Review D: Potential Energy and the Conservation of Mechanical Energy

Size: px
Start display at page:

Download "Review D: Potential Energy and the Conservation of Mechanical Energy"

Transcription

1 MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction... D.1. Conservative and Non-Conservative Forces... 3 D. Potential Energy... 4 D..1 Change in Potential Energy... 4 D.. Deinition: Change in Potential Energy... 5 D..3 Several Conservative Forces... 6 D..4 Change in Mechanical Energy and Conservation o Mechanical Energy.. 6 D..5 Non-Conservation o Mechanical Energy... 7 D.3 Worked Examples: Calculation o the Change in Potential Energy... 8 D.3.1 Example 1: Change in Gravitational Potential Energy Uniorm Gravity 8 D.3. Example : Hooke s Law Spring-mass system... 9 D.3.3 Example 3: Inverse Square Gravitational Force... 1 D.4 Energy Diagrams: One-Dimensional Example: Spring Forces D-1

2 Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force D.1.1 Introduction physical system consists o a well-deined set o bodies that are interacting by means o orces. ny bodies that lie outside the boundary o the system reside in the surroundings. state o the system is a set o measurable physical quantities that completely characterize the system. Figure 1 shows this division into system, boundary, and surroundings. Figure D.1.1: system, boundary, and surroundings. Up to now we have analyzed the dynamical evolution in time o our system under the action o orces using Newton s Laws o Motion. We shall now introduce the concept o Conservation o Energy in order to analyze the change o state o a system. Deinition: Change o Energy The change in energy o a system and its surroundings between the inal state and the initial state is zero, E = Esystem + Esurroundings = (D.1.1) Our quest is then to identiy experimentally every type o change o energy or all physical processes and veriy that energy is conserved. Can we really play this zero sum game? Is there any physical content to this concept o change o energy? The answer is that experimentally we can identiy all the changes in energy. One important point to keep in mind is that i we add up all the changes in energy and do not arrive at a zero sum then we have an open scientiic problem: ind the missing change in energy! Our irst example o this type o energy accounting involves mechanical energy. There will be o two types o mechanical energy, kinetic energy and potential energy. Our irst task is to deine what we mean by the change o the potential energy o a system. D-

3 D.1. Conservative and Non-Conservative Forces We have deined the work done by a orce F on an object which moves rom an initial point x to a inal point x (with displacement x x x ), as the product o the component o the orce with the displacement x, Fx W = Fx x (D.1.) Does the work done on the object by the orce depend on the path taken by the object? For a orce such as riction we expect that the work should depend on the path. Let s compare two paths rom an initial point x to a inal point x. The irst path is a straightline path with no reversal o direction. The second path goes past x some distance and them comes back to x (Figure ). Since the orce o riction always opposes the motion, the work done by riction is negative, W = N x< (D.1.3) riction µ k Thereore the work depends on the distance traveled, not the displacement. Hence, the magnitude o the work done along the second path is greater than the magnitude o the work done along the irst path. Figure D.1. Two dierent paths rom x to x Let s consider the motion o an object under the inluence o a gravitational orce near the surace o the earth. The gravitational orce always points downward, so the work done by gravity only depends on the change in the vertical position, W = F y = mg y (D.1.4) grav grav,y Thereore, when an object alls, the work done by gravity is positive and when an object rises the work done by gravity is negative. Suppose an object irst rises and then alls, returning to the original starting height. The positive work done on the alling portion exactly cancels the negative work done on the rising portion, (Figure 3). The work done is zero! Thus, the gravitational work done between two points will not depend on the path taken, but only on the initial and inal positions. D-3

4 Figure D.1.3 Gravitational work cancels. These two examples typiy two undamentally dierent types o orces and their contribution to work. In the irst example o sliding riction, the work done depends on the path. Deinition: Non-conservative Force Whenever the work done by a orce in moving an object rom an initial point to a inal point depends on the path, then the orce is called a non-conservative orce. In the second example o ree all, the work done by the gravitational orce is independent o the path. Deinition: Conservative Force Whenever the work done by a orce in moving an object rom an initial point to a inal point is independent o the path, then the orce is called a conservative orce. D. Potential Energy D..1 Change in Potential Energy Let s consider an example in which only conservative orces are acting on a system, or example the gravitational orce considered above. The key concept or a conservative orce such as gravitation is that the work done by the gravitational orce on an object only depends on the change o height o the object. Instead o analyzing the orces acting on an object, we introduce the idea o changes in the kinetic and potential energy o a physical system. This allows us use introduce conservation o energy to describe motion. In the case o an object alling near the surace o the earth, our system consists o the earth and the object and the state is described by the height o the object above the surace o the earth. The initial state is at a height above the surace o the earth and the inal state is at a height y y above the surace o the earth. The change in kinetic energy between the initial and inal states or both the earth and the object is D-4

5 K = K + K = mv mv + mv mv system earth object earth, earth, object, object, (D..1) The change o kinetic energy o the earth due to the gravitational interaction between the earth and the object is negligible. So the change in kinetic energy o the system is approximately equal to the change in kinetic energy o the object, 1 1 K K = mv mv system object object, object, (D..) We will enlarge our idea o change o energy by deining a new type o change o energy, a change o gravitational potential energy U, so that the change o both kinetic and potential energy is zero, system K + = (D..3) system Usystem In what ollows, we ll look at arbitrary conservative orces to obtain a general result, and then return to the example o gravity, along with other perhaps amiliar examples. D.. Deinition: Change in Potential Energy The change in potential energy o a body associated with a conservative orce is the negative o the work done by the conservative orce in moving the body along any path connecting the initial position to the inal position. U = W = F dr system cons cons (D..4) where and are use to represent the initial and inal positions o the body. This deinition only holds or conservative orces because the work done by a conservative orce does not depend on the path and only depends on the initial and inal positions. The work-kinetic energy theorem states that i the work done by the conservative orce is the only work done, and hence is the work, then that work is equal to the change in kinetic energy o the system; = = Ksystem W Wcons (D..5) The change in mechanical energy is deined to be the sum o the changes o the kinetic and the potential energies, D-5

6 Emechanical = Ksystem + Usystem (D..6) From both the deinition o change o potential energy, Usystem = Wcons, and the workkinetic energy theorem, the change in the mechanical energy is zero, E = W + ( W ) = mechanical cons cons (D..7) This expression is known as the conservation o mechanical energy. D..3 Several Conservative Forces When there are several conservative orces acting on the system we deine a separate change in potential energy or the work done by each conservative orce, Usystem, i = Wi = F cons, i dr (D..8) The work done is just the sum o the individual work, W = W + W + (D..9) cons cons,1 cons, The sum o the change in potential or the system is U = U + U + system system,1 system, (D..1) Thereore, the change in potential energy o the system is equal to the negative o the work done U = = dr system Wcons F cons, i i (D..11) D..4 Change in Mechanical Energy and Conservation o Mechanical Energy We now deine the mechanical energy unction or a system, Emechanical = K + U (D..1) where K is the kinetic energy and U is the potential energy. Then the change in mechanical energy when the system goes rom an initial state to a inal state is D-6

7 E E E = ( K + U ) ( K + U ) mechanical mechanical, mechanical, (D..13) When there are no non-conservative orces acting on the system, the mechanical energy o the system is conserved, and E mechanical, = E (D..14) mechanical, or equivalently ( K + U ) = ( K + U ) (D..15) D..5 Non-Conservation o Mechanical Energy The orce acting on a system may, in general, consist o a vector sum o conservative orces and non-conservative orces, = + j F F F cons, i non-cons, i j (D..16) The work done by the non-conservative orce, F non-cons = F j non-cons, j (D..17) between two points and is a path-dependent quantity which we denote by Wnon-cons [, ] = F non-cons d r Then the work done by the orce is W [, ] = F dr = Fcons, i + Fnon-cons, j dr i j = F dr+ W, i cons, i non-cons [, ] U Wnon-cons = + [ ] (D..18) (D..19) The work-kinetic energy theorem states that the work done by the orce is equal to the change in kinetic energy, 1 1 W = K = mv mv (D..) D-7

8 Thus [ ] = + (D..1) K U Wnon-cons, We deine the change in mechanical energy o the system, between the states represented by and, [ ] Emechanical, K + U (D..) as the sum o the change o the kinetic energy and change o the potential energy. E is independent o the path between the states and. This change [ ] mechanical, Thereore the change in the mechanical energy o the system between the states and is equal to the work done by the non-conservative orces along the chosen path connecting the points and, [ ] E = W (D..3) mechanical non-cons, When there are no non-conservative orces acting on the system, then the mechanical energy o the system is conserved, E mechanical = (D..4) D.3 Worked Examples: Calculation o the Change in Potential Energy There are our examples o conservative orces or which we will calculate the work done by the orce; constant gravity near the surace o the earth, the ideal spring orce, the universal gravitational orce between two point-like objects, and the electric orce between charges (this last calculation will not be presented in this review). For each o these orces we can describe and calculate the change in potential energy according to our deinition U = W = F dr system cons cons (D.3.1) In addition, we would like to choose a zero point or the potential energy. This is a point where we deine potential energy to be zero and all changes in potential energy are made relative to this point. This point will in general be dierent or dierent orces. D.3.1 Example 1: Change in Gravitational Potential Energy Uniorm Gravity Let s choose a coordinate system with the origin at the surace o the earth and the + y - direction pointing away rom the center o the earth. Suppose an object o mass m moves D-8

9 rom an initial point y to a inal point y. When an object is placed in the gravitational ield near the surace o the earth, the gravitational orce on the object is given by F grav = mg= F ˆj= mgˆj grav, y The work done by the gravitational orce on the object is then grav grav, y (D.3.) W = F y = mg y (D.3.3) and the change in potential energy is given by U = W = mg y = mg y mg y system grav (D.3.4) We will introduce a potential energy unction U given by Usystem U U. Suppose the mass starts out at the surace o the earth with y =. Then the change in potential energy is U U( y ) U( y = ) = mg y mg y system (D.3.5) We are ree to choose the zero point or the potential energy anywhere we like since change in potential energy only depends on the displacement, y. We have some lexibility to adapt our choice o zero or the potential energy to best it a particular problem. In the above expression or the change o potential energy, let y y be an arbitrary point and y = be the origin. Then we can choose the zero reerence point or the potential energy to be at the origin, ( ) ( ) U( y) = mg y or U y = mgy with U y = = (D.3.6) D.3. Example : Hooke s Law Spring-mass system Consider a spring-object system lying on a rictionless horizontal surace with one end o the spring ixed to a wall and the other end attached to a object o mass m. Choose the origin at the position o the center o the object when the spring is unstretched, the equilibrium position. Let x be the displacement o the object rom the origin. We choose the +i ˆ unit vector to point in the direction the object moves when the spring is being stretched. Then the spring orce on a mass is given by F= F i = kxi ˆ x ˆ (D.3.7) D-9

10 The work done by the spring orce on the mass is x= x 1 W = ( kx) dx= k( x x ) (D.3.8) x= x Thereore the change in potential energy in the spring-object system in moving the object rom an initial position x rom equilibrium to a inal position x rom equilibrium is U ( spring Uspring ( x) Uspring ( x ) = Wspring = k x x ) 1 (D.3.9) For the spring- object system, there is an obvious choice o position where the potential energy is zero, the equilibrium position o the spring- object, U ( x=) (D.3.1) spring Then with this choice o zero point x =, with x = x, an arbitrary extension or compression o a spring- object system, the potential energy unction is given by 1 ( )= Uspring x k x (D.3.11) D.3.3 Example 3: Inverse Square Gravitational Force Consider two objects o masses m1 and m that are separated by a center-to-center distance r. The gravitational orce between the two objects is given by F Gm m r 1 ˆ m1, m = r (D.3.1) where ˆr is the unit vector directed along the line joining the masses. This expression assumes that the objects may be approximated as spherical. The work done by this gravitational orce in moving the two objects rom an initial position in which the center o mass o the two objects are a distance apart to a inal position in which the center o mass o the two objects are a distance r r apart is given by W r r Gm1m = F d r = r r r dr (D.3.13) Upon evaluation o this integral, we have or the work D-1

11 W = dr = = Gmm r r Gm1m Gm1m 1 1 r 1 r r r r r (D.3.14) Thereore the change in potential energy o the system is 1 1 Ugrav Ugrav (r ) Ugrav(r ) = Wgravity = Gmm 1 r r (D.3.15) We now choose our reerence point or the zero o the potential energy to be at ininity, r =, Ugrav (r = ) (D.3.16) The reason or this choice is that the term 1 r in the expression or the change in potential energy vanishes when r =. Then the gravitational potential energy unction or the two objects when their center o mass to center o mass distance is r becomes U grav Gm m (r) = r 1, D.4 Energy Diagrams: One-Dimensional Example: Spring Forces = r, From the above derivation o the potential energy o a compressed or extended ideal spring o spring constant k, we have 1 U ( spring ( x) Uspring ( x) = Wspring = k x x ) (D.4.1) Taking x = and setting Uspring ( x)=, and dropping the subscript spring, we have the simpliied It ollows immediately that U( x) 1 = k x (D.4.) d U ( x ) = k x = F x (D.4.3) dx D-11

12 and indeed, this expression ollows immediately rom the deinition o potential energy in terms o the orce in one dimension, regardless o the unctional orm o Fx In Figure D.4.1 we plot the potential energy unction or the spring orce as unction o x with U( x =). Figure D.4.1: graph o potential energy unction or the spring The minimum o the potential energy unction occurs at the point where the irst derivative vanishes For the spring orce du ( x) = (D.4.4) dx du ( x) = = kx (D.4.5) dx implies that the minimum occurs at x = (the second derivative d U/ dx = k > shows that this point is a minimum). Since the orce is the negative derivative o the potential energy, and this derivative necessarily vanishes at the minimum o the potential, we have that the spring orce is zero at the minimum x = agreeing with our orce law, F = kx =. x x= x= In general, i the potential energy unction has a minimum at some point then the orce is zero at that point. I the object is extended a small distance x > away rom equilibrium, the slope o the potential energy unction is positive, du ( x) dx > ( d U/ dx > or a minimum); hence the component o the orce is negative since Fx = du( x) dx<. Thus, the object experiences a restoring orce directed towards the minimum point o the potential. I the object is compresses with x < then du ( x) dx < ; the component o D-1

13 the orce is positive, Fx = du( x) dx>, and the object again experiences a orce back towards the minimum o the potential energy (Figure D.4.). Figure D.4. Stability Diagram Suppose our spring-object system has no loss o mechanical energy due to dissipative orces such as riction or air resistance. The energy at any time is the sum o the kinetic energy K( x ) and the potential energy U( x) E = K( x) + U( x) (D.4.6) oth the kinetic energy and the potential energy are unctions o the position o the object with respect to equilibrium. The energy is a constant o the motion and with our choice o U( x =) the energy can be positive or zero. When the energy is zero, the object is at rest at its equilibrium position. In Figure 5, we draw a straight line corresponding to a positive value or the energy on the graph o potential energy as a unction o x. The line corresponding to the energy intersects the potential energy unction at two points x, x with x >. These points correspond to the maximum compression and { } max max max maximum extension o the spring. They are called the classical turning points. The kinetic energy is the dierence between the energy and the potential energy, at the turning points, where E U( x) K( x) = E U( x) (D.4.7) =, the kinetic energy is zero. Regions where the kinetic energy is negative, x < xmax or x > xmax, are called the classically orbidden regions. The object can never reach these regions classically. In quantum mechanics, there is a very small probability that the object can be ound in the classically orbidden regions. D-13

Chapter 8 Conservation of Energy and Potential Energy

Chapter 8 Conservation of Energy and Potential Energy Chapter 8 Conservation o Energy and Potential Energy So ar we have analyzed the motion o point-like bodies under the action o orces using Newton s Laws o Motion. We shall now use the Principle o Conservation

More information

Conservation of Mechanical Energy 8.01

Conservation of Mechanical Energy 8.01 Conservation o Mechanical Energy 8.01 Non-Conservative Forces Work done on the object by the orce depends on the path taken by the object Example: riction on an object moving on a level surace F riction

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

14.4 Change in Potential Energy and Zero Point for Potential Energy

14.4 Change in Potential Energy and Zero Point for Potential Energy 14.4 Change in Potential Energy and Zero Point for Potential Energy We already calculated the work done by different conservative forces: constant gravity near the surface of the earth, the spring force,

More information

Chapter 14 Potential Energy and Conservation of Energy

Chapter 14 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy... 2 4. Conservation of Energy... 2 4.2 Conservative and Non-Conservative Forces... 3 4.3 Changes

More information

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is

Fs (30.0 N)(50.0 m) The magnitude of the force that the shopper exerts is f 48.0 N cos 29.0 cos 29.0 b. The work done by the pushing force F is Chapter 6: Problems 5, 6, 8, 38, 43, 49 & 53 5. ssm Suppose in Figure 6. that +1.1 1 3 J o work is done by the orce F (magnitude 3. N) in moving the suitcase a distance o 5. m. At what angle θ is the orce

More information

Physics 231 Lecture 9

Physics 231 Lecture 9 Physics 31 Lecture 9 Mi Main points o today s lecture: Potential energy: ΔPE = PE PE = mg ( y ) 0 y 0 Conservation o energy E = KE + PE = KE 0 + PE 0 Reading Quiz 3. I you raise an object to a greater

More information

In-Class Problems 22-23: Mechanical Energy Solution

In-Class Problems 22-23: Mechanical Energy Solution MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deparent o Physics Physics 801 TEAL Fall Term 004 In-Class Problems -3: Mechanical Energy Solution Section Table and Group Number Names Hand in one solution per group

More information

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN

Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN Physics 111 Lecture 6 Work-Energy -Power Dr.Ali ÖVGÜN EMU Physics Department www.aovgun.com Why Energy? q Why do we need a concept o energy? q The energy approach to describing motion is particularly useul

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 25 The Electric Potential Energy Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 25: Section 25.1 Electric Potential Energy

More information

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis

Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis Module 27: Rigid Body Dynamics: Rotation and Translation about a Fixed Axis 27.1 Introduction We shall analyze the motion o systems o particles and rigid bodies that are undergoing translational and rotational

More information

14.6 Spring Force Energy Diagram

14.6 Spring Force Energy Diagram 14.6 Spring Force Energy Diagram The spring force on an object is a restoring force F s = F s î = k î where we choose a coordinate system with the equilibrium position at i = 0 and is the amount the spring

More information

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS

8. INTRODUCTION TO STATISTICAL THERMODYNAMICS n * D n d Fluid z z z FIGURE 8-1. A SYSTEM IS IN EQUILIBRIUM EVEN IF THERE ARE VARIATIONS IN THE NUMBER OF MOLECULES IN A SMALL VOLUME, SO LONG AS THE PROPERTIES ARE UNIFORM ON A MACROSCOPIC SCALE 8. INTRODUCTION

More information

Chapter 6. Work and Energy

Chapter 6. Work and Energy Chapter 6 Work and Energy The Ideal Spring HOOKE S LAW: RESTORING FORCE OF AN IDEAL SPRING The restoring orce on an ideal spring is F x = k x SI unit or k: N/m The Ideal Spring Example: A Tire Pressure

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

There are two types of forces: conservative (gravity, spring force) nonconservative (friction)

There are two types of forces: conservative (gravity, spring force) nonconservative (friction) Chapter 8: Conservation o Energy There are two types o orces: conservative (gravity, spring orce) nonconservative (riction) Conservative Forces Conservative Force the work done by the orce on an object

More information

Physics 231 Lecture 12

Physics 231 Lecture 12 Physics 31 Lecture 1 Work energy theorem W Potential energy o gravity: ΔPE total = = PE KE PE KE 0 mg Conservation o energy ( y ) 0 y 0 E = KE + PE = KE 0 + PE 0 Potential energy o a spring = PE = 1 kx

More information

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES

NEWTONS LAWS OF MOTION AND FRICTIONS STRAIGHT LINES EWTOS LAWS O OTIO AD RICTIOS STRAIGHT LIES ITRODUCTIO In this chapter, we shall study the motion o bodies along with the causes o their motion assuming that mass is constant. In addition, we are going

More information

Chapter 6. Work and Kinetic Energy. Richard Feynman Nobel Prize in physics (1965)

Chapter 6. Work and Kinetic Energy. Richard Feynman Nobel Prize in physics (1965) Chapter 6 ork and Kinetic Energy 1 Deinitions ebster s dictionary: Energy the capacity to do work ork the transer o energy Richard Feynman Nobel Prize in physics (1965) The Feynman Lectures on Physics....in

More information

The Electric. Potential Energy

The Electric. Potential Energy Lecture 7 Chapter 25 The Electric Ok, let s move to scalar quantities. Potential Energy I am sick and tired o your orces, ields!!! Course website: http://aculty.uml.edu/andriy_danylov/teaching/physicsii

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC11 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer A/Pro Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy

Physics 111. Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, Conservation of Mechanical Energy Physics 111 Lecture 18 (Walker: 8.3-4) Energy Conservation I March 11, 2009 Lecture 18 1/24 Conservation o Mechanical Energy Deinition o mechanical energy: (8-6) I the only work done in going rom the initial

More information

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms

Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW QUICK REFERENCE. Important Terms Chapter 4 FORCES AND NEWTON S LAWS OF MOTION PREVIEW Dynaics is the study o the causes o otion, in particular, orces. A orce is a push or a pull. We arrange our knowledge o orces into three laws orulated

More information

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces

Pulling by Pushing, Slip with Infinite Friction, and Perfectly Rough Surfaces 1993 IEEE International Conerence on Robotics and Automation Pulling by Pushing, Slip with Ininite Friction, and Perectly Rough Suraces Kevin M. Lynch Matthew T. Mason The Robotics Institute and School

More information

Physics 101 Lecture 12 Equilibrium and Angular Momentum

Physics 101 Lecture 12 Equilibrium and Angular Momentum Physics 101 Lecture 1 Equilibrium and Angular Momentum Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net external

More information

GRADE 12 JUNE 2017 PHYSICAL SCIENCES P1

GRADE 12 JUNE 2017 PHYSICAL SCIENCES P1 NATIONAL SENIOR CERTIFICATE GRADE 1 JUNE 017 PHYSICAL SCIENCES P1 MARKS: 150 TIME: 3 hours *JPHSCE1* This question paper consists o 1 pages, including a page data sheet. PHYSICAL SCIENCES P1 (EC/JUNE 017)

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

Physics 101 Lecture 10 Rotation

Physics 101 Lecture 10 Rotation Physics 101 Lecture 10 Rotation Assist. Pro. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Rotational Motion Angular Position and Radians Angular Velocity Angular Acceleration Rigid Object under

More information

ME 328 Machine Design Vibration handout (vibrations is not covered in text)

ME 328 Machine Design Vibration handout (vibrations is not covered in text) ME 38 Machine Design Vibration handout (vibrations is not covered in text) The ollowing are two good textbooks or vibrations (any edition). There are numerous other texts o equal quality. M. L. James,

More information

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008

Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Pre-AP Physics Chapter 1 Notes Yockers JHS 2008 Standards o Length, Mass, and Time ( - length quantities) - mass - time Derived Quantities: Examples Dimensional Analysis useul to check equations and to

More information

Module 12: Work and the Scalar Product

Module 12: Work and the Scalar Product Module 1: Work and the Scalar Product 1.1 Scalar Product (Dot Product) We shall introduce a vector operation, called the dot product or scalar product that takes any two vectors and generates a scalar

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

Chapter 11 Collision Theory

Chapter 11 Collision Theory Chapter Collision Theory Introduction. Center o Mass Reerence Frame Consider two particles o masses m and m interacting ia some orce. Figure. Center o Mass o a system o two interacting particles Choose

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

Ground Rules. PC1221 Fundamentals of Physics I. Lectures 13 and 14. Energy and Energy Transfer. Dr Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Lectures 13 and 14. Energy and Energy Transfer. Dr Tay Seng Chuan PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

MEASUREMENT UNCERTAINTIES

MEASUREMENT UNCERTAINTIES MEASUREMENT UNCERTAINTIES What distinguishes science rom philosophy is that it is grounded in experimental observations. These observations are most striking when they take the orm o a quantitative measurement.

More information

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8. Potential Energy, Conservation of Energy, and Energy Diagrams 8.01 W06D Today s Reading ssignment: Chapter 14 Potential Energy and Conservation of Energy, Sections 14.1-14.7 nnouncements Problem Set 5

More information

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:16 AM 3.: Mean Value Theorem 1 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Like other undamental concepts, energy is harder to deine in words than in equations. It is closely linked to the concept o orce. Conservation o Energy is one o Nature

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

PHYSICS 570 Master's of Science Teaching. Electricity Lecture 8 Work, Potential Energy and Kinetic Energy

PHYSICS 570 Master's of Science Teaching. Electricity Lecture 8 Work, Potential Energy and Kinetic Energy 1 PHYSICS 570 Master's o Science Teaching Electricity Lecture 8 Work, Potential Energy and Kinetic Energy Instructor Richard Sonneneld mpsonneneld@gmail.com 575 835 6434 1 Course Goals Math 2 You will

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Tutorial 1 Calculating the Kinetic Energy of a Moving Object

Tutorial 1 Calculating the Kinetic Energy of a Moving Object 5. Energy As you learned in Section 5.1, mechanical work is done by applying orces on objects and displacing them. How are people, machines, and Earth able to do mechanical work? The answer is energy:

More information

TFY4102 Exam Fall 2015

TFY4102 Exam Fall 2015 FY40 Eam Fall 05 Short answer (4 points each) ) Bernoulli's equation relating luid low and pressure is based on a) conservation o momentum b) conservation o energy c) conservation o mass along the low

More information

for any object. Note that we use letter, m g, meaning gravitational

for any object. Note that we use letter, m g, meaning gravitational Lecture 4. orces, Newton's Second Law Last time we have started our discussion of Newtonian Mechanics and formulated Newton s laws. Today we shall closely look at the statement of the second law and consider

More information

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge

HSC PHYSICS ONLINE B F BA. repulsion between two negatively charged objects. attraction between a negative charge and a positive charge HSC PHYSICS ONLINE DYNAMICS TYPES O ORCES Electrostatic force (force mediated by a field - long range: action at a distance) the attractive or repulsion between two stationary charged objects. AB A B BA

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Unit 5 Forces I- Newtonʼ s First & Second Law

Unit 5 Forces I- Newtonʼ s First & Second Law Unit 5 orces I- Newtonʼ s irst & Second Law Unit is the NEWTON(N) Is by definition a push or a pull Does force need a Physical contact? Can exist during physical contact(tension, riction, Applied orce)

More information

PHYSICS 1 Simple Harmonic Motion

PHYSICS 1 Simple Harmonic Motion Advanced Placement PHYSICS 1 Simple Harmonic Motion Student 014-015 What I Absolutely Have to Know to Survive the AP* Exam Whenever the acceleration of an object is proportional to its displacement and

More information

Potential Energy of a Battery

Potential Energy of a Battery Chapter 21 Solutions Potential Energy o a Battery Description: The electric potential and potential energy associated with a battery. Learning Goal: To understand electrical potential, electrical potential

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6

Solutions to Physics: Principles with Applications, 5/E, Giancoli Chapter 6 CHAPTER 6 1. Because there is no acceleration, the contact orce must have the same magnitude as the weight. The displacement in the direction o this orce is the vertical displacement. Thus, W = F Æy =

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2)

Lesson 6: Apparent weight, Radial acceleration (sections 4:9-5.2) Beore we start the new material we will do another Newton s second law problem. A bloc is being pulled by a rope as shown in the picture. The coeicient o static riction is 0.7 and the coeicient o inetic

More information

Time dilation Gamma factor

Time dilation Gamma factor Time dilation Gamma actor Quick derivation o the Relativistic Sqrt(1-v 2 /c 2 ) ormula or time, in two inertial systems The arrows are a light beam seen in two dierent systems. Everybody observes the light

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Lab #7: Energy Conservation

Lab #7: Energy Conservation Lab #7: Energy Conservation Photo by Kallin http://www.bungeezone.com/pics/kallin.shtml Reading Assignment: Chapter 7 Sections,, 3, 5, 6 Chapter 8 Sections - 4 Introduction: Perhaps one of the most unusual

More information

CHAPTER 2 LINEAR MOTION

CHAPTER 2 LINEAR MOTION 0 CHAPTER LINEAR MOTION HAPTER LINEAR MOTION 1 Motion o an object is the continuous change in the position o that object. In this chapter we shall consider the motion o a particle in a straight line, which

More information

Physics 11 HW #6 Solutions

Physics 11 HW #6 Solutions Physics HW #6 Solutions Chapter 6: Focus On Concepts:,,, Probles: 8, 4, 4, 43, 5, 54, 66, 8, 85 Focus On Concepts 6- (b) Work is positive when the orce has a coponent in the direction o the displaceent.

More information

Categories and Natural Transformations

Categories and Natural Transformations Categories and Natural Transormations Ethan Jerzak 17 August 2007 1 Introduction The motivation or studying Category Theory is to ormalise the underlying similarities between a broad range o mathematical

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Function Operations. I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division.

Function Operations. I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division. Function Operations I. Ever since basic math, you have been combining numbers by using addition, subtraction, multiplication, and division. Add: 5 + Subtract: 7 Multiply: (9)(0) Divide: (5) () or 5 II.

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Math 216A. A gluing construction of Proj(S)

Math 216A. A gluing construction of Proj(S) Math 216A. A gluing construction o Proj(S) 1. Some basic deinitions Let S = n 0 S n be an N-graded ring (we ollows French terminology here, even though outside o France it is commonly accepted that N does

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

25/01/2014. Chapter 4: Work, Energy and Power. Work of a force. Chapter 4: Work, Energy and Power (First part) Work = Force x Displacement

25/01/2014. Chapter 4: Work, Energy and Power. Work of a force. Chapter 4: Work, Energy and Power (First part) Work = Force x Displacement 5/0/04 Chapter 4: Work, Energy and Power King Saud University College o Science Physics & Astronomy Dept. Phys 45 (General Physics) Chapter 4: Work, Energy and Power (Part ) Week n 5 This presentation

More information

Math and Music Part II. Richard W. Beveridge Clatsop Community College

Math and Music Part II. Richard W. Beveridge Clatsop Community College Math and Music Part II Richard W. Beveridge Clatsop Community College Pythagorean Ratios The Pythagoreans knew that the tones produced by vibrating strings were related to the length o the string. They

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

LECTURE 28: Spring force and potential energy

LECTURE 28: Spring force and potential energy Lectures Page 1 LECTURE 28: Spring force and potential energy Select LEARNING OBJECTIVES: i. ii. iii. Introduce the definition of spring potential energy. Understand the shape of a spring potential energy

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions PSI AP Physics C Work and Energy (With Calculus) Multiple Choice Questions 1. An object moves according to the function x = t 7/2 where x is the distance traveled and t is the time. Its kinetic energy

More information

Mass on a Horizontal Spring

Mass on a Horizontal Spring Course- B.Sc. Applied Physical Science (Computer Science) Year- IInd, Sem- IVth Subject Physics Paper- XIVth, Electromagnetic Theory Lecture No. 22, Simple Harmonic Motion Introduction Hello friends in

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series. 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the

More information

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs)

Announcements. If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Exam 1 scores posted on Canvas: Ø Announcements If you think there was an error in the scoring, fill out a regrade form and had back to ME (not TAs) Ø Must return regrade forms before next Wednesday, October

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion Observation #1 An object at rest remains at rest, unless something makes it move. Observation #2 A object in motion continues in motion with constant velocity, unless something

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

Chapter 5 Work and Energy

Chapter 5 Work and Energy Chapter 5 Work and Energy Work and Kinetic Energy Work W in 1D Motion: by a Constant orce by a Varying orce Kinetic Energy, KE: the Work-Energy Theorem Mechanical Energy E and Its Conservation Potential

More information

Phys 172 Exam 1, 2010 fall, Purdue University

Phys 172 Exam 1, 2010 fall, Purdue University Phs 17 Eam 1, 010 all, Purdue Universit What to bring: 1. Your student ID we will check it!. Calculator: an calculator as long as it does not have internet/phone connection 3. Pencils Eam will take place

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Chapter (3) Motion. in One. Dimension

Chapter (3) Motion. in One. Dimension Chapter (3) Motion in One Dimension Pro. Mohammad Abu Abdeen Dr. Galal Ramzy Chapter (3) Motion in one Dimension We begin our study o mechanics by studying the motion o an object (which is assumed to be

More information

Physics 2211 A & B Quiz #4 Solutions Fall 2016

Physics 2211 A & B Quiz #4 Solutions Fall 2016 Physics 22 A & B Quiz #4 Solutions Fall 206 I. (6 points) A pendulum bob of mass M is hanging at rest from an ideal string of length L. A bullet of mass m traveling horizontally at speed v 0 strikes it

More information

Almost all forms of energy on earth can be traced back to the Sun.:

Almost all forms of energy on earth can be traced back to the Sun.: EW-1 Work and Energy Energy is difficult to define because it comes in many different forms. It is hard to find a single definition which covers all the forms. Some types of energy: kinetic energy (KE)

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

Physics 20 Lesson 18 Pulleys and Systems

Physics 20 Lesson 18 Pulleys and Systems Physics 20 Lesson 18 Pulleys and Systes I. Pulley and syste probles In this lesson we learn about dynaics probles that involve several asses that are connected and accelerating together. Using the pulley

More information

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics:

Physics 121. Tuesday, February 19, Physics 121. Tuesday, February 19, Physics 121. Course announcements. Topics: Physics 121. Tuesday, ebruary 19, 2008. avy Lt. Ron Candiloro's /A-18 Hornet creates a shock wave as he breaks the sound barrier July 7. The shock wave is visible as a large cloud o condensation ormed

More information

Note: Referred equations are from your textbook.

Note: Referred equations are from your textbook. Note: Referred equations are from your textbook 70 DENTFY: Use energy methods There are changes in both elastic and gravitational potential energy SET UP: K + U + W K U other + Points and in the motion

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Chapter 8. Potential Energy and Conservation of Energy

Chapter 8. Potential Energy and Conservation of Energy Chapter 8 Potential Energy and Conservation of Energy 8.2 Conservative and non-conservative forces A system consists of two or more particles. A configuration of the system is just a specification of the

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information