Power: Sources of Energy

Size: px
Start display at page:

Download "Power: Sources of Energy"

Transcription

1 Chapter 7: Energy

2 Power: Sources of Energy

3 Tidal Power SF Bay Tidal Power Project

4 Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something you can directly observe. The usefulness of the concept comes from the Conservation of Energy. In predicting the behavior of objects, one uses the Conservation of Energy to keep track of the total energy and the transfer of energy between its various forms and between objects. Work is the transfer of energy from one object to another by a force from one on the other that displaces the other. Power is the rate at which energy is transferred or, the rate at which work is done. Power is the FLOW of energy.

5 Conservation of Energy Energy can neither be created nor destroyed. It may change in form or be transferred from one system to another. The total amount of energy in the Universe is constant and can never change. E i = E f Except for VERY brief amounts of time according to the Heisenberg Uncertainty

6 Ways to Transfer Energy Into or Out of A System Work transfers by applying a force and causing a displacement of the point of application of the force Mechanical Waves allow a disturbance to propagate through a medium Heat is driven by a temperature difference between two regions in space

7 More Ways to Transfer Energy Into or Out of A System Matter Transfer matter physically crosses the boundary of the system, carrying energy with it Electrical Transmission transfer is by electric current Electromagnetic Radiation energy is transferred by electromagnetic waves

8 Units Energy & Work are scalars and have units of the Joule: m 2 W = Fd N m = kg J s 2 = 1 m m 2 KE = mv 2 kg( ) 2 = kg = J s s 2 2

9

10 Work A force applied across a distance. W = FΔr cosθ Along the direction of motion ONLY! F must be parallel to the direction of motion!

11 Work: W = F Δr cos θ The displacement is that of the point of application of the force A force does no work on the object if the force does not move through a displacement The work done by a force on a moving object is zero when the force applied is perpendicular to the displacement of its point of application The sign of the work depends on the direction of F relative to Δr Work is positive when projection of F onto Δr is in the same direction as the W F > 0 displacement Work is negative when the projection is in the opposite direction W f < 0

12 Energy States Left to their own devices, systems always seek out the lowest energy state available to them. Systems want to be at rest or in a constant state of motion. You have to do work on the Rock to roll it back up the hill. This will give the Rock Energy the potential of rolling back down Potential Energy.

13 Potential Energy The energy an object has due to its position in a force field. For example: gravity or electricity The Potential Energy is relative to a ground that is defined. (Potential Energy: U or PE)

14 Gravitational Potential Energy PE = mgh Force Distance It takes work to move the object and that gives it energy! Same change in height! PE = mgh The ground : h = 0 IMPORTANT! Either path gives the same potential energy! WHY?

15 Work Up an Incline The block of ice weighs 500 Newtons. How much work does it take to push it up the incline compared to lifting it straight up? Ignore friction.

16 Work Up an Incline Work = Force x Distance Straight up: W = Fd = 500N 3m= 1500J 3 F =? F = mgsinθ = 500N = 250N 6 W = Fd = 250N 6m= 1500J Push up: What is the PE at the top? 1500J mg = 500N An incline is a simple machine!

17 Simple Machines Force Multipliers Same Work, Different Force, Different Distance

18 Kinetic Energy The energy an object has due to its motion. KE = 1 2 mv 2 IMPORTANT! v is the TOTAL velocity and is a scalar!!!

19 Kinetic Energy Table 7.1, p.194

20 Quick Question (a) A guy pushes on a 20kg mower with a force of 80 N at an angle of 25 degrees. How much work does he doing pushing the mower 50 meters? W = FΔ rcosθ = 80Ncos 25x50m W = 3.63kJ

21 Work-Energy Thm: HO 1 Wnet = ΔKE A 2.0-kg particle has an initial velocity of (5i 4j) m/s. Some time later, its velocity is (7i + 3j) m/s. How much work was done by the resultant force during this time interval, assuming no energy is lost in the process? a. 17 J b. 49 J c. 19 J d. 53 J e. 27 J

22 A P HO 6 30 B A 2.0-kg block slides down a frictionless incline from point A to point B. A force (magnitude P = 3.0 N) acts on the block between A and B, as shown. Points A and B are 2.0 m apart. If the kinetic energy of the block at A is 10 J, what is the kinetic energy of the block at B? The angle of the incline is 30 degrees. a. 27 J b. 20 J c. 24 J d. 17 J e. 37 J

23 YOU TRY HO2 A P B A block is pushed across a rough horizontal surface from point A to point B by a force (magnitude P = 5.4 N) as shown in the figure. The magnitude of the force of friction acting on the block between A and B is 1.2 N and points A and B are 0.5 m apart. If the kinetic energies of the block at A and B are 4.0 J and 5.6 J, respectively, how much work is done on the block by the force P between A and B? a. 2.7 J b. 1.0 J c. 2.2 J d. 1.6 J e. 3.2 J

24 Problem Suppose you push on a 30.0kg package initially at rest with a force of N through a distance of 0.800m against an opposing friction of 5.00N. What is the kinetic energy of the box at the end of the 0.80 m? v 0 = 0

25 Problem Use Work-Energy Theorem: Wnet W = F d =ΔKE net net =ΔKE f F f d = KE KE ( ) KE F f d = ( ) = ( ) f i 120N 5N 0.8m= 92J v 0 = 0

26 Problem What is the final velocity of the box? KE = 92J KE = 1 2 mv 2 v = 2KE m = 292 J 30kg v = 2.48 m/ s v 0 = 0

27 Use Scalar Product of Two Vectors! The scalar product of two vectors is written as A. B It is also called the dot product A B = AxBx + AyBy + AzBz A. B = A B cos θ θ is the angle between A and B θ = v v A B AB 1 cos ( ) W = FΔr Becomes cosθ v v W = F Δr

28 Unit Vector Representation. How do you find the Work? Problem 7.7 A force F = ( 6ˆ i 2ˆ j )N acts on a particle that undergoes a displacement Δr = ( 3ˆ i + ˆ j )m Find (a) the work done by the force on the particle and (b) the angle between F and r.

29 Problem 7.7 a) F = ( 6ˆ i 2ˆ j )N Δr = ( 3ˆ i + ˆ j )m W = F Δ r = Fxx+ Fyy Find (a) the work done by the force on the particle and (b) the angle between F and r. = ( 6.00)( 3.00 ) N m + ( 2.00)( 1.00 ) N m = 16.0 J b) 1 F Δr θ = cos Δ F r 1 16 = cos = 36.9 (( 6.00) + ( 2.00) ) ( 3.00) + ( 1.00) ( )

30 You Try HO5 If the resultant force acting on a 2.0-kg object is equal to (3i + 4j) N, what is the change in kinetic energy as the object moves from (7i 8j) m to (11i 5j) m? a. +36 J b. +28 J c. +32 J d. +24 J e. +60 J

31 You Try H04 A force acting on an object moving along the x axis is given by Fx = (14x 3.0x 2 ) N where x is in m. How much work is done by this force as the object moves from x = 1m to x = +2 m? a. +12 J b. +28 J c. +40 J d. +42 J e. 28 J

32 Work Done by a Varying Force The work done is equal to the area under the curve W = where F x x x i = Fcosθ f F dx x

33 F x (N) 20 You Try HO x (m) An object moving along the x axis is acted upon by a force F x that varies with position as shown. How much work is done by this force as the object moves from x =2m to x = 8 m? a. 10 J b. +10 J c. +30 J d. 30 J e. +40 J

34 Work Done by a Varying Force: Gravity Sun Probe The interplanetary probe is attracted to the sun by a force given by: F = 1.3x The negative sign indicates that the force is attractive. This is because of the way that the polar unit vectors are defined. With the origin located at the sun and the radial vector pointing towards the probe, the force of gravity acting on the probe is in the negative direction. r 22

35 Work Done by a Varying Force: Gravity The probe is moving away from the sun so the work done ON the probe BY the sun is slowing it down. Thus, the work should be negative. W x10 1.3x10 = x10 2 x 22 dx F 1.3x10 = r = x x10 ( ) = 3x10 10 J 2.3x x Attractive force versus distance for interplanetary probe. The area under the curve is negative since curve is below x-axis.

36 Work Done by a Varying Force Hooke s Law F s = - kx The restoring force exerted by the spring is F s = - kx x is the position of the block with respect to the equilibrium position (x = 0) k is called the spring constant or force constant and measures the stiffness of the spring

37 Robert Hooke ( ) Leading figure in Scientific Revolution Contemporary and arch enemy of Newton Hooke s Law of elasticity Worked in Physics, Biology, Meteorology, Paleontology Devised compound microscope Coined the term cell

38 Hooke s Law Ut tensio, sic vis - as the extension, so is the force Hooke s Law describes the elastic response to an applied force. Elasticity is the property of an object or material which causes it to be restored to its original shape after distortion. An elastic system displaced from equilibrium oscillates in a simple way about its equilibrium position with Simple Harmonic Motion.

39 Elastic Systems F = kx Small Vibrations

40 Hooke s Law F s = - kx The Restoring Force When x is positive (spring is stretched), F is negative When x is 0 (at the equilibrium position), F is 0 When x is negative (spring is compressed), F is positive

41 Hooke s Law It takes twice as much force to stretch a spring twice as far. The linear dependence of displacement upon stretching force: Fapplied = kx

42 Hooke s Law Stress is directly proportional to strain. F ( stress) = kx( strain) applied

43 Hooke s Law FRestoring = kx The applied force displaces the system a distance x. The reaction force of the spring is called the Restoring Force and it is in the opposite direction to the displacement.

44 Spring Constant k: Stiffness The larger k, the stiffer the spring Shorter springs are stiffer springs k strength is inversely proportional to the number of coils

45 Spring Question Each spring is identical with the same spring constant, k. Each box is displaced by the same amount and released. Which box, if either, experiences the greater net force?

46 Conservative Forces The work done by a conservative force on a particle moving between any two points is independent of the path taken by the particle. Examples: Gravity, Spring force & Electricity The work done by a conservative force on a particle moving through any closed path is zero A closed path is one in which the beginning and ending points are the same

47 Conservative Forces and Potential Energy Define a potential energy function, U, such that the work done by a conservative force equals the decrease in the potential energy of the system The work done by such a force, F, is x f WC = Fx dx = ΔU xi For an infinitessimal displacement: F x = du dx

48 Conservative Forces and Potential Energy Check F x = du dx Look at the case of a deformed spring du dx d dx 1 2 s 2 Fs = = kx = kx This is Hooke s Law Gravitational Potential & Force: du g d Fg = = ( mgy) = mg dx dx

49 Energy Diagrams and Stable Equilibrium: Mass on a Spring F x du = dx The x = 0 position is one of stable equilibrium Configurations of stable equilibrium correspond to those for which U(x) is a minimum. x=x max and x=-x max are called the turning points

50 Energy Diagrams and Unstable Equilibrium F x = 0 at x = 0, so the particle is in equilibrium For any other value of x, the particle moves away from the equilibrium position This is an example of unstable equilibrium Configurations of unstable equilibrium correspond to those for which U(x) is a maximum. Ex: A pencil standing on its end. F x du = dx

51 P7.47 For the potential energy curve shown, (a) determine whether the force F x is positive, negative, or zero at the five points indicated. (b) Indicate points of stable, unstable, and neutral equilibrium. (c) Sketch the curve for F x versus x from x = 0 to x = 9.5 m. F x = du dx a) F x is zero at points A, C and E; F x is positive at point B and negative at point D. F x b) A and E are unstable, and C is stable. A B C E x (m) D

52 Work Done by a Spring Identify the block as the system The work is the area under the Calculate the work as the block moves from x i = - x max to x f = 0 x f 0 1 Ws = Fxdx = ( ) x kx dx = kx i xmax 2 The total work done as the block moves from x max to x max is zero. 2 max

53 HO 10 A 10-kg block on a rough horizontal surface is attached to a light spring (force constant = 1.4 kn/m). The block is pulled 8.0 cm to the right from its equilibrium position and released from rest. The frictional force between the block and surface has a magnitude of 30 N. What is the kinetic energy of the block as it passes through its equilibrium position? a. 4.5 J b. 2.1 J c. 6.9 J d. 6.6 J e. 4.9 J

54 You Try HO 9 The horizontal surface on which the block slides is frictionless. The speed of the block before it touches the spring is 6.0 m/s. How fast is the block moving at the instant the spring has been compressed 15 cm? k = 2.0 kn/m The mass of t he block is 2.0 kg. a. 3.7 m/s b. 4.4 m/s c. 4.9 m/s d. 5.4 m/s e. 14 m/s k v 2.0 kg

55 Conservative Forces and Potential Energy Check Look at the case of a deformed spring du dx d dx 1 2 s 2 Fs = = kx = kx This is Hooke s Law F x du = dx Gravitational Potential & Force: du g d Fg = = ( mgy) = mg dx dx

56 Spring with an Applied Force Suppose an external agent, F app, stretches the spring The applied force is equal and opposite to the spring force F app = -F s = -(-kx) = kx Work done by F app is equal to ½ kx 2 max

57 Energy in a Spring What speed will a 25g ball be shot out of a toy gun if the spring (spring constant = 50.0N/m) is compressed 0.15m? Ignore friction and the mass of the spring. W Use Energy! spring =ΔKE ball 1 1 kx = mv 2 2 v 2 2 = k x m 50.0 N / m v= (.15 m) = 6.7 m/ s.025kg

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 5 Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Chapters 10 & 11: Energy

Chapters 10 & 11: Energy Chapters 10 & 11: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

WORK, POWER & ENERGY

WORK, POWER & ENERGY WORK, POWER & ENERGY Work An applied force acting over a displacement. The force being applied must be parallel to the displacement for work to be occurring. Work Force displacement Units: Newton meter

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

Conservation of Energy and Momentum

Conservation of Energy and Momentum Conservation of Energy and Momentum Three criteria for Work There must be a force. There must be a displacement, d. The force must have a component parallel to the displacement. Work, W = F x d, W = Fd

More information

l1, l2, l3, ln l1 + l2 + l3 + ln

l1, l2, l3, ln l1 + l2 + l3 + ln Work done by a constant force: Consider an object undergoes a displacement S along a straight line while acted on a force F that makes an angle θ with S as shown The work done W by the agent is the product

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Work Done by a Constant Force

Work Done by a Constant Force Work and Energy Work Done by a Constant Force In physics, work is described by what is accomplished when a force acts on an object, and the object moves through a distance. The work done by a constant

More information

Chapter 7 Energy of a System

Chapter 7 Energy of a System Chapter 7 Energy of a System Course Outline : Work Done by a Constant Force Work Done by avarying Force Kinetic Energy and thework-kinetic EnergyTheorem Power Potential Energy of a System (Will be discussed

More information

Work and Kinetic Energy I

Work and Kinetic Energy I Work and Kinetic Energy I Scalar Product The scalar product of any two vectors A and B is a scalar quantity equal to the product of the magnitudes of the two vectors and the cosine of the angle φ between

More information

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY

Energy present in a variety of forms. Energy can be transformed form one form to another Energy is conserved (isolated system) ENERGY ENERGY Energy present in a variety of forms Mechanical energy Chemical energy Nuclear energy Electromagnetic energy Energy can be transformed form one form to another Energy is conserved (isolated system)

More information

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam.

The content contained in all sections of chapter 6 of the textbook is included on the AP Physics B exam. WORK AND ENERGY PREVIEW Work is the scalar product of the force acting on an object and the displacement through which it acts. When work is done on or by a system, the energy of that system is always

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

General Physics I Work & Energy

General Physics I Work & Energy General Physics I Work & Energy Forms of Energy Kinetic: Energy of motion. A car on the highway has kinetic energy. We have to remove this energy to stop it. The brakes of a car get HOT! This is an example

More information

Chapter 6 Energy and Oscillations

Chapter 6 Energy and Oscillations Chapter 6 Energy and Oscillations Conservation of Energy In this chapter we will discuss one of the most important and fundamental principles in the universe. Energy is conserved. This means that in any

More information

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force

WORK, ENERGY & POWER Work scalar W = F S Cosθ Unit of work in SI system Work done by a constant force WORK, ENERGY & POWER Work Let a force be applied on a body so that the body gets displaced. Then work is said to be done. So work is said to be done if the point of application of force gets displaced.

More information

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine!

Work Up an Incline. Work = Force x Distance. Push up: 1500J. What is the PE at the top? mg = 500N. An incline is a simple machine! Quick Question Work Up an Incline The block o ice weighs 500 Newtons. How much work does it take to push it up the incline compared to liting it straight up? Ignore riction. Work Up an Incline Work = Force

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Elastic Potential Energy

Elastic Potential Energy Elastic Potential Energy If you pull on a spring and stretch it, then you do work. That is because you are applying a force over a displacement. Your pull is the force and the amount that you stretch the

More information

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial =

= 1 2 kx2 dw =! F! d! r = Fdr cosθ. T.E. initial. = T.E. Final. = P.E. final. + K.E. initial. + P.E. initial. K.E. initial = Practice Template K.E. = 1 2 mv2 P.E. height = mgh P.E. spring = 1 2 kx2 dw =! F! d! r = Fdr cosθ Energy Conservation T.E. initial = T.E. Final (1) Isolated system P.E. initial (2) Energy added E added

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force

PHY 101. Work and Kinetic Energy 7.1 Work Done by a Constant Force PHY 101 DR M. A. ELERUJA KINETIC ENERGY AND WORK POTENTIAL ENERGY AND CONSERVATION OF ENERGY CENTRE OF MASS AND LINEAR MOMENTUM Work is done by a force acting on an object when the point of application

More information

Chapter 8. Conservation of Energy

Chapter 8. Conservation of Energy Chapter 8 Conservation of Energy Energy Review Kinetic Energy Associated with movement of members of a system Potential Energy Determined by the configuration of the system Gravitational and Elastic Potential

More information

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power

ENERGY. Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power ENERGY Conservative Forces Non-Conservative Forces Conservation of Mechanical Energy Power Conservative Forces A force is conservative if the work it does on an object moving between two points is independent

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

PHYSICS - CLUTCH CH 07: WORK & ENERGY.

PHYSICS - CLUTCH CH 07: WORK & ENERGY. !! www.clutchprep.com INTRO TO ENERGY & ENERGY FORMS ENERGY: A physical quantity without a precise definition. We don't know exactly WHAT it is, but we know HOW it works. - Energy "exists" in many forms;

More information

AP PHYSICS 1. Energy 2016 EDITION

AP PHYSICS 1. Energy 2016 EDITION AP PHYSICS 1 Energy 2016 EDITION Copyright 2016 National Math + Initiative, Dallas, Texas. All rights reserved. Visit us online at www.nms.org. 1 Pre-Assessment Questions Consider a system which could

More information

Welcome back to Physics 211

Welcome back to Physics 211 Welcome back to Physics 211 Today s agenda: Work Power Physics 211 Fall 2012 Lecture 09-2 1 Current assignments HW#9 due this Friday at 5 pm. Short assignment SAGE (Thanks for the feedback!) I am using

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Elastic Potential Energy and Conservation of Mechanical Energy

Elastic Potential Energy and Conservation of Mechanical Energy Elastic Potential Energy and Conservation of Mechanical Energy Level : Physics I Instructor : Kim Hook s Law Springs are familiar objects that have many applications, ranging from push-button switches

More information

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13

Solving two-body problems with Newton s Second Law. Example Static and Kinetic Friction. Section 5.1 Friction 10/15/13 Solving two-body problems with Newton s Second Law You ll get multiple equations from the x and y directions, these equations can be solved simultaneously to find unknowns 1. Draw a separate free body

More information

Healy/DiMurro. Vibrations 2016

Healy/DiMurro. Vibrations 2016 Name Vibrations 2016 Healy/DiMurro 1. In the diagram below, an ideal pendulum released from point A swings freely through point B. 4. As the pendulum swings freely from A to B as shown in the diagram to

More information

Chapter 6 Work and Energy

Chapter 6 Work and Energy Chapter 6 Work and Energy Midterm exams will be available next Thursday. Assignment 6 Textbook (Giancoli, 6 th edition), Chapter 6: Due on Thursday, November 5 1. On page 162 of Giancoli, problem 4. 2.

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Purpose of the experiment

Purpose of the experiment Work and Energy PES 1160 General Physics Lab I Purpose of the experiment What is Work and how is related to Force? To understand the work done by a constant force and a variable force. To see how gravitational

More information

Physics. Chapter 7 Energy

Physics. Chapter 7 Energy Physics Chapter 7 Energy Work How long does a force act? Last week, we meant time as in impulse (Ft) This week, we will take how long to mean distance Force x distance (Fd) is what we call WORK W = Fd

More information

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91

Review. Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 Review Kinetic Energy Work Hooke s s Law Potential Energy Conservation of Energy Power 1/91 The unit of work is the A. Newton B. Watt C. Joule D. Meter E. Second 2/91 The unit of work is the A. Newton

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Unit 4 Work, Power & Conservation of Energy Workbook

Unit 4 Work, Power & Conservation of Energy Workbook Name: Per: AP Physics C Semester 1 - Mechanics Unit 4 Work, Power & Conservation of Energy Workbook Unit 4 - Work, Power, & Conservation of Energy Supplements to Text Readings from Fundamentals of Physics

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Chapter 5 Work and Energy

Chapter 5 Work and Energy Chapter 5 Work and Energy Work and Kinetic Energy Work W in 1D Motion: by a Constant orce by a Varying orce Kinetic Energy, KE: the Work-Energy Theorem Mechanical Energy E and Its Conservation Potential

More information

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem

( ) = ( ) W net = ΔKE = KE f KE i W F. F d x. KE = 1 2 mv2. Note: Work is the dot product of F and d. Work-Kinetic Energy Theorem Work-Kinetic Energy Theorem KE = 1 2 mv2 W F change in the kinetic energy of an object F d x net work done on the particle ( ) = ( ) W net = ΔKE = KE f KE i Note: Work is the dot product of F and d W g

More information

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate.

Work and energy. 15 m. c. Find the work done by the normal force exerted by the incline on the crate. Work and energy 1. A 10.0-kg crate is pulled 15.0 m up along a frictionless incline as shown in the figure below. The crate starts at rest and has a final speed of 6.00 m/s. motor 15 m 5 a. Draw the free-body

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17

Lesson 5. Luis Anchordoqui. Physics 168. Tuesday, September 26, 17 Lesson 5 Physics 168 1 C. B.-Champagne Luis Anchordoqui 2 2 Work Done by a Constant Force distance moved times component of force in direction of displacement W = Fd cos 3 Work Done by a Constant Force

More information

Chapter 14 Potential Energy and Conservation of Energy

Chapter 14 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy... 2 4. Conservation of Energy... 2 4.2 Conservative and Non-Conservative Forces... 3 4.3 Changes

More information

Work, energy, power, and conservation of energy

Work, energy, power, and conservation of energy Work, energy, power, and conservation of energy We ve seen already that vectors can be added and subtracted. There are also two useful ways vectors can be multiplied. The first of these is called the vector

More information

Lecture 10 Mechanical Energy Conservation; Power

Lecture 10 Mechanical Energy Conservation; Power Potential energy Basic energy Lecture 10 Mechanical Energy Conservation; Power ACT: Zero net work The system of pulleys shown below is used to lift a bag of mass M at constant speed a distance h from the

More information

Work and kinetic energy. If a net force is applied on an object, the object may

Work and kinetic energy. If a net force is applied on an object, the object may Work and kinetic energy If a net force is applied on an object, the object may CHAPTER 6 WORK AND ENERGY experience a change in position, i.e., a displacement. When a net force is applied over a distance,

More information

Work and Energy. Work and Energy

Work and Energy. Work and Energy 1. Work as Energy Transfer Work done by a constant force (scalar product) Work done by a varying force (scalar product & integrals). Kinetic Energy Work-Energy Theorem Work by a Baseball Pitcher A baseball

More information

WORK ENERGY AND POWER

WORK ENERGY AND POWER WORK ENERGY AND POWER WORK PHYSICAL DEINITION When the point of application of force moves in the direction of the applied force under its effect then work is said to be done. MATHEMATICAL DEINITION O

More information

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero

D) No, because of the way work is defined D) remains constant at zero. D) 0 J D) zero CHAPTER 6 REVIEW NAME 1) Can work be done on a system if there is no motion? A) Yes, if an outside force is provided. B) Yes, since motion is only relative. C) No, since a system which is not moving has

More information

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer

Ground Rules. PC1221 Fundamentals of Physics I. Introduction to Energy. Energy Approach to Problems. Lectures 13 and 14. Energy and Energy Transfer PC1221 Fundamentals o Physics I Lectures 13 and 14 Energy and Energy Transer Dr Tay Seng Chuan 1 Ground Rules Switch o your handphone and pager Switch o your laptop computer and keep it No talking while

More information

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics Work done by multiple forces Work done by multiple forces no normal work tractor work friction work total work = W T +W f = +10 kj no weight work Work-Energy: Finding the Speed total work = W T +W f =

More information

Chapter 7 Kinetic Energy and Work

Chapter 7 Kinetic Energy and Work Prof. Dr. I. Nasser Chapter7_I 14/11/017 Chapter 7 Kinetic Energy and Work Energy: Measure of the ability of a body or system to do work or produce a change, expressed usually in joules or kilowatt hours

More information

Chapter 07: Kinetic Energy and Work

Chapter 07: Kinetic Energy and Work Chapter 07: Kinetic Energy and Work Conservation of Energy is one of Nature s fundamental laws that is not violated. Energy can take on different forms in a given system. This chapter we will discuss work

More information

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy

Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Phys101 Lectures 9 and 10 Conservation of Mechanical Energy Key points: Conservative and Nonconservative Forces Potential Energy Generalized work-energy principle Mechanical Energy and Its Conservation

More information

Name: Date: Period: AP Physics C Work HO11

Name: Date: Period: AP Physics C Work HO11 Name: Date: Period: AP Physics C Work HO11 1.) Rat pushes a 25.0 kg crate a distance of 6.0 m along a level floor at constant velocity by pushing horizontally on it. The coefficient of kinetic friction

More information

Physics 201, Midterm Exam 2, Fall Answer Key

Physics 201, Midterm Exam 2, Fall Answer Key Physics 201, Midterm Exam 2, Fall 2006 Answer Key 1) A constant force is applied to a body that is already moving. The force is directed at an angle of 60 degrees to the direction of the body s velocity.

More information

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always

Static and Kinetic Friction. Section 5.1 Friction. Example 5.1. Is the normal force always. equal to µmg? Is the frictional force always Section 5.1 Friction Static and Kinetic Friction Friction is an electromagnetic phenomenon: molecular attraction between surfaces Extreme example: Gecko foot Two kinds of friction: Static Friction: a force

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m

(A) 10 m (B) 20 m (C) 25 m (D) 30 m (E) 40 m PSI AP Physics C Work and Energy (Algebra Based) Multiple Choice Questions (use g = 10 m/s 2 ) 1. A student throws a ball upwards from the ground level where gravitational potential energy is zero. At

More information

Physics 1C. Lecture 12B

Physics 1C. Lecture 12B Physics 1C Lecture 12B SHM: Mathematical Model! Equations of motion for SHM:! Remember, simple harmonic motion is not uniformly accelerated motion SHM: Mathematical Model! The maximum values of velocity

More information

Work changes Energy. Do Work Son!

Work changes Energy. Do Work Son! 1 Work changes Energy Do Work Son! 2 Do Work Son! 3 Work Energy Relationship 2 types of energy kinetic : energy of an object in motion potential: stored energy due to position or stored in a spring Work

More information

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period.

ELASTICITY. values for the mass m and smaller values for the spring constant k lead to greater values for the period. CHAPTER 0 SIMPLE HARMONIC MOTION AND ELASTICITY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS. 0. m. (c) The restoring force is given by Equation 0. as F = kx, where k is the spring constant (positive). The graph

More information

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is

Chapter 8 Solutions. The change in potential energy as it moves from A to B is. The change in potential energy in going from A to B is Chapter 8 Solutions *8. (a) With our choice for the zero level for potential energy at point B, U B = 0. At point A, the potential energy is given by U A = mgy where y is the vertical height above zero

More information

Potential Energy and Conservation

Potential Energy and Conservation PH 1-3A Fall 009 Potential Energy and Conservation of Energy Lecture 1-13 Chapter 8 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) Chapter 8 Potential Energy and Conservation of Energy

More information

Physics 101 Lecture 7 Kinetic Energy and Work

Physics 101 Lecture 7 Kinetic Energy and Work Phsics 101 Lecture 7 Kinetic Energ and Work Dr. Ali ÖVGÜN EMU Phsics Department www.aovgun.com Wh Energ? q Wh do we need a concept of energ? q The energ approach to describing motion is particularl useful

More information

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37.

Rutgers University Department of Physics & Astronomy. 01:750:271 Honors Physics I Fall Lecture 10. Home Page. Title Page. Page 1 of 37. Rutgers University Department of Physics & Astronomy 01:750:271 Honors Physics I Fall 2015 Lecture 10 Page 1 of 37 Midterm I summary 100 90 80 70 60 50 40 30 20 39 43 56 28 11 5 3 0 1 Average: 82.00 Page

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

WORK, POWER AND ENERGY

WORK, POWER AND ENERGY WORK, POWER AND ENERGY Important Points:. Dot Product: a) Scalar product is defined as the product of the magnitudes of two vectors and the cosine of the angle between them. The dot product of two vectors

More information

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #5. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #. Ph Introductory Physics, Sp-0 Page of -A. A 7 kg block moves in a straight line under the influence of a force that varies with position as shown in the figure at the right. If the force is

More information

Essentially, the amount of work accomplished can be determined two ways:

Essentially, the amount of work accomplished can be determined two ways: 1 Work and Energy Work is done on an object that can exert a resisting force and is only accomplished if that object will move. In particular, we can describe work done by a specific object (where a force

More information

Potential Energy and Conservation of Energy Chap. 7 & 8

Potential Energy and Conservation of Energy Chap. 7 & 8 Level : AP Physics Potential Energy and Conservation of Energy Chap. 7 & 8 Potential Energy of a System see p.191 in the textbook - Potential energy is the energy associated with the arrangement of a system

More information

In vertical circular motion the gravitational force must also be considered.

In vertical circular motion the gravitational force must also be considered. Vertical Circular Motion In vertical circular motion the gravitational force must also be considered. An example of vertical circular motion is the vertical loop-the-loop motorcycle stunt. Normally, the

More information

Ch 5 Work and Energy

Ch 5 Work and Energy Ch 5 Work and Energy Energy Provide a different (scalar) approach to solving some physics problems. Work Links the energy approach to the force (Newton s Laws) approach. Mechanical energy Kinetic energy

More information

MECHANICAL (TOTAL) ENERGY

MECHANICAL (TOTAL) ENERGY DO NOW: 1/19 If you haven t already, please take the short google form survey posted on Edmodo Please turn in your Work done by friction Lab in the top tray POTENTIAL ENERGY Stored energy An object that

More information

AP Physics. Chapters 7 & 8 Review

AP Physics. Chapters 7 & 8 Review AP Physics Chapters 7 & 8 Review 1.A particle moves along the x axis and is acted upon by a single conservative force given by F x = ( 20 4.0x)N where x is in meters. The potential energy associated with

More information

Lesson 8: Work and Energy

Lesson 8: Work and Energy Name Period Lesson 8: Work and Energy 8.1 Experiment: What is Kinetic Energy? (a) Set up the cart, meter stick, pulley, hanging mass, and tape as you did in Lesson 5.1. You will examine the distance and

More information

PHYSICS 149: Lecture 17

PHYSICS 149: Lecture 17 PHYSICS 149: Lecture 17 Chapter 6: Conservation of Energy 6.7 Elastic Potential Energy 6.8 Power Chapter 7: Linear Momentum 7.1 A Vector Conservation Law 7. Momentum Lecture 17 Purdue University, Physics

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that.

Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. Extra credit assignment #4 It can be handed in up until one class before Test 4 (check your course outline). It will NOT be accepted after that. NAME: 4. Units of power include which of the following?

More information

CHAPTER 2: FORCES AND MOTION

CHAPTER 2: FORCES AND MOTION CHAPTER 2: FORCES AND MOTION 2.1 Linear Motion Linear Motion is motion in a straight line with constant acceleration. Classification Scalar Vector Physical quantity with Magnitude only Magnitude and direction

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Kinematics 1D Kinematics 2D Dynamics Work and Energy

Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1D Kinematics 2D Dynamics Work and Energy Kinematics 1 Dimension Kinematics 1 Dimension All about motion problems Frame of Reference orientation of an object s motion Used to anchor coordinate

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 125 Slide 2 / 125 AP Physics C - Mechanics Work and Energy 2015-12-03 www.njctl.org Table of Contents Slide 3 / 125 Click on the topic to go to that section Energy and Work Conservative and Non-Conservative

More information