Chapters 10 & 11: Energy

Size: px
Start display at page:

Download "Chapters 10 & 11: Energy"

Transcription

1 Chapters 10 & 11: Energy

2 Power: Sources of Energy

3 Tidal Power SF Bay Tidal Power Project

4 Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something you can directly observe. The usefulness of the concept comes from the Conservation of Energy. In predicting the behavior of objects, one uses the Conservation of Energy to keep track of the total energy and the transfer of energy between its various forms and between objects. Work is the transfer of energy from one object to another by a force from one on the other that displaces the other. Power is the rate at which energy is transferred or, the rate at which work is done. Power is the FLOW of energy.

5 Conservation of Energy Energy can neither be created nor destroyed. It may change in form or be transferred from one system to another. The total amount of energy in the Universe is constant and can never change. E i E f Except for VERY brief amounts of time according to the Heisenberg Uncertainty Principle.

6 Ways to Transfer Energy Into or Out of A System Work transfers by applying a force and causing a displacement of the point of application of the force Mechanical Waves allow a disturbance to propagate through a medium Heat is driven by a temperature difference between two regions in space

7 More Ways to Transfer Energy Into or Out of A System Matter Transfer matter physically crosses the boundary of the system, carrying energy with it Electrical Transmission transfer is by electric current Electromagnetic Radiation energy is transferred by electromagnetic waves

8 Work Done by a Constant Force A force applied across a distance. W F r

9 Work-Energy Theorem The net work done changes the Kinetic Energy. If the velocity is constant, then the net work is zero. Wnet KE r 1 1 W KE F r ma r mv mv v v 2a r Notice: 2 2 net f i f i

10 Units Energy & Work are scalars and have units of the Joule: m 2 W Fd N m kg J s 2 1 m m 2 KE mv 2 kg( ) 2 kg J 2 s s 2

11

12 Kinetic Energy The energy an object has due to its motion. KE 1 2 mv 2 IMPORTANT! v is the TOTAL velocity and is a scalar!!!

13 Kinetic Energy Table 7.1, p.194

14 Work Done by a Constant Force A force applied across a distance. W F r

15 If the Force and displacement are given by vectors use Scalar Product of Two Vectors! The scalar product of two vectors is written as A. B It is also called the dot product A B Ax Bx AyBy Az Bz A. B = A B cos q q is the angle between A and B q AB AB 1 cos ( ) W F r cosq Becomes W F r

16 Constant Force Problem If the resultant force acting on a 2.0-kg object is equal to (3i + 4j) N, what is the change in kinetic energy as the object moves from (7i 8j) m to (11i 5j) m? If the object was initially at rest, what is the final velocity? a. +36 J b. +28 J c. +32 J d. +24 J e. +60 J

17 Gravity and Air Resistance A 12-kg projectile is launched with an initial vertical speed of 20 m/s. It rises to a maximum height of 18 m above the launch point. How much work is done by the dissipative (air) resistive force on the projectile during this ascent? a kj b kj c kj d kj e kj

18 Work Done by a Varying Force The work done is equal to the area under the curve W x x i f F dx x where F x Fcosq

19 Varying Force Problem A force acting on an object moving along the x axis is given by Fx = (14x 3.0x 2 ) N where x is in m. How much work is done by this force as the object moves from x = 1 m to x = +2 m? a. +12 J b. +28 J c. +40 J d. +42 J e. 28 J

20 Work Done by a Varying Force Hooke s Law F s = - kx

21 Hooke s Law Ut tensio, sic vis - as the extension, so is the force Hooke s Law describes the elastic response to an applied force. Elasticity is the property of an object or material which causes it to be restored to its original shape after distortion. An elastic system displaced from equilibrium oscillates in a simple way about its equilibrium position with Simple Harmonic Motion.

22 Elastic Systems F kx Small Vibrations

23 Robert Hooke ( ) Leading figure in Scientific Revolution Contemporary and arch enemy of Newton Hooke s Law of elasticity Worked in Physics, Biology, Meteorology, Paleontology Devised compound microscope Coined the term cell

24 Hooke s Law F s = - kx The Restoring Force When x is positive (spring is stretched), F is negative When x is 0 (at the equilibrium position), F is 0 When x is negative (spring is compressed), F is positive

25 Hooke s Law It takes twice as much force to stretch a spring twice as far. The linear dependence of displacement upon stretching force: Fapplied kx

26 Hooke s Law Stress is directly proportional to strain. F ( stress) kx( strain) applied

27 Spring Constant k: Stiffness The larger k, the stiffer the spring Shorter springs are stiffer springs k strength is inversely proportional to the number of coils

28 Work done by a Spring The horizontal surface on which the block slides is frictionless. The speed of the block before it touches the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 15 cm? k = 2.0 kn/m The mass of t he block is 2.0 kg. a. 3.7 m/s b. 4.4 m/s c. 4.9 m/s d. 5.4 m/s e. 14 m/s

29 If F is constant then If F varies with r then along any radial segment The total work is Last Time: Work A force moving a mass through a displacement does WORK. W Fr Fr cosq W F r dw F dr F() r dr W r r i f F( r) dr

30 Work Done by a Spring Identify the block as the system The work is the area under the Calculate the work as the block moves from x i = - x max to x f = 0 x f 0 1 Ws Fxdx x kx dx kx i xmax 2 The total work done as the block moves from x max to x max is zero. 2 max

31 Energy in a Spring What speed will a 25g ball be shot out of a toy gun if the spring (spring constant = 50.0N/m) is compressed 0.15m? Ignore friction and the mass of the spring. W Use Energy! spring KE ball 1 1 kx mv 2 2 v 2 2 k x m 50.0 N/ m v (.15 m) 6.7 m / s.025kg

32 Work Done by a Varying Force: Gravity The interplanetary probe is attracted to the sun by a force given by: F 1.3x10 r Sun F Probe mm G r r 1 2 ˆ 2 Find the work done ON the probe by the sun as it moves from an orbital radius of 1.5x10 11 m to 2.3x10 11 m. The negative sign indicates that the force is attractive. This is because of the way that the polar unit vectors are defined. With the origin located at the sun and the radial vector pointing towards the probe, the force of gravity acting on the probe is in the negative direction.

33 Work Done by a Varying Force: Gravity The probe is moving away from the sun so the work done ON the probe BY the sun is slowing it down. Thus, the work should be negative. W 2.3x x x10 2 x 22 dx F 1.3x10 r x x10 ( ) 3x10 10 J 2.3x x Attractive force versus distance for interplanetary probe. The area under the curve is negative since curve is below x-axis.

34 Binding Energy in Molecules

35 Energy States Left to their own devices, systems always seek out the lowest energy state available to them. Systems want to be at rest or in a constant state of motion. You have to do work on the Rock to roll it back up the hill. This will give the Rock Energy the potential of rolling back down Potential Energy.

36 Potential Energy The energy an object has due to its position in a force field. For example: gravity or electricity The Potential Energy is relative to a ground that is defined. (Potential Energy: U or PE)

37 Gravitational Potential Energy PE mgh Force Distance It takes work to move the object and that gives it energy! Same change in height! PE = mgh The ground : h = 0 IMPORTANT! Either path gives the same potential energy! WHY?

38 Work Up an Incline The block of ice weighs 500 Newtons. How much work does it take to push it up the incline compared to lifting it straight up? Ignore friction.

39 Work Up an Incline Work = Force x Distance Straight up: W Fd 500N 3m 1500J 3 F? F mg sinq 500N 250N 6 W Fd 250N 6m 1500J Push up: What is the PE at the top? 1500J mg = 500N An incline is a simple machine!

40 Simple Machines Force Multipliers 1500J Same Work, Different Force, Different Distance

41 ONLY Conservative Forces have Potential Energy Functions!! The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle. Examples: Gravity, Spring force & Electricity The work done by a conservative force on a particle moving through any closed path is zero A closed path is one in which the beginning and ending points are the same

42 Conservative Forces and Potential Energy A conservative force is defined as a vector field that is equal to the gradient of a scalar field the Potential Energy function U: Define the work done by such a force, F, through a displacement x as F x du dx The gradient of a scalar field at a point is a vector pointing in the direction of the steepest slope or grade at that point. The steepness of the slope at that point is given by the magnitude of the gradient vector. x f WC Fx dx U xi

43 Gravitational Potential Energy with Constant Force The work on the book by lifting it slowly through a vertical displacement The work done on the system must appear as an increase in the energy of the system r yˆj W F app r W ( mgˆj) yf yi W mgy mgy f i ˆj Ug mgy du d( mgy) Check: Fy mg!! dy dy

44 Varying Gravitational Force Potential Energy & Equipotential F mm G r 1 2 rˆ 2 F r du dr Potential Energy Due to Point Masses: Gradients & Equal Potential Energy Surfaces

45 Varying Electric Force Potential Energy & Equipotential F qq k r 1 2rˆ 2 F r du dr Potential Energy Due to Point Charges: Gradients & Equal Potential Energy Surfaces

46 Varying Gravitational Force Potential Energy & Equipotential F mm G r 1 2 rˆ 2 F r du dr Potential Energy Due to Point Masses: Gradients & Equal Potential Energy Surfaces

47 Gravitational Potential Energy for a variable force As a particle moves from A to B, its gravitational potential energy changes by f U U f Ui W F() r dr Choose the zero for the gravitational potential energy where the force is zero: U i = 0 where r GmM E GmM U f U() r dr 2 r r GM Em Ur () r r r i r Systems bound by Attractive Forces have Negative Energy States! Negative because it is a BOUND system. You must put work into the system to move the mass away from the planet. E i

48 Total Mechanical Energy The total mechanical energy of a system is defined as the sum of the kinetic and potential energies: E K U mech If only conservative forces act, the total mechanical energy is conserved. K U K U f f i i U K 0

49 Work Done by a Conservative Force Conservative forces do work on a system such that Energy is exactly transferred between kinetic energy and potential energy, there is no energy transferred (lost) to friction or heat. Thus Conservation of Mechanical Energy gives: E E i f Ki Ui K f U f ( U U ) K K f i f i U K By the Work-Energy Theorem: Wc K The work done by a conservative force: Wc U

50 Conservation of Mechanical Energy If there are no frictional forces, PE is converted into KE. Total Energy: 10,000J Total Energy: 10,000J Total Energy: 10,000J Total Energy: 10,000J Total Energy: 10,000J

51 Conservative Force of Gravity Frictionless Ramp 50J 0J E i E KE PE KE PE i i f f f 25J 25J 0J 50J

52 Conservation of Mechanical Energy Potential Energy of a Spring Kinetic Kinetic & Potential Potential Kinetic

53 Ski Hill Problem If the skier has an initial velocity of 12m/s, what is his final velocity at the top of the ramp? Ignore Friction. 12 m/ s

54 Ski Hill Problem Take the ground to be the ground: U = 0. E E i f Ki Ui K f U f mvi 0 mv f mgh v f vi 2gh 9.75 / 12 m/ s m s PE=0

55 Nonconservative Forces Nonconservative forces do work on a system such that Mechanical Energy is lost or transformed into internal energy (heat) or can t be directly transformed back into KE or PE. NOT ONLY RETARDING FORCES!! Nonconservative forces can speed systems up!!! Conservation of Energy gives: Energy Bank E W nc Expenditures Ki Ui K f U f Wnc Examples : Air resistance, Friction, Applied Forces

56 Nonconservative Forces The change in mechanical energy of a system is due to the nonconservative forces acting on it. E W nc Ki Ui K f U f Wnc U K W nc Ex: Change in energy bank spent on friction: U K fd

57 Ski Hill Problem If the skier has an initial velocity of 12m/s, what is his final velocity at the top of the ramp? The coefficient of kinetic friction between the skies and the hill is The mass of the skier is 80kg. 12 m/ s PE=0

58 Ski Hill Problem Ki Ui K f U f W f mvi 0 mv f mgh fd 2 2 Wf f d v v 2gh 2 fd / m f 2 i What is f and d? m=80kg 12 m/ s d.13 PE=0

59 Ski Hill Problem v v 2gh 2 fd / m f 2 i f mg cos q, d h/sinq v v 2gh 2g cos q ( h/ sin q) f 2 i v v gh q f 2 (1 cot ) 2 i v f 9.27 m / s ( 9.75 m/ s) Does not depend on the mass of the skier!!

60 W f r f A 2.0-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 250 N/m) which has its other end fixed. The block passes through the equilibrium position with a speed of 2.6 m/s and then compresses the spring a distance x from equilibrium Find the distance x that that the spring is compressed. Draw a free body diagram of the forces acting on the spring at the distance x.

61 Loop de loop!

62 System of Objects Change in energy bank due to NC forces!! W U U K K nc m 2 0 m 1

63 Power The time rate of energy transfer: The average power: P W t P de dt The instantaneous power is the limiting value of the average power as Dt approaches zero P lim t 0 W t dw dt dw dr P F F v dt dt

64 Units P Work time J Power has a unit of a Watt: Watt s Energy in terms of Power is Energy Power Time For example, Kilowatt-hour

65 POWER A 2.0-kg block slides down a plane (inclined at 40 with the horizontal) at a constant speed of 5.0 m/s. At what rate is the gravitational force on the block doing work? a. +98 W b. +63 W c. zero d. +75 W e. 75 W

66 Energy Diagrams and Stable Equilibrium: Mass on a Spring F x du dx The x = 0 position is one of stable equilibrium Configurations of stable equilibrium correspond to those for which U(x) is a minimum. x=x max and x=-x max are called the turning points

67 Energy Diagrams and Unstable Equilibrium F x = 0 at x = 0, so the particle is in equilibrium For any other value of x, the particle moves away from the equilibrium position This is an example of unstable equilibrium Configurations of unstable equilibrium correspond to those for which U(x) is a maximum. Ex: A pencil standing on its end. F x du dx

68 Force is Slope! For the potential energy curve shown, (a) determine whether the force F x is positive, negative, or zero at the five points indicated. (b) Indicate points of stable, unstable, and neutral equilibrium. (c) Sketch the curve for F x versus x from x = 0 to x = 9.5 m. F x du dx a) F x is zero at points A, C and E; F x is positive at point B and negative at point D. F x b) A and E are unstable, and C is stable. A B C E x (m) D

69 Varying Gravitational Force Potential Energy & Equipotential F mm G r 1 2 rˆ 2 F r du dr Potential Energy Due to Point Masses: Gradients & Equal Potential Energy Surfaces

70 Varying Electric Force Potential Energy & Equipotential F qq k r 1 2rˆ 2 F r du dr Potential Energy Due to Point Charges: Gradients & Equal Potential Energy Surfaces

71 Gravitational Potential Energy for a variable force As a particle moves from A to B, its gravitational potential energy changes by f U U f Ui W F() r dr Choose the zero for the gravitational potential energy where the force is zero: U i = 0 where r GmM E GmM U f U() r dr 2 r r GM Em Ur () r r r i r Systems bound by Attractive Forces have Negative Energy States! Negative because it is a BOUND system. You must put work into the system to move the mass away from the planet. E i

72 Electric Potential Energy & Potential Difference As a + particle moves from A to B, its electric potential energy changes by B A B E 0 () A U U U W q r dr If the electric field is caused by another point particle then the potential energy difference between A and B is: B Bkq 1 1 U q 0 E() r dr q 0 dr kq 2 0q A A r rb ra In general, 1 1 U kq1q 2( ) r r B A A positive test charge will gain kinetic energy and lose potential energy as it rolls down the electric hill from A to B.

73 V The Electric Force is the Negative of the Gradient of the Electric Potential Energy! q du q ke Fr E ke 2 r dr r The gradient of a scalar field at a point is a vector pointing in the direction of the steepest slope or grade at that point. The steepness of the slope at that point is given by the magnitude of the gradient vector.

74 Electric Potential Energy Plot of a Dipole Charge. Force: How steep the potential energy is!!!

75 A 2.00-kg block situated on a rough incline is connected to a spring of negligible mass having a spring constant of 100 N/m. The pulley is frictionless. The block is released from rest when the spring is unstretched. The block moves 20.0 cm down the incline before coming to rest. Find the coefficient of kinetic friction between block and incline. The picture shows the final state. Take it to be the ground where U=0. h d The gain in internal energy due to friction represents a loss in mechanical energy that must be equal to the change in the kinetic energy plus the change in the potential energy. U U K W g s nc 1 2 mgh kd 0 fd mgd sinq kd mg cosq d kd mgd sinq 2 mg cosq d kd tanq 2mg cosq.115

76 A 20.0-kg block is connected to a 30.0-kg block by a string that passes over a light frictionless pulley. The 30.0-kg block is connected to a spring that has negligible mass and a force constant of 250 N/m. The spring is unstretched when the system is as shown in the figure, and the incline is frictionless. The 20.0-kg block is pulled 20.0 cm down the incline (so that the 30.0-kg block is 40.0 cm above the floor) and released from rest. Find the speed of each block when the 30.0-kg block is 20.0 cm above the floor (that is, when the spring is unstretched.) m 1 m 2 x =.2m Take the equilibrium position shown as the ground for the m2. Take the initial position the ground for m1. The blocks will have the same final speed ( K U ) ( K U U ) ( K U ) ( K U U ) i gi 1 i gi si 2 f fg 1 f gf sf 2 Energy Bank: ( U U ) ( K U ) K gi si 2 f fg 1 2 f :Expenditures m2 gx kx ( m1 m2 ) v m1 gx sin q 2 2 v 2 gx( m m sin q ) kx 2 1 m m v 1.24 m s

77 Energy or Newton s 2 nd Law? A child slides without friction from a height h along a curved water. She is launched from a height h/5 into the pool. Determine her maximum airborne height y in terms of h and.

78 Pendulum Problem A certain pendulum consists of a 1.5-kg mass swinging at the end of a string (length = 2.0 m). At the lowest point in the swing the tension in the string is equal to 20 N. To what maximum height above this lowest point will the mass rise during its oscillation? a. 77 cm b. 50 cm c. 63 cm d. 36 cm e. 95 cm

79 Work Energy with Friction A 1.5-kg block sliding on a rough horizontal surface is attached to one end of a horizontal spring (k = 200 N/m) which has its other end fixed. If this system is displaced 20 cm horizontally from the equilibrium position and released from rest, the block first reaches the equilibrium position with a speed of 2.0 m/s. What is the coefficient of kinetic friction between the block and the horizontal surface on which it slides? a b c d e. 0.17

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 7: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want

The negative root tells how high the mass will rebound if it is instantly glued to the spring. We want 8.38 (a) The mass moves down distance.0 m + x. Choose y = 0 at its lower point. K i + U gi + U si + E = K f + U gf + U sf 0 + mgy i + 0 + 0 = 0 + 0 + kx (.50 kg)9.80 m/s (.0 m + x) = (30 N/m) x 0 = (60

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy

Conservative vs. Non-conservative forces Gravitational Potential Energy. Conservation of Mechanical energy Next topic Conservative vs. Non-conservative forces Gravitational Potential Energy Mechanical Energy Conservation of Mechanical energy Work done by non-conservative forces and changes in mechanical energy

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Lecture 10. Potential energy and conservation of energy

Lecture 10. Potential energy and conservation of energy Lecture 10 Potential energy and conservation of energy Today s Topics: Potential Energy and work done by conservative forces Work done by nonconservative forces Conservation of mechanical energy Potential

More information

Ch 8 Conservation of Energy

Ch 8 Conservation of Energy Ch 8 Conservation of Energy Cons. of Energy It has been determined, through experimentation, that the total mechanical energy of a system remains constant in any isolated system of objects that interact

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION A Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Is it possible for a system to have negative potential energy? A)

More information

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1

Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Physics 1A, Summer 2011, Summer Session 1 Quiz 3, Version A 1 Closed book and closed notes. No work needs to be shown. 1. Three rocks are thrown with identical speeds from the top of the same building.

More information

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc.

Chapter 8 Conservation of Energy. Copyright 2009 Pearson Education, Inc. Chapter 8 Conservation of Energy Units of Chapter 8 Conservative and Nonconservative Forces Potential Energy Mechanical Energy and Its Conservation Problem Solving Using Conservation of Mechanical Energy

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH 105 Exam 2 VERSION B Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A boy throws a rock with an initial velocity of 2.15 m/s at 30.0 above

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8. Potential Energy, Conservation of Energy, and Energy Diagrams 8.01 W06D Today s Reading ssignment: Chapter 14 Potential Energy and Conservation of Energy, Sections 14.1-14.7 nnouncements Problem Set 5

More information

5.3. Conservation of Energy

5.3. Conservation of Energy 5.3. Conservation of Energy Conservation of Energy Energy is never created or destroyed. Any time work is done, it is only transformed from one form to another: Kinetic Energy Potential Energy Gravitational,

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Question 8.1 Sign of the Energy II

Question 8.1 Sign of the Energy II Question 8. Sign of the Energy II Is it possible for the gravitational potential energy of an object to be negative? a) yes b) no Question 8. Sign of the Energy II Is it possible for the gravitational

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement

1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement 1- A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement r = ( 3ˆ i + ˆ j )m. Find (a) the work done by the force on the particle and (b) the angle between F and r. 2- The force acting

More information

0J2 - Mechanics Lecture Notes 2

0J2 - Mechanics Lecture Notes 2 0J2 - Mechanics Lecture Notes 2 Work, Power, Energy Work If a force is applied to a body, which then moves, we say the force does work. In 1D, if the force is constant with magnitude F, and the body moves

More information

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2.

P8.14. m 1 > m 2. m 1 gh = 1 ( 2 m 1 + m 2 )v 2 + m 2 gh. 2( m 1. v = m 1 + m 2. 2 m 2v 2 Δh determined from. m 2 g Δh = 1 2 m 2v 2. . Two objects are connected by a light string passing over a light frictionless pulley as in Figure P8.3. The object of mass m is released from rest at height h. Using the principle of conservation of

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m Work/nergy 1. student throws a ball upward where the initial potential energy is 0. t a height of 15 meters the ball has a potential energy of 60 joules and is moving upward with a kinetic energy of 40

More information

Potential energy and conservation of energy

Potential energy and conservation of energy Chapter 8 Potential energy and conservation of energy Copyright 8.1_2 Potential Energy and Work Potential energy U is energy that can be associated with the configuration (arrangement) of a system of objects

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions PSI AP Physics C Work and Energy (With Calculus) Multiple Choice Questions 1. An object moves according to the function x = t 7/2 where x is the distance traveled and t is the time. Its kinetic energy

More information

Potential Energy and Conservation

Potential Energy and Conservation PH 1-3A Fall 009 Potential Energy and Conservation of Energy Lecture 1-13 Chapter 8 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) Chapter 8 Potential Energy and Conservation of Energy

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

PSI AP Physics I Work and Energy

PSI AP Physics I Work and Energy PSI AP Physics I Work and Energy Multiple-Choice questions 1. A driver in a 2000 kg Porsche wishes to pass a slow moving school bus on a 4 lane road. What is the average power in watts required to accelerate

More information

Work and Kinetic Energy I

Work and Kinetic Energy I Work and Kinetic Energy I Scalar Product The scalar product of any two vectors A and B is a scalar quantity equal to the product of the magnitudes of the two vectors and the cosine of the angle φ between

More information

Chapter 8. Potential Energy

Chapter 8. Potential Energy Chapter 8 Potential Energy CHAPTER OUTLINE 8. Potential Energy of a System 8.2 The Isolated System Conservation of Mechanical Energy 8.3 Conservative and Nonconservative Forces 8.4 Changes in Mechanical

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Potential Energy & Conservation of Energy

Potential Energy & Conservation of Energy PHYS 101 Previous Exam Problems CHAPTER 8 Potential Energy & Conservation of Energy Potential energy Conservation of energy conservative forces Conservation of energy friction Conservation of energy external

More information

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO.

Slide. King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. Slide King Saud University College of Science Physics & Astronomy Dept. PHYS 103 (GENERAL PHYSICS) CHAPTER 8: POTENTIAL ENERGY LECTURE NO. 11 THIS PRESENTATION HAS EEN PREPARED Y: DR. NASSR S. ALZAYED

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 6 Last Lecture: Gravity Normal forces Strings, ropes and Pulleys Today: Friction Work and Kinetic Energy Potential Energy Conservation of Energy Frictional Forces

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

There are two types of forces: conservative (gravity, spring force) nonconservative (friction)

There are two types of forces: conservative (gravity, spring force) nonconservative (friction) Chapter 8: Conservation o Energy There are two types o orces: conservative (gravity, spring orce) nonconservative (riction) Conservative Forces Conservative Force the work done by the orce on an object

More information

AP Physics. Chapters 7 & 8 Review

AP Physics. Chapters 7 & 8 Review AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Chapter 10-Work, Energy & Power

Chapter 10-Work, Energy & Power DULLES HIGH SCHOOL Chapter 10-Work, Energy & Power Energy Transformations Judy Matney 1/12/2016 In this chapter, we will study the concepts of force and work; we will understand the transformations of

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

CPS lesson Work and Energy ANSWER KEY

CPS lesson Work and Energy ANSWER KEY CPS lesson Work and Energy ANSWER KEY 1. A ball feeder slowly pushes a bowling ball up a 1-m ramp to a height of 0.5 m above the floor. Neglecting friction, what constant force must be exerted on the 5-kg

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

Chapter 14 Potential Energy and Conservation of Energy

Chapter 14 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy... 2 4. Conservation of Energy... 2 4.2 Conservative and Non-Conservative Forces... 3 4.3 Changes

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

Name 09-MAR-04. Work Power and Energy

Name 09-MAR-04. Work Power and Energy Page 1 of 16 Work Power and Energy Name 09-MAR-04 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? 1. 2.4 J 3. 12

More information

*Be able to use any previous concepts with work & energy, including kinematics & circular motion.

*Be able to use any previous concepts with work & energy, including kinematics & circular motion. AP Physics 1 Chapter 6 Study Guide Work & Energy Topics: Work o W = Fdcosq, where q is the angle between F & d (only using part of force that makes the object move) o Force must make object move to do

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?

1 1. A spring has a spring constant of 120 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter? Page of 3 Work Power And Energy TEACHER ANSWER KEY March 09, 200. A spring has a spring constant of 20 newtons/meter. How much potential energy is stored in the spring as it is stretched 0.20 meter?. 2.

More information

Practice Problems for Exam 2 Solutions

Practice Problems for Exam 2 Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall Term 008 Practice Problems for Exam Solutions Part I Concept Questions: Circle your answer. 1) A spring-loaded toy dart gun

More information

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls?

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls? Chapter 7: Energy Consider dropping a ball. Why does the ball s speed increase as it falls? Viewpoint #1: Force of gravity causes acceleration which causes velocity to change. Viewpoint #2: Force of gravity

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest.

The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. T2-2 [195 marks] 1. The graph shows how an external force applied to an object of mass 2.0 kg varies with time. The object is initially at rest. What is the speed of the object after 0.60 s? A. 7.0 ms

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 6 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Chapter 7 Kinetic Energy and Work

Chapter 7 Kinetic Energy and Work Prof. Dr. I. Nasser Chapter7_I 14/11/017 Chapter 7 Kinetic Energy and Work Energy: Measure of the ability of a body or system to do work or produce a change, expressed usually in joules or kilowatt hours

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Physics Midterm Review KEY

Physics Midterm Review KEY Name: Date: 1. Which quantities are scalar? A. speed and work B. velocity and force C. distance and acceleration D. momentum and power 2. A 160.-kilogram space vehicle is traveling along a straight line

More information

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall

Physics 231. Topic 5: Energy and Work. Alex Brown October 2, MSU Physics 231 Fall Physics 231 Topic 5: Energy and Work Alex Brown October 2, 2015 MSU Physics 231 Fall 2015 1 What s up? (Friday Sept 26) 1) The correction exam is now open. The exam grades will be sent out after that on

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Unit 08 Work and Kinetic Energy. Stuff you asked about:

Unit 08 Work and Kinetic Energy. Stuff you asked about: Unit 08 Work and Kinetic Energy Today s Concepts: Work & Kinetic Energy Work in a non-constant direction Work by springs Mechanics Lecture 7, Slide 1 Stuff you asked about: Can we go over the falling,

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information