT KINGSTON Department of Economics ECOOMICS 35*-A Md-Term Exam -- Fall Term 000 Page of 3 pages QUEE'S UIVERSITY AT KIGSTO Department of Economcs ECOOMICS 35* - Secton A Introductory Econometrcs Fall Term 000 MID-TERM EAM ASWERS MG Abbott

More information

Implementation of the Matrix Method

Implementation of the Matrix Method Computatonal Photoncs, Prof. Thomas Pertsch, Abbe School of Photoncs, FSU Jena Computatonal Photoncs Semnar 0 Implementaton of the Matr Method calculaton of the transfer matr calculaton of reflecton and

More information

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands

1. Inference on Regression Parameters a. Finding Mean, s.d and covariance amongst estimates. 2. Confidence Intervals and Working Hotelling Bands Content. Inference on Regresson Parameters a. Fndng Mean, s.d and covarance amongst estmates.. Confdence Intervals and Workng Hotellng Bands 3. Cochran s Theorem 4. General Lnear Testng 5. Measures of

More information

Chapter 13: Multiple Regression

Chapter 13: Multiple Regression Chapter 13: Multple Regresson 13.1 Developng the multple-regresson Model The general model can be descrbed as: It smplfes for two ndependent varables: The sample ft parameter b 0, b 1, and b are used to

More information

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY 2006 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 6 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutons to assst canddates preparng for the eamnatons n future years and for

More information

Answers Problem Set 2 Chem 314A Williamsen Spring 2000

Answers Problem Set 2 Chem 314A Williamsen Spring 2000 Answers Problem Set Chem 314A Wllamsen Sprng 000 1) Gve me the followng crtcal values from the statstcal tables. a) z-statstc,-sded test, 99.7% confdence lmt ±3 b) t-statstc (Case I), 1-sded test, 95%

More information

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected.

ANSWERS CHAPTER 9. TIO 9.2: If the values are the same, the difference is 0, therefore the null hypothesis cannot be rejected. ANSWERS CHAPTER 9 THINK IT OVER thnk t over TIO 9.: χ 2 k = ( f e ) = 0 e Breakng the equaton down: the test statstc for the ch-squared dstrbuton s equal to the sum over all categores of the expected frequency

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Chapter 2 Transformations and Expectations. , and define f

Chapter 2 Transformations and Expectations. , and define f Revew for the prevous lecture Defnton: support set of a ranom varable, the monotone functon; Theorem: How to obtan a cf, pf (or pmf) of functons of a ranom varable; Eamples: several eamples Chapter Transformatons

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

Learning Objectives for Chapter 11

Learning Objectives for Chapter 11 Chapter : Lnear Regresson and Correlaton Methods Hldebrand, Ott and Gray Basc Statstcal Ideas for Managers Second Edton Learnng Objectves for Chapter Usng the scatterplot n regresson analyss Usng the method

More information

Pulse Coded Modulation

Pulse Coded Modulation Pulse Coded Modulaton PCM (Pulse Coded Modulaton) s a voce codng technque defned by the ITU-T G.711 standard and t s used n dgtal telephony to encode the voce sgnal. The frst step n the analog to dgtal

More information

Statistics Chapter 4

Statistics Chapter 4 Statstcs Chapter 4 "There are three knds of les: les, damned les, and statstcs." Benjamn Dsrael, 1895 (Brtsh statesman) Gaussan Dstrbuton, 4-1 If a measurement s repeated many tmes a statstcal treatment

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analyss of Varance and Desgn of Experment-I MODULE VII LECTURE - 3 ANALYSIS OF COVARIANCE Dr Shalabh Department of Mathematcs and Statstcs Indan Insttute of Technology Kanpur Any scentfc experment s performed

More information

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal

Markov chains. Definition of a CTMC: [2, page 381] is a continuous time, discrete value random process such that for an infinitesimal Markov chans M. Veeraraghavan; March 17, 2004 [Tp: Study the MC, QT, and Lttle s law lectures together: CTMC (MC lecture), M/M/1 queue (QT lecture), Lttle s law lecture (when dervng the mean response tme

More information

CS 798: Homework Assignment 2 (Probability)

CS 798: Homework Assignment 2 (Probability) 0 Sample space Assgned: September 30, 2009 In the IEEE 802 protocol, the congeston wndow (CW) parameter s used as follows: ntally, a termnal wats for a random tme perod (called backoff) chosen n the range

More information

Application of Queuing Theory to Waiting Time of Out-Patients in Hospitals.

Application of Queuing Theory to Waiting Time of Out-Patients in Hospitals. Applcaton of Queung Theory to Watng Tme of Out-Patents n Hosptals. R.A. Adeleke *, O.D. Ogunwale, and O.Y. Hald. Department of Mathematcal Scences, Unversty of Ado-Ekt, Ado-Ekt, Ekt State, Ngera. E-mal:

More information

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6

Department of Quantitative Methods & Information Systems. Time Series and Their Components QMIS 320. Chapter 6 Department of Quanttatve Methods & Informaton Systems Tme Seres and Ther Components QMIS 30 Chapter 6 Fall 00 Dr. Mohammad Zanal These sldes were modfed from ther orgnal source for educatonal purpose only.

More information

Simulation and Random Number Generation

Simulation and Random Number Generation Smulaton and Random Number Generaton Summary Dscrete Tme vs Dscrete Event Smulaton Random number generaton Generatng a random sequence Generatng random varates from a Unform dstrbuton Testng the qualty

More information

Adaptive Dynamical Polling in Wireless Networks

Adaptive Dynamical Polling in Wireless Networks BULGARIA ACADEMY OF SCIECES CYBERETICS AD IFORMATIO TECHOLOGIES Volume 8, o Sofa 28 Adaptve Dynamcal Pollng n Wreless etworks Vladmr Vshnevsky, Olga Semenova Insttute for Informaton Transmsson Problems

More information

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability

Why Monte Carlo Integration? Introduction to Monte Carlo Method. Continuous Probability. Continuous Probability Introducton to Monte Carlo Method Kad Bouatouch IRISA Emal: kad@rsa.fr Wh Monte Carlo Integraton? To generate realstc lookng mages, we need to solve ntegrals of or hgher dmenson Pel flterng and lens smulaton

More information

On mutual information estimation for mixed-pair random variables

On mutual information estimation for mixed-pair random variables On mutual nformaton estmaton for mxed-par random varables November 3, 218 Aleksandr Beknazaryan, Xn Dang and Haln Sang 1 Department of Mathematcs, The Unversty of Msssspp, Unversty, MS 38677, USA. E-mal:

More information

Statistical Hypothesis Testing for Returns to Scale Using Data Envelopment Analysis

Statistical Hypothesis Testing for Returns to Scale Using Data Envelopment Analysis Statstcal Hypothess Testng for Returns to Scale Usng Data nvelopment nalyss M. ukushge a and I. Myara b a Graduate School of conomcs, Osaka Unversty, Osaka 560-0043, apan (mfuku@econ.osaka-u.ac.p) b Graduate

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

Order Full Rate, Leadtime Variability, and Advance Demand Information in an Assemble- To-Order System

Order Full Rate, Leadtime Variability, and Advance Demand Information in an Assemble- To-Order System Order Full Rate, Leadtme Varablty, and Advance Demand Informaton n an Assemble- To-Order System by Lu, Song, and Yao (2002) Presented by Png Xu Ths summary presentaton s based on: Lu, Yngdong, and Jng-Sheng

More information

IRO0140 Advanced space time-frequency signal processing

IRO0140 Advanced space time-frequency signal processing IRO4 Advanced space tme-frequency sgnal processng Lecture Toomas Ruuben Takng nto account propertes of the sgnals, we can group these as followng: Regular and random sgnals (are all sgnal parameters determned

More information

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity

Week3, Chapter 4. Position and Displacement. Motion in Two Dimensions. Instantaneous Velocity. Average Velocity Week3, Chapter 4 Moton n Two Dmensons Lecture Quz A partcle confned to moton along the x axs moves wth constant acceleraton from x =.0 m to x = 8.0 m durng a 1-s tme nterval. The velocty of the partcle

More information

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics )

Statistical Inference. 2.3 Summary Statistics Measures of Center and Spread. parameters ( population characteristics ) Ismor Fscher, 8//008 Stat 54 / -8.3 Summary Statstcs Measures of Center and Spread Dstrbuton of dscrete contnuous POPULATION Random Varable, numercal True center =??? True spread =???? parameters ( populaton

More information

Introduction to Regression

Introduction to Regression Introducton to Regresson Dr Tom Ilvento Department of Food and Resource Economcs Overvew The last part of the course wll focus on Regresson Analyss Ths s one of the more powerful statstcal technques Provdes

More information

Lecture 6: Introduction to Linear Regression

Lecture 6: Introduction to Linear Regression Lecture 6: Introducton to Lnear Regresson An Manchakul amancha@jhsph.edu 24 Aprl 27 Lnear regresson: man dea Lnear regresson can be used to study an outcome as a lnear functon of a predctor Example: 6

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Wreless Informaton Transmsson System Lab. Chapter 7 Channel Capacty and Codng Insttute of Communcatons Engneerng atonal Sun Yat-sen Unversty Contents 7. Channel models and channel capacty 7.. Channel models

More information

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations

1 Derivation of Rate Equations from Single-Cell Conductance (Hodgkin-Huxley-like) Equations Physcs 171/271 -Davd Klenfeld - Fall 2005 (revsed Wnter 2011) 1 Dervaton of Rate Equatons from Sngle-Cell Conductance (Hodgkn-Huxley-lke) Equatons We consder a network of many neurons, each of whch obeys

More information

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA

7.1. Single classification analysis of variance (ANOVA) Why not use multiple 2-sample 2. When to use ANOVA Sngle classfcaton analyss of varance (ANOVA) When to use ANOVA ANOVA models and parttonng sums of squares ANOVA: hypothess testng ANOVA: assumptons A non-parametrc alternatve: Kruskal-Walls ANOVA Power

More information

Estimation: Part 2. Chapter GREG estimation

Estimation: Part 2. Chapter GREG estimation Chapter 9 Estmaton: Part 2 9. GREG estmaton In Chapter 8, we have seen that the regresson estmator s an effcent estmator when there s a lnear relatonshp between y and x. In ths chapter, we generalzed the

More information

Introduction to Continuous-Time Markov Chains and Queueing Theory

Introduction to Continuous-Time Markov Chains and Queueing Theory Introducton to Contnuous-Tme Markov Chans and Queueng Theory From DTMC to CTMC p p 1 p 12 1 2 k-1 k p k-1,k p k-1,k k+1 p 1 p 21 p k,k-1 p k,k-1 DTMC 1. Transtons at dscrete tme steps n=,1,2, 2. Past doesn

More information

Some basic statistics and curve fitting techniques

Some basic statistics and curve fitting techniques Some basc statstcs and curve fttng technques Statstcs s the dscplne concerned wth the study of varablty, wth the study of uncertanty, and wth the study of decsonmakng n the face of uncertanty (Lndsay et

More information

2016 Wiley. Study Session 2: Ethical and Professional Standards Application

2016 Wiley. Study Session 2: Ethical and Professional Standards Application 6 Wley Study Sesson : Ethcal and Professonal Standards Applcaton LESSON : CORRECTION ANALYSIS Readng 9: Correlaton and Regresson LOS 9a: Calculate and nterpret a sample covarance and a sample correlaton

More information

STAT 511 FINAL EXAM NAME Spring 2001

STAT 511 FINAL EXAM NAME Spring 2001 STAT 5 FINAL EXAM NAME Sprng Instructons: Ths s a closed book exam. No notes or books are allowed. ou may use a calculator but you are not allowed to store notes or formulas n the calculator. Please wrte

More information

), it produces a response (output function g (x)

), it produces a response (output function g (x) Lnear Systems Revew Notes adapted from notes by Mchael Braun Typcally n electrcal engneerng, one s concerned wth functons of tme, such as a voltage waveform System descrpton s therefore defned n the domans

More information

Economics 130. Lecture 4 Simple Linear Regression Continued

Economics 130. Lecture 4 Simple Linear Regression Continued Economcs 130 Lecture 4 Contnued Readngs for Week 4 Text, Chapter and 3. We contnue wth addressng our second ssue + add n how we evaluate these relatonshps: Where do we get data to do ths analyss? How do

More information

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE

CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE CHAPTER 5 NUMERICAL EVALUATION OF DYNAMIC RESPONSE Analytcal soluton s usually not possble when exctaton vares arbtrarly wth tme or f the system s nonlnear. Such problems can be solved by numercal tmesteppng

More information

Chapter 9: Statistical Inference and the Relationship between Two Variables

Chapter 9: Statistical Inference and the Relationship between Two Variables Chapter 9: Statstcal Inference and the Relatonshp between Two Varables Key Words The Regresson Model The Sample Regresson Equaton The Pearson Correlaton Coeffcent Learnng Outcomes After studyng ths chapter,

More information

Lecture 6 More on Complete Randomized Block Design (RBD)

Lecture 6 More on Complete Randomized Block Design (RBD) Lecture 6 More on Complete Randomzed Block Desgn (RBD) Multple test Multple test The multple comparsons or multple testng problem occurs when one consders a set of statstcal nferences smultaneously. For

More information

Error Probability for M Signals

Error Probability for M Signals Chapter 3 rror Probablty for M Sgnals In ths chapter we dscuss the error probablty n decdng whch of M sgnals was transmtted over an arbtrary channel. We assume the sgnals are represented by a set of orthonormal

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Probability, Statistics, and Reliability for Engineers and Scientists SIMULATION

Probability, Statistics, and Reliability for Engineers and Scientists SIMULATION CHATER robablty, Statstcs, and Relablty or Engneers and Scentsts Second Edton SIULATIO A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng 7b robablty and Statstcs or Cvl Engneers

More information