Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series.

Size: px
Start display at page:

Download "Definition: Let f(x) be a function of one variable with continuous derivatives of all orders at a the point x 0, then the series."

Transcription

1 2.4 Local properties o unctions o several variables In this section we will learn how to address three kinds o problems which are o great importance in the ield o applied mathematics: how to obtain the approximate value o unctions o several variables near a point in their domain, how to obtain and classiy the extreme values maxima, minima and saddle points) o unctions o several variables and inally, how to solve so-called constrained extrema problems. We will start by addressing the irst o these questions: Taylor series expansions A good way o obtaining the value o a unction near a point at which the value o the unction and its derivatives are known is by means o Taylor s series expansion. Let us recall it or unctions o one variable: Deinition: Let x) be a unction o one variable with continuous derivatives o all orders at a the point x 0, then the series x) = x 0 ) + x 0 )x x 0 ) + = k) x 0 ) x x 0 ) k, 2.141) is called the Taylor series expansion o about x = x 0. I x 0 = 0 the term Maclaurin series is usually employed in place o Taylor series. Note: In practice when employing Taylor s series we will only consider the irst contributions to the sum above and suppose that they provide already a good enough approximation. In act, i we cut the series 2.141) at k = n we will obtain the best order-n polynomial approximation o the unction x) near the point x 0. The Taylor series expansion can be easily generalized to unctions o more than one variable. Let us as usual consider the case o unctions o two variables: Deinition: Let x, y) be a unction o two real variables which is continuous at a certain point x 0, y 0 ) and such that all its partial derivatives are also continuous at that point. Then the Taylor series expansion o x, y) about the point x 0, y 0 ) can be obtained exactly in the same way as or unctions o one variable. We can irst apply 2.141) to expand the unction on the variable x about x 0 keeping y ixed: 1 k x k x0,y) x x 0 ) k ) We can now take the expansion 2.142) and treat it as a unction o y. I we do so, we can use again Taylor s expansion or unctions o one variable on 2.142) and expand it about the point y = y 0, p=0 1 p! p k ) y p x x0 k x x 0 ) k y y 0 ) p ) 29

2 Note: Notice that i we would have irst expanded about y 0 and then about x 0 the derivatives with respect to x and y in 2.143) would appear in the reverse order. However, since we assume that is continuous and has continuous partial derivatives o all orders at the point x 0, y 0 ) this implies that p k ) y p x x0 k = k p ) x k y x0 p, 2.144) and thereore both ormulae are equivalent. Let us consider the irst terms on the expan- An alternative version o Taylor s ormula: sion 2.143). They are x 0, y 0 ) + x x 0, y 0 )x x 0 ) + y x 0, y 0 )y y 0 ) + yx x 0, y 0 )x x 0 )y y 0 ) yyx 0, y 0 )y y 0 ) xxy 0, x 0 )x x 0 ) 2 + = ϕ 0) x 0, y 0 ) + ϕ 1) x 0, y 0 ) ϕ2) x 0, y 0 ) ) with ϕ n) x 0, y 0 ) = x x 0 ) x + y y 0) ) n x, y) y x ) It is easy to prove that the appearance o the operator ϕ n) x 0, y 0 ) extends to all other terms in the Taylor expansion in act it can be proven by induction, in the same way described ater 2.112)). This means that we can write 2.143) as n=0 ϕ n) x 0, y 0 ) ) n! Note: Notice that the operation 2.146) means that ater expanding the n-power we act irst with the partial derivatives on and then take those derivatives at the point x 0, y 0 ). For example ϕ 2) x 0, y 0 ) = x x 0 ) x + y y 0) ) 2 x, y) 2.148) y x0 ) = x x 0 ) 2 2 x 2 + y y 0) 2 2 y 2 + 2y y 0)x x 0 ) 2 x, y) y x x0 = x x 0 ) 2 xx x 0, y 0 ) + y y 0 ) 2 yy x 0, y 0 ) + 2y y 0 )x x 0 ) xy x 0, y 0 ). Let us see the working o these ormulae with one example: Example: Let x 2 y ) Obtain the Taylor expansion o this unction about the point 1, 1) including up to second order terms. 30

3 By second-order terms it is meant that we take the terms on the Taylor expansion until second-order partial derivatives. That means that we need to calculate the ollowing sum 1, 1) + x 1, 1)x 1) + y 1, 1)y 1) xx1, 1)x 1) yy1, 1)y 1) 2 + xy 1, 1)x 1)y 1) ) Thereore the irst thing we need to compute are the 1st- and 2nd-order partial derivatives o, Thereore we have x = 2xy 3 y = 3x 2 y 2 xx = 2y 3, 2.151) yy = 6x 2 y xy = yx = 6xy ) 1, 1) = 1 x 1, 1) = 2 y 1, 1) = 3, 2.153) xx 1, 1) = 2 yy 1, 1) = 6 xy 1, 1) = ) Theore the expansion 2.150) is given by x, y) 1 + 2x 1) + 3y 1) + x 1) 2 + 3y 1) 2 + 6x 1)y 1) = 6 6x 9y + x 2 + 3y 2 + 6xy ) We can actually check how good this approximation is near the point 1, 1) by plotting the exact unction and the approximate unction 2.155): Figure 8: The unction x 2 y 3 a) and its Taylor approximation b). In the picture above you can see that near 1, 1) both unctions are very similar. Thereore the approximation 2.155) is quite good there. However i we go a bit ar rom 1, 1), or example the point 0, 0) both unctions are already very dierent. In act unction a) takes the value 0 at 0,0), whereas unction b) is 6 at the same point!. As we see rom the example, it is common to take only a ew terms o the Taylor expansion o a unction around a certain point. It is thereore convenient to have a ormula which tells us precisely the order o magnitude o the error we make when we take only n terms in the expansion 2.147). This ormula is the so-called Taylor expansion ormula with Lagrange s remainder and has the ollowing orm: 31

4 Deinition: Given a unction x, y) with Taylor expansion 2.147) we can write n ϕ k) x 0, y 0 ) where R n x, ỹ) is Lagrange s remainder or error term and is given by + R n x, ỹ), 2.156) R n x, ỹ) = ϕn+1) x, ỹ), 2.157) n + 1)! where x, ỹ) is a point such that x is a number between x and x 0 and ỹ is a number between y and y 0. Example: Estimate the value o the remainder o the Taylor expansion given in the previous example at the point 1.1, 0.9). In the previous example we considered the unction x 2 y 3 and carried out its Taylor expansion around the point 1, 1) up to 2nd-order terms. We obtained the result which means that x, y) 6 6x 9y + x 2 + 3y 2 + 6xy, 2.158) 1.1, 0.9) ) The problem is asking us what error we make when we approximate 1.1, 0.9) by the value 2.159). The answer to this question is given by computing the remainder o the Taylor expansion at the point 1.1, 0.9). According to our deinition o the remainder, we need to compute R 2 x, ỹ) = ϕ3) x, ỹ), 2.160) 3! where x, ỹ) is by deinition a point in between 1, 1) and 1.1, 0.9). We have also seen that ϕ 3) is given by ϕ 3) x, ỹ) = x x 0 ) x + y y 0) ) 3 x, y) y x,ỹ) = x x 0 ) 3 3 x 3 + y y 0) 3 3 y 3 + 3x x 0) 2 3 y y 0 ) x 2 y +3x x 0 )y y 0 ) 2 3 ) x y 2 x, y) x,ỹ) = x x 0 ) 3 xxx x, ỹ) + y y 0 ) 3 yyy x, ỹ) + 3x x 0 ) 2 y y 0 ) xxy x, ỹ) +3x x 0 )y y 0 ) 2 xyy x, ỹ) ) where we have used the act that the order o the derivatives does not matter i and its derivatives are continuous. This allows us to assume xxy = xyx = yxx and yyx = yxy = xyy. Notice that the coordinates o all three points x, y), x 0, y 0 ) and x, ỹ) are involved in the ormula! In order to evaluate the remainder we need to obtain all 3th order partial derivatives o the unction x 2 y 3. They are given by xxx x, ỹ) = 0, yxx x, ỹ) = 6ỹ 2, yyy x, ỹ) = 6 x 2, xyy x, ỹ) = 12 xỹ, 2.162) 32

5 Thus we obtain ϕ 3) x, ỹ) = 6y 1) 3 x ỹ 2 x 1) 2 y 1) + 36 xỹx 1)y 1) ) For x, y) = 1.1, 0.9) the remainder becomes, R 2 x, ỹ) = ϕ3) x, ỹ) 6 = 0.1) 3 x 2 + 3ỹ 2 0.1) 2 0.1) + 6 xỹ0.1) 0.1) ) As we said beore x, ỹ) is some point lying between 1, 1) and 1.1, 0.9), which means that 1 < x < 1.1 and 0.9 < ỹ < ) Let us or example take the middle point x = 1.05 and ỹ = 0.95 and substitute into the remainder, R , 0.95) = 0.1) ) ) 2 0.1) 2 0.1)+61.05)0.95)0.1) 0.1) 2 = ) we ind that the maximum error we make should be smaller than We can now check i this is true by computing the exact value o 1.1, 0.9) = 1.1) 2 0.9) 3 = , 2.167) and comparing it to 2.159). We ind that the dierence between the two values is which is indeed smaller than

Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function in x and y:

Consider the function f(x, y). Recall that we can approximate f(x, y) with a linear function in x and y: Taylor s Formula Consider the unction (x, y). Recall that we can approximate (x, y) with a linear unction in x and y: (x, y) (a, b)+ x (a, b)(x a)+ y (a, b)(y b) Notice that again this is just a linear

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Math 1314 Lesson 23 Partial Derivatives

Math 1314 Lesson 23 Partial Derivatives Math 1314 Lesson 3 Partial Derivatives When we are asked to ind the derivative o a unction o a single variable, (x), we know exactly what to do However, when we have a unction o two variables, there is

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7. Homework 8 Solutions, November 007. (1 We calculate some derivatives: f x = f y = x (x + y + 1 y (x + y + 1 x = (x + y + 1 4x (x + y + 1 4 y = (x + y + 1 4y (x + y + 1 4 x y = 4xy (x + y + 1 4 Substituting

More information

Curve Sketching. The process of curve sketching can be performed in the following steps:

Curve Sketching. The process of curve sketching can be performed in the following steps: Curve Sketching So ar you have learned how to ind st and nd derivatives o unctions and use these derivatives to determine where a unction is:. Increasing/decreasing. Relative extrema 3. Concavity 4. Points

More information

Physics 5153 Classical Mechanics. Solution by Quadrature-1

Physics 5153 Classical Mechanics. Solution by Quadrature-1 October 14, 003 11:47:49 1 Introduction Physics 5153 Classical Mechanics Solution by Quadrature In the previous lectures, we have reduced the number o eective degrees o reedom that are needed to solve

More information

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2.

Contents. 2 Partial Derivatives. 2.1 Limits and Continuity. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v. 2. Calculus III (part 2): Partial Derivatives (by Evan Dummit, 2017, v 260) Contents 2 Partial Derivatives 1 21 Limits and Continuity 1 22 Partial Derivatives 5 23 Directional Derivatives and the Gradient

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

! " k x 2k$1 # $ k x 2k. " # p $ 1! px! p " p 1 # !"#$%&'"()'*"+$",&-('./&-/. !"#$%&'()"*#%+!'",' -./#")'.,&'+.0#.1)2,'!%)2%! !"#$%&'"%(")*$+&#,*$,#

!  k x 2k$1 # $ k x 2k.  # p $ 1! px! p  p 1 # !#$%&'()'*+$,&-('./&-/. !#$%&'()*#%+!',' -./#)'.,&'+.0#.1)2,'!%)2%! !#$%&'%()*$+&#,*$,# "#$%&'()"*#%+'",' -./#")'.,&'+.0#.1)2,' %)2% "#$%&'"()'*"+$",&-('./&-/. Taylor Series o a unction at x a is " # a k " # " x a# k k0 k It is a Power Series centered at a. Maclaurin Series o a unction is

More information

Taylor Expansions in 2d

Taylor Expansions in 2d Taylor Expansions in 2 In your irst year Calculus course you evelope a amily o ormulae or approximating a unction F(t) or t near any ixe point t 0. The cruest approximation was just a constant. F(t 0 +

More information

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR

The Derivative. Appendix B. B.1 The Derivative of f. Mappings from IR to IR Appendix B The Derivative B.1 The Derivative of f In this chapter, we give a short summary of the derivative. Specifically, we want to compare/contrast how the derivative appears for functions whose domain

More information

Lecture 8 Optimization

Lecture 8 Optimization 4/9/015 Lecture 8 Optimization EE 4386/5301 Computational Methods in EE Spring 015 Optimization 1 Outline Introduction 1D Optimization Parabolic interpolation Golden section search Newton s method Multidimensional

More information

100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX

100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX 100 CHAPTER 4. SYSTEMS AND ADAPTIVE STEP SIZE METHODS APPENDIX.1 Norms If we have an approximate solution at a given point and we want to calculate the absolute error, then we simply take the magnitude

More information

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction

2. ETA EVALUATIONS USING WEBER FUNCTIONS. Introduction . ETA EVALUATIONS USING WEBER FUNCTIONS Introduction So ar we have seen some o the methods or providing eta evaluations that appear in the literature and we have seen some o the interesting properties

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

8.4 Inverse Functions

8.4 Inverse Functions Section 8. Inverse Functions 803 8. Inverse Functions As we saw in the last section, in order to solve application problems involving eponential unctions, we will need to be able to solve eponential equations

More information

Dr. Allen Back. Oct. 6, 2014

Dr. Allen Back. Oct. 6, 2014 Dr. Allen Back Oct. 6, 2014 Distribution Min=48 Max=100 Q1=74 Median=83 Q3=91.5 mean = 81.48 std. dev. = 12.5 Distribution Distribution: (The letters will not be directly used.) Scores Freq. 100 2 98-99

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Class 8 Multiplication of Polynomials

Class 8 Multiplication of Polynomials ID : in-8-multiplication-of-polynomials [1] Class 8 Multiplication of Polynomials For more such worksheets visit www.edugain.com Answer t he quest ions (1) If (2pq + 2p) ( -2pq + 2p + 2) = ( -4p 2 q 2

More information

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs

Fluctuationlessness Theorem and its Application to Boundary Value Problems of ODEs Fluctuationlessness Theorem and its Application to Boundary Value Problems o ODEs NEJLA ALTAY İstanbul Technical University Inormatics Institute Maslak, 34469, İstanbul TÜRKİYE TURKEY) nejla@be.itu.edu.tr

More information

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite CHAPTER 9 Exponential and Logarithmic Functions 9. The Algebra o Functions; Composite Functions 9.2 Inverse Functions 9.3 Exponential Functions 9.4 Exponential Growth and Decay Functions 9.5 Logarithmic

More information

Objectives. By the time the student is finished with this section of the workbook, he/she should be able

Objectives. By the time the student is finished with this section of the workbook, he/she should be able FUNCTIONS Quadratic Functions......8 Absolute Value Functions.....48 Translations o Functions..57 Radical Functions...61 Eponential Functions...7 Logarithmic Functions......8 Cubic Functions......91 Piece-Wise

More information

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values

Supplementary material for Continuous-action planning for discounted infinite-horizon nonlinear optimal control with Lipschitz values Supplementary material or Continuous-action planning or discounted ininite-horizon nonlinear optimal control with Lipschitz values List o main notations x, X, u, U state, state space, action, action space,

More information

Simpler Functions for Decompositions

Simpler Functions for Decompositions Simpler Functions or Decompositions Bernd Steinbach Freiberg University o Mining and Technology, Institute o Computer Science, D-09596 Freiberg, Germany Abstract. This paper deals with the synthesis o

More information

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any

A DARK GREY P O N T, with a Switch Tail, and a small Star on the Forehead. Any Y Y Y X X «/ YY Y Y ««Y x ) & \ & & } # Y \#$& / Y Y X» \\ / X X X x & Y Y X «q «z \x» = q Y # % \ & [ & Z \ & { + % ) / / «q zy» / & / / / & x x X / % % ) Y x X Y $ Z % Y Y x x } / % «] «] # z» & Y X»

More information

1 Partial differentiation and the chain rule

1 Partial differentiation and the chain rule 1 Partial differentiation and the chain rule In this section we review and discuss certain notations and relations involving partial derivatives. The more general case can be illustrated by considering

More information

Higher order derivative

Higher order derivative 2 Î 3 á Higher order derivative Î 1 Å Iterated partial derivative Iterated partial derivative Suppose f has f/ x, f/ y and ( f ) = 2 f x x x 2 ( f ) = 2 f x y x y ( f ) = 2 f y x y x ( f ) = 2 f y y y

More information

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations

Telescoping Decomposition Method for Solving First Order Nonlinear Differential Equations Telescoping Decomposition Method or Solving First Order Nonlinear Dierential Equations 1 Mohammed Al-Reai 2 Maysem Abu-Dalu 3 Ahmed Al-Rawashdeh Abstract The Telescoping Decomposition Method TDM is a new

More information

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor.

Lab on Taylor Polynomials. This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. Lab on Taylor Polynomials This Lab is accompanied by an Answer Sheet that you are to complete and turn in to your instructor. In this Lab we will approimate complicated unctions by simple unctions. The

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

Part I: Thin Converging Lens

Part I: Thin Converging Lens Laboratory 1 PHY431 Fall 011 Part I: Thin Converging Lens This eperiment is a classic eercise in geometric optics. The goal is to measure the radius o curvature and ocal length o a single converging lens

More information

OWELL WEEKLY JOURNAL

OWELL WEEKLY JOURNAL Y \»< - } Y Y Y & #»»» q ] q»»»>) & - - - } ) x ( - { Y» & ( x - (» & )< - Y X - & Q Q» 3 - x Q Y 6 \Y > Y Y X 3 3-9 33 x - - / - -»- --

More information

9.1 The Square Root Function

9.1 The Square Root Function Section 9.1 The Square Root Function 869 9.1 The Square Root Function In this section we turn our attention to the square root unction, the unction deined b the equation () =. (1) We begin the section

More information

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy)

Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Module Two: Differential Calculus(continued) synopsis of results and problems (student copy) Srikanth K S 1 Syllabus Taylor s and Maclaurin s theorems for function of one variable(statement only)- problems.

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective

Numerical Solution of Ordinary Differential Equations in Fluctuationlessness Theorem Perspective Numerical Solution o Ordinary Dierential Equations in Fluctuationlessness Theorem Perspective NEJLA ALTAY Bahçeşehir University Faculty o Arts and Sciences Beşiktaş, İstanbul TÜRKİYE TURKEY METİN DEMİRALP

More information

3.5 Graphs of Rational Functions

3.5 Graphs of Rational Functions Math 30 www.timetodare.com Eample Graph the reciprocal unction ( ) 3.5 Graphs o Rational Functions Answer the ollowing questions: a) What is the domain o the unction? b) What is the range o the unction?

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS

RESOLUTION MSC.362(92) (Adopted on 14 June 2013) REVISED RECOMMENDATION ON A STANDARD METHOD FOR EVALUATING CROSS-FLOODING ARRANGEMENTS (Adopted on 4 June 203) (Adopted on 4 June 203) ANNEX 8 (Adopted on 4 June 203) MSC 92/26/Add. Annex 8, page THE MARITIME SAFETY COMMITTEE, RECALLING Article 28(b) o the Convention on the International

More information

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018

Physics 2B Chapter 17 Notes - First Law of Thermo Spring 2018 Internal Energy o a Gas Work Done by a Gas Special Processes The First Law o Thermodynamics p Diagrams The First Law o Thermodynamics is all about the energy o a gas: how much energy does the gas possess,

More information

Math 253 Homework due Wednesday, March 9 SOLUTIONS

Math 253 Homework due Wednesday, March 9 SOLUTIONS Math 53 Homework due Wednesday, March 9 SOLUTIONS 1. Do Section 8.8, problems 11,, 15, 17 (these problems have to do with Taylor s Inequality, and they are very similar to what we did on the last homework.

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to

Section 14.8 Maxima & minima of functions of two variables. Learning outcomes. After completing this section, you will inshaallah be able to Section 14.8 Maxima & minima of functions of two variables 14.8 1 Learning outcomes After completing this section, you will inshaallah be able to 1. explain what is meant by relative maxima or relative

More information

Thu June 16 Lecture Notes: Lattice Exercises I

Thu June 16 Lecture Notes: Lattice Exercises I Thu June 6 ecture Notes: attice Exercises I T. Satogata: June USPAS Accelerator Physics Most o these notes ollow the treatment in the class text, Conte and MacKay, Chapter 6 on attice Exercises. The portions

More information

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context.

. This is the Basic Chain Rule. x dt y dt z dt Chain Rule in this context. Math 18.0A Gradients, Chain Rule, Implicit Dierentiation, igher Order Derivatives These notes ocus on our things: (a) the application o gradients to ind normal vectors to curves suraces; (b) the generaliation

More information

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017 LESSON : EXTREMA OF FUNCTIONS OF VARIABLES OCTOBER 5, 017 Just like with functions of a single variable, we want to find the minima (plural of minimum) and maxima (plural of maximum) of functions of several

More information

Lecture : Feedback Linearization

Lecture : Feedback Linearization ecture : Feedbac inearization Niola Misovic, dipl ing and Pro Zoran Vuic June 29 Summary: This document ollows the lectures on eedbac linearization tought at the University o Zagreb, Faculty o Electrical

More information

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form

1. A polynomial p(x) in one variable x is an algebraic expression in x of the form POLYNOMIALS Important Points 1. A polynomial p(x) in one variable x is an algebraic expression in x of the form p(x) = a nx n +a n-1x n-1 + a 2x 2 +a 1x 1 +a 0x 0 where a 0, a 1, a 2 a n are constants

More information

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima

Calculus 2502A - Advanced Calculus I Fall : Local minima and maxima Calculus 50A - Advanced Calculus I Fall 014 14.7: Local minima and maxima Martin Frankland November 17, 014 In these notes, we discuss the problem of finding the local minima and maxima of a function.

More information

1. Definition: Order Statistics of a sample.

1. Definition: Order Statistics of a sample. AMS570 Order Statistics 1. Deinition: Order Statistics o a sample. Let X1, X2,, be a random sample rom a population with p.d.. (x). Then, 2. p.d.. s or W.L.O.G.(W thout Loss o Ge er l ty), let s ssu e

More information

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7

Maxima and Minima. Marius Ionescu. November 5, Marius Ionescu () Maxima and Minima November 5, / 7 Maxima and Minima Marius Ionescu November 5, 2012 Marius Ionescu () Maxima and Minima November 5, 2012 1 / 7 Second Derivative Test Fact Suppose the second partial derivatives of f are continuous on a

More information

3. Several Random Variables

3. Several Random Variables . Several Random Variables. Two Random Variables. Conditional Probabilit--Revisited. Statistical Independence.4 Correlation between Random Variables. Densit unction o the Sum o Two Random Variables. Probabilit

More information

THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS

THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS THE CAUCHY PROBLEM VIA THE METHOD OF CHARACTERISTICS ARICK SHAO In this short note, we solve the Cauchy, or initial value, problem or general ully nonlinear irst-order PDE. Throughout, our PDE will be

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into

m f f unchanged under the field redefinition (1), the complex mass matrix m should transform into PHY 396 T: SUSY Solutions or problem set #8. Problem (a): To keep the net quark mass term L QCD L mass = ψ α c m ψ c α + hermitian conjugate (S.) unchanged under the ield redeinition (), the complex mass

More information

COMPOSITE AND INVERSE FUNCTIONS & PIECEWISE FUNCTIONS

COMPOSITE AND INVERSE FUNCTIONS & PIECEWISE FUNCTIONS Functions Modeling Change: A Preparation or Calculus, 4th Edition, 2011, Connally 2.4 COMPOSITE AND INVERSE FUNCTIONS & PIECEWISE FUNCTIONS Functions Modeling Change: A Preparation or Calculus, 4th Edition,

More information

3 Applications of partial differentiation

3 Applications of partial differentiation Advanced Calculus Chapter 3 Applications of partial differentiation 37 3 Applications of partial differentiation 3.1 Stationary points Higher derivatives Let U R 2 and f : U R. The partial derivatives

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions

CS220/MATH320 Applied Discrete Math Fall 2018 Instructor: Marc Pomplun. Assignment #3. Sample Solutions CS22/MATH2 Applied Discrete Math Fall 28 Instructor: Marc Pomplun Assignment # Sample Solutions Question : The Boston Powerlower Botanists at UMass Boston recently discovered a new local lower species

More information

LECTURE 11 - PARTIAL DIFFERENTIATION

LECTURE 11 - PARTIAL DIFFERENTIATION LECTURE 11 - PARTIAL DIFFERENTIATION CHRIS JOHNSON Abstract Partial differentiation is a natural generalization of the differentiation of a function of a single variable that you are familiar with 1 Introduction

More information

ENERGY ANALYSIS: CLOSED SYSTEM

ENERGY ANALYSIS: CLOSED SYSTEM ENERGY ANALYSIS: CLOSED SYSTEM A closed system can exchange energy with its surroundings through heat and work transer. In other words, work and heat are the orms that energy can be transerred across the

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 10. Joint Moments and Joint Characteristic Functions Following section 6, in this section we shall introduce various parameters to compactly represent the inormation contained in the joint p.d. o two r.vs.

More information

A Fourier Transform Model in Excel #1

A Fourier Transform Model in Excel #1 A Fourier Transorm Model in Ecel # -This is a tutorial about the implementation o a Fourier transorm in Ecel. This irst part goes over adjustments in the general Fourier transorm ormula to be applicable

More information

The Ascent Trajectory Optimization of Two-Stage-To-Orbit Aerospace Plane Based on Pseudospectral Method

The Ascent Trajectory Optimization of Two-Stage-To-Orbit Aerospace Plane Based on Pseudospectral Method Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (014) 000 000 www.elsevier.com/locate/procedia APISAT014, 014 Asia-Paciic International Symposium on Aerospace Technology,

More information

13. LECTURE 13. Objectives

13. LECTURE 13. Objectives 13. LECTURE 13 Objectives I can use Clairaut s Theorem to make my calculations easier. I can take higher derivatives. I can check if a function is a solution to a partial differential equation. Higher

More information

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods

Numerical Methods - Lecture 2. Numerical Methods. Lecture 2. Analysis of errors in numerical methods Numerical Methods - Lecture 1 Numerical Methods Lecture. Analysis o errors in numerical methods Numerical Methods - Lecture Why represent numbers in loating point ormat? Eample 1. How a number 56.78 can

More information

Math 192r, Problem Set #3: Solutions

Math 192r, Problem Set #3: Solutions Math 192r Problem Set #3: Solutions 1. Let F n be the nth Fibonacci number as Wilf indexes them (with F 0 F 1 1 F 2 2 etc.). Give a simple homogeneous linear recurrence relation satisfied by the sequence

More information

VALUATIVE CRITERIA BRIAN OSSERMAN

VALUATIVE CRITERIA BRIAN OSSERMAN VALUATIVE CRITERIA BRIAN OSSERMAN Intuitively, one can think o separatedness as (a relative version o) uniqueness o limits, and properness as (a relative version o) existence o (unique) limits. It is not

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017

Received: 30 July 2017; Accepted: 29 September 2017; Published: 8 October 2017 mathematics Article Least-Squares Solution o Linear Dierential Equations Daniele Mortari ID Aerospace Engineering, Texas A&M University, College Station, TX 77843, USA; mortari@tamu.edu; Tel.: +1-979-845-734

More information

IMP 2007 Introductory math course. 5. Optimization. Antonio Farfán Vallespín

IMP 2007 Introductory math course. 5. Optimization. Antonio Farfán Vallespín IMP 007 Introductory math course 5. Optimization Antonio Farán Vallespín Toniaran@hotmail.com Derivatives Why are derivatives so important in economics? Derivatives inorm us o the eect o changes o the

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Name : Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and can e printed and given to the instructor

More information

The Deutsch-Jozsa Problem: De-quantization and entanglement

The Deutsch-Jozsa Problem: De-quantization and entanglement The Deutsch-Jozsa Problem: De-quantization and entanglement Alastair A. Abbott Department o Computer Science University o Auckland, New Zealand May 31, 009 Abstract The Deustch-Jozsa problem is one o the

More information

Feedback Linearization

Feedback Linearization Feedback Linearization Peter Al Hokayem and Eduardo Gallestey May 14, 2015 1 Introduction Consider a class o single-input-single-output (SISO) nonlinear systems o the orm ẋ = (x) + g(x)u (1) y = h(x) (2)

More information

Physics 742, Standard Model: Homework #8 Solution

Physics 742, Standard Model: Homework #8 Solution Physics 74, Standard Model: Homework #8 Solution Quark masses The isospin-violating ratio o quark masses is given as, Using Eq. (8.63) in the textbook, m u r m d. () m d + m u m =(m ± u + m d ) c, () m

More information

CISE-301: Numerical Methods Topic 1:

CISE-301: Numerical Methods Topic 1: CISE-3: Numerical Methods Topic : Introduction to Numerical Methods and Taylor Series Lectures -4: KFUPM Term 9 Section 8 CISE3_Topic KFUPM - T9 - Section 8 Lecture Introduction to Numerical Methods What

More information

STAT 801: Mathematical Statistics. Hypothesis Testing

STAT 801: Mathematical Statistics. Hypothesis Testing STAT 801: Mathematical Statistics Hypothesis Testing Hypothesis testing: a statistical problem where you must choose, on the basis o data X, between two alternatives. We ormalize this as the problem o

More information

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance

Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance Wind-Driven Circulation: Stommel s gyre & Sverdrup s balance We begin by returning to our system o equations or low o a layer o uniorm density on a rotating earth. du dv h + [ u( H + h)] + [ v( H t y d

More information

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS

VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS VALUATIVE CRITERIA FOR SEPARATED AND PROPER MORPHISMS BRIAN OSSERMAN Recall that or prevarieties, we had criteria or being a variety or or being complete in terms o existence and uniqueness o limits, where

More information

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1.

TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall TLT-5200/5206 COMMUNICATION THEORY, Exercise 3, Fall Problem 1. TLT-5/56 COMMUNICATION THEORY, Exercise 3, Fall Problem. The "random walk" was modelled as a random sequence [ n] where W[i] are binary i.i.d. random variables with P[W[i] = s] = p (orward step with probability

More information

Grade 10 Arithmetic Progressions

Grade 10 Arithmetic Progressions ID : us-0-arithmetic-progressions [] Grade 0 Arithmetic Progressions For more such worksheets visit www.edugain.com Answer t he quest ions () The sum of f irst 9 terms of an arithmetic progression is -234

More information

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES

Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES Demonstration of the Coupled Evolution Rules 163 APPENDIX F: DEMONSTRATION OF THE COUPLED EVOLUTION RULES Before going into the demonstration we need to point out two limitations: a. It assumes I=1/2 for

More information

Optimal Control. with. Aerospace Applications. James M. Longuski. Jose J. Guzman. John E. Prussing

Optimal Control. with. Aerospace Applications. James M. Longuski. Jose J. Guzman. John E. Prussing Optimal Control with Aerospace Applications by James M. Longuski Jose J. Guzman John E. Prussing Published jointly by Microcosm Press and Springer 2014 Copyright Springer Science+Business Media New York

More information

CHAPTER 5: PROBABILITY, COMBINATIONS & PERMUTATIONS

CHAPTER 5: PROBABILITY, COMBINATIONS & PERMUTATIONS Roger Nix (Queen Mary, University of London) - 5.1 CHAPTER 5: PROBABILITY, COMBINATIONS & PERMUTATIONS Probability If an event can occur in n ways (i.e. there are n possible outcomes) and a particular

More information

Christoffel symbols and Gauss Theorema Egregium

Christoffel symbols and Gauss Theorema Egregium Durham University Pavel Tumarkin Epiphany 207 Dierential Geometry III, Solutions 5 (Week 5 Christoel symbols and Gauss Theorema Egregium 5.. Show that the Gauss curvature K o the surace o revolution locally

More information

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp Computer Derivations o Numerical Dierentiation Formulae By Jon H. Matews Department o Matematics Caliornia State University Fullerton USA Int. J. o Mat. Education in Sci. and Tec. V No (Marc-April ) pp.8-87.

More information

( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ.

( ) R kj. = y k y j. y A ( ) z A. y a. z a. Derivatives of the second order electrostatic tensor with respect to the translation of ( ) δ yβ. Supporting information Derivatives of R with respect to the translation of fragment along the y and z axis: y = y k y j (S1) z ( = z z k j) (S2) Derivatives of S with respect to the translation of fragment

More information

Mathematical Notation Math Calculus & Analytic Geometry III

Mathematical Notation Math Calculus & Analytic Geometry III Mathematical Notation Math 221 - alculus & Analytic Geometry III Use Word or WordPerect to recreate the ollowing documents. Each article is worth 10 points and should be emailed to the instructor at james@richland.edu.

More information

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai

Maximum Flow. Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Maximum Flow Reading: CLRS Chapter 26. CSE 6331 Algorithms Steve Lai Flow Network A low network G ( V, E) is a directed graph with a source node sv, a sink node tv, a capacity unction c. Each edge ( u,

More information

Partial Derivatives. w = f(x, y, z).

Partial Derivatives. w = f(x, y, z). Partial Derivatives 1 Functions of Several Variables So far we have focused our attention of functions of one variable. These functions model situations in which a variable depends on another independent

More information

CLASS NOTES MATH 527 (SPRING 2011) WEEK 6

CLASS NOTES MATH 527 (SPRING 2011) WEEK 6 CLASS NOTES MATH 527 (SPRING 2011) WEEK 6 BERTRAND GUILLOU 1. Mon, Feb. 21 Note that since we have C() = X A C (A) and the inclusion A C (A) at time 0 is a coibration, it ollows that the pushout map i

More information

CS 361 Meeting 28 11/14/18

CS 361 Meeting 28 11/14/18 CS 361 Meeting 28 11/14/18 Announcements 1. Homework 9 due Friday Computation Histories 1. Some very interesting proos o undecidability rely on the technique o constructing a language that describes the

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 2. Equation Formulation Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simulation - Lecture Equation Formulation Methods Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Formulating Equations rom Schematics Struts and Joints

More information

Image Enhancement (Spatial Filtering 2)

Image Enhancement (Spatial Filtering 2) Image Enhancement (Spatial Filtering ) Dr. Samir H. Abdul-Jauwad Electrical Engineering Department College o Engineering Sciences King Fahd University o Petroleum & Minerals Dhahran Saudi Arabia samara@kupm.edu.sa

More information