MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1

Size: px
Start display at page:

Download "MEAN VALUE THEOREM. Section 3.2 Calculus AP/Dual, Revised /30/2018 1:16 AM 3.2: Mean Value Theorem 1"

Transcription

1 MEAN VALUE THEOREM Section 3. Calculus AP/Dual, Revised 017 7/30/018 1:16 AM 3.: Mean Value Theorem 1

2 ACTIVITY A. Draw a curve (x) on a separate sheet o paper within a deined closed interval a, b B. Make sure the graph is continuous and dierentiable C. Pick two points on the curve and connect them with a straight edge through a secant line D. Then, pick a point that will have the same slope line 7/30/018 1:16 AM 3.: Mean Value Theorem

3 MEAN VALUE THEOREM c ' c b b a a x ' c b a [ a c ] b 7/30/018 1:16 AM 3.: Mean Value Theorem 3

4 DETERMINE WHERE THE SAME SLOPE EXISTS Given these graphs, determine where the same slope exists rom the points a to b. 0 a C1 C b 0 a C b 7/30/018 1:16 AM 3.: Mean Value Theorem 4

5 DETERMINE WHERE THE SAME SLOPE EXISTS Given these graphs, determine where the same slope exists rom the points a to b. 0 a C1 C b 0 a C b 7/30/018 1:16 AM 3.: Mean Value Theorem 5

6 MEAN VALUE THEOREM A. Mean Value Theorem states that i x is deined and continuous on the interval a, b and dierentiable on a, b, then there is at least one number c in the interval a, b (that is a < c < b). 7/30/018 1:16 AM 3.: Mean Value Theorem 6

7 MEAN VALUE THEOREM EQUATION b a ' c b a b a A. Equation: c = b a B. I is continuous on the closed interval a, b C. I is dierentiable on the open interval a, b then there exists a number c in a, b such that c is instantaneous rate o change D. b a b a is average rate o change E. c is the slope o tangent line F. b a b a is the slope o the secant line 7/30/018 1:16 AM 3.: Mean Value Theorem 7

8 MEAN VALUE THEOREM EQUATION b a ' c b a Slope o Tangent Line Slope o Secant Line Instantaneous ROC Average ROC 7/30/018 1:16 AM 3.: Mean Value Theorem 8

9 MEAN VALUE THEOREM (c, (c)) Tangent line Secant line b, b a, a 7/30/018 1:16 AM 3.: Mean Value Theorem 9

10 COP STORY Video Start at 1:1 to 3:7 7/30/018 1:16 AM 3.: Mean Value Theorem 10

11 STEPS OF MEAN VALUE THEOREM A. Prove that the unctions are continuous and dierentiable b a B. Identiy what is given and apply the slope equation, c = b a C. Take the derivative o the original unction and equal it to the slope D. Identiy c E. Special Case: Rolle s Theorem 1. c = 0. There must be at least one x-value between a and b at which the graph o has a horizontal tangent 7/30/018 1:16 AM 3.: Mean Value Theorem 11

12 EXAMPLE 1 Given the unction x = x x x on the interval 1, 1. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. x x x x 3 1 x x x x is MVT Applies 3 Continuous and Dierentiable 3 1 x x x 7/30/018 1:16 AM 3.: Mean Value Theorem

13 EXAMPLE 1 Given the unction x = x x x on the interval 1, 1. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. c c c c Slope o Tangent Line c c c c 3 ' c 3c c 3 Slope o Secant Line /30/018 1:16 AM 3.: Mean Value Theorem

14 EXAMPLE 1 Given the unction x = x x x on the interval 1, 1. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. Slope o Tangent Line ' c 3c c 3c c 1 3c c 1 0 Slope o Secant Line 0 1 TS : 3, TP : 3c 3c 1c 1 0 c 3c c /30/018 1:16 AM 3.: Mean Value Theorem 14

15 EXAMPLE 1 Given the unction x = x x x on the interval 1, 1. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. 3c c 1 1 c 1 0 3c1 c1 0 c 1, c 1 3 Is x continuous between 1,1? Is x dierentiable between 1,1? x Since is continuous on 1,1 and dierentiable on 1,1, 1 the Mean Value Theorem exists or which there is one value o c 3 7/30/018 1:16 AM 3.: Mean Value Theorem 15 YES YES

16 EXAMPLE Given the unction x = x x 6 on the interval, 3. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. x x x 3 0 7/30/018 1:16 AM 3.: Mean Value Theorem 16 6 Continuous and Dierentiable ' c MVT applies b b a a 0 3 0

17 EXAMPLE Given the unction x = x x 6 on the interval, 3. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. c 1 ' c c 1 b a 7/30/018 1:16 AM 3.: Mean Value Theorem 17 b a c

18 EXAMPLE Given the unction x = x x 6 on the interval, 3. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. c 1 0 c Is x continuous between,3? Is x dierentiable between,3? 7/30/018 1:16 AM 3.: Mean Value Theorem 18 1 YES YES x Since is continuous on,3 and dierentiable on,3, the Mean Value Theorem exists or which there is one value o c 1

19 EXAMPLE Given the unction x = x x 6 on the interval, 3. Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. x Since is continuous on,3 and dierentiable on,3, 1 the Mean Value Theorem exists or which there is one value o c 7/30/018 1:16 AM 3.: Mean Value Theorem 19

20 EXAMPLE 3 Given the unction x = 6 on the interval, 3. Show that the x Mean Value Theorem applies and ind the c that the theorem guarantees. 6 x x /30/018 1:16 AM 3.: Mean Value Theorem 0

21 EXAMPLE 3 Given the unction x = 6 on the interval, 3. Show that the x Mean Value Theorem applies and ind the c that the theorem guarantees Since x is not continuous on,3 and not dierentiable on,3, thereore the Mean Value Theorem does not exist. 7/30/018 1:16 AM 3.: Mean Value Theorem 1

22 YOUR TURN Given the unction x = 3 5 x on the interval 1, 5. (a) The graph o (x) is given. Estimate the point c where the MVT applies. (b) Show that the Mean Value Theorem applies and ind the c that the theorem guarantees. 7/30/018 1:16 AM 3.: Mean Value Theorem

23 YOUR TURN A Given the unction x = 3 5 on the interval 1, 5. A) The graph o x (x) is given. Estimate the point c where the MVT applies. c, c 7/30/018 1:16 AM 3.: Mean Value Theorem 3

24 YOUR TURN B Given the unction x = 3 5 on the interval 1, 5. B) Show that the x Mean Value Theorem applies and ind the c that the theorem guarantees ' c ' c Continuous and Dierentiable ' c 51 MVT Applies ' c /30/018 1:16 AM 3.: Mean Value Theorem 4

25 YOUR TURN B Given the unction x = 3 5 on the interval 1, 5. B) Show that the x Mean Value Theorem applies and ind the c that the theorem guarantees. x 35x 1 ' c 5x 5 ' c c 5 c 1 c 5 c 7/30/018 1:16 AM 3.: Mean Value Theorem 5 c 5 5 on I 1,5

26 YOUR TURN Given the unction x = 3 5 x on the interval 1, 5. ( 5, c ) 7/30/018 1:16 AM 3.: Mean Value Theorem 6

27 RECAP MEAN VALUE THEOREM EXTREME VALUE THEOREM INTERMEDIATE VALUE THEOREM Continuous Slope o the and Tangent Dierentiable; Line = Slope Slope o the o Tangent Secant Line = Slope o the Secant Line b a c = b a c = where a < c < b b a b a is continuous a closed interval; and a there closed is interval; an absolute there is a max (( (c) (x) )) and an a min ( absolute (c) (x) min () (c) (x) ) is continuous; c is between a and b, a b ; and c is between a and b where a < c < b 7/30/018 1:16 AM 3.: Mean Value Theorem 7

28 REVIEW CONDITIONS CONTINUOUS ON a, b CONTINUOUS ON a, b DIFFFERENTIABLE ON a, b THEOREMS EXTREME VALUE THEOREM (EVT) INTERMEDIATE VALUE THEOREM (IVT) MEAN VALUE THEOREM (MVT) 7/30/018 1:16 AM 3.: Mean Value Theorem 8

29 TO EARN FULL CREDIT USING MVT: A. The dierence quotient c = numbers will give you credit. b a b a and the plugging into the B. I the MVT exists, state so but also include continuous in a, b and dierentiable a, b with a and b deined. 7/30/018 1:16 AM 3.: Mean Value Theorem 9

30 AP MULTIPLE CHOICE PRACTICE QUESTION 1 (NON-CALCULATOR) Let be a unction that is dierentiable on the interval 1, 10. I = 5, 5 = 5 and 9 = 5, which o the ollowing must be true? I. has at least two zeros II. III. The graph o has at least one horizontal tangent line. For some c, < c < 5, c = 3. (A) I only. (B) I and III only. (C) II and III only. (D) I, II, and III. 7/30/018 1:16 AM 3.: Mean Value Theorem 30

31 AP MULTIPLE CHOICE PRACTICE QUESTION 1 (NON-CALCULATOR) Let be a unction that is dierentiable on the interval 1, 10. I = 5, 5 = 5 and 9 = 5, which o the ollowing must be true? I. has at least two zeros II. The graph o has at least one horizontal tangent line. III. For some c, < c < 5, c = 3. Vocabulary Connections and Process Answer and Justiications IVT MVT Continuous and Dierentiable is dierentiable and thereore Continuous. D I and III is the deinition o the IVT because is continuous. II is the deinition o MVT when is continuous 7/30/018 1:16 AM 3.: Mean Value Theorem 31 and dierentiable and ' c 0.

32 ASSIGNMENT Worksheet 7/30/018 1:16 AM 3.: Mean Value Theorem 3

Extreme Values of Functions

Extreme Values of Functions Extreme Values o Functions When we are using mathematics to model the physical world in which we live, we oten express observed physical quantities in terms o variables. Then, unctions are used to describe

More information

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values.

Example: When describing where a function is increasing, decreasing or constant we use the x- axis values. Business Calculus Lecture Notes (also Calculus With Applications or Business Math II) Chapter 3 Applications o Derivatives 31 Increasing and Decreasing Functions Inormal Deinition: A unction is increasing

More information

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A

0,0 B 5,0 C 0, 4 3,5. y x. Recitation Worksheet 1A. 1. Plot these points in the xy plane: A Math 13 Recitation Worksheet 1A 1 Plot these points in the y plane: A 0,0 B 5,0 C 0, 4 D 3,5 Without using a calculator, sketch a graph o each o these in the y plane: A y B 3 Consider the unction a Evaluate

More information

INTERMEDIATE VALUE THEOREM

INTERMEDIATE VALUE THEOREM INTERMEDIATE VALUE THEOREM Section 1.4B Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:9 AM 1.4B: Intermediate Value Theorem 1 DEFINITION OF CONTINUITY A function is continuous at the

More information

AVERAGE VALUE AND MEAN VALUE THEOREM

AVERAGE VALUE AND MEAN VALUE THEOREM AVERAGE VALUE AND MEAN VALUE THEOREM Section 4.4A Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 3:00 AM 4.4A: Average Value and Mean Value Theorem 1 MATERIALS NEEDED A. Grid Paper B. Compass

More information

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function

Review of Prerequisite Skills for Unit # 2 (Derivatives) U2L2: Sec.2.1 The Derivative Function UL1: Review o Prerequisite Skills or Unit # (Derivatives) Working with the properties o exponents Simpliying radical expressions Finding the slopes o parallel and perpendicular lines Simpliying rational

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems.

AP Calculus Notes: Unit 1 Limits & Continuity. Syllabus Objective: 1.1 The student will calculate limits using the basic limit theorems. Syllabus Objective:. The student will calculate its using the basic it theorems. LIMITS how the outputs o a unction behave as the inputs approach some value Finding a Limit Notation: The it as approaches

More information

INTERMEDIATE VALUE THEOREM

INTERMEDIATE VALUE THEOREM INTERMEDIATE VALUE THEOREM Section 1.4B Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:36 AM 1.4B: Intermediate Value Theorem 1 PROOF OF INTERMEDIATE VALUE THEOREM Can you prove that

More information

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1

PARTICLE MOTION. Section 3.7A Calculus BC AP/Dual, Revised /30/2018 1:20 AM 3.7A: Particle Motion 1 PARTICLE MOTION Section 3.7A Calculus BC AP/Dual, Revised 2017 viet.dang@humbleisd.net 7/30/2018 1:20 AM 3.7A: Particle Motion 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest v t = 0 At

More information

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function.

Section 3.4: Concavity and the second Derivative Test. Find any points of inflection of the graph of a function. Unit 3: Applications o Dierentiation Section 3.4: Concavity and the second Derivative Test Determine intervals on which a unction is concave upward or concave downward. Find any points o inlection o the

More information

Student Study Session. Theorems

Student Study Session. Theorems Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Name Formal Statement Restatement

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 1. Extreme points Roberto s Notes on Dierential Calculus Chapter 8: Graphical analysis Section 1 Extreme points What you need to know already: How to solve basic algebraic and trigonometric equations. All basic techniques

More information

Section 4.2: The Mean Value Theorem

Section 4.2: The Mean Value Theorem Section 4.2: The Mean Value Theorem Before we continue with the problem of describing graphs using calculus we shall briefly pause to examine some interesting applications of the derivative. In previous

More information

PARTICLE MOTION: DAY 2

PARTICLE MOTION: DAY 2 PARTICLE MOTION: DAY 2 Section 3.6A Calculus AP/Dual, Revised 2018 viet.dang@humbleisd.net 7/30/2018 1:24 AM 3.6A: Particle Motion Day 2 1 WHEN YOU SEE THINK When you see Think Initially t = 0 At rest

More information

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1)

Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) Curriculum Module: Calculus: Motion Worksheet 1. What You Need to Know About Motion Along the x-axis (Part 1) In discussing motion, there are three closely related concepts that you need to keep straight.

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Student Study Session Topic: Table Problems

Student Study Session Topic: Table Problems Student Notes Student Study Session Topic: Table Problems The AP Calculus exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information

More information

Lesson 59 Rolle s Theorem and the Mean Value Theorem

Lesson 59 Rolle s Theorem and the Mean Value Theorem Lesson 59 Rolle s Theorem and the Mean Value Theorem HL Math - Calculus After this lesson, you should be able to: Understand and use Rolle s Theorem Understand and use the Mean Value Theorem 1 Rolle s

More information

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question.

This is only a list of questions use a separate sheet to work out the problems. 1. (1.2 and 1.4) Use the given graph to answer each question. Mth Calculus Practice Eam Questions NOTE: These questions should not be taken as a complete list o possible problems. The are merel intended to be eamples o the diicult level o the regular eam questions.

More information

AP Calculus AB. Chapter IV Lesson B. Curve Sketching

AP Calculus AB. Chapter IV Lesson B. Curve Sketching AP Calculus AB Chapter IV Lesson B Curve Sketching local maxima Absolute maximum F I A B E G C J Absolute H K minimum D local minima Summary of trip along curve critical points occur where the derivative

More information

AP Calculus Worksheet: Chapter 2 Review Part I

AP Calculus Worksheet: Chapter 2 Review Part I AP Calculus Worksheet: Chapter 2 Review Part I 1. Given y = f(x), what is the average rate of change of f on the interval [a, b]? What is the graphical interpretation of your answer? 2. The derivative

More information

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0.

Infinite Limits. Infinite Limits. Infinite Limits. Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Infinite Limits Return to Table of Contents Infinite Limits Infinite Limits Previously, we discussed the limits of rational functions with the indeterminate form 0/0. Now we will consider rational functions

More information

INTRODUCTORY MATHEMATICAL ANALYSIS

INTRODUCTORY MATHEMATICAL ANALYSIS INTRODUCTORY MATHEMATICAL ANALYSIS For Business, Economics, and the Lie and Social Sciences Chapter 11 Dierentiation 011 Pearson Education, Inc. Chapter 11: Dierentiation Chapter Objectives To compute

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

AP Calculus Prep Session Handout. Table Problems

AP Calculus Prep Session Handout. Table Problems AP Calculus Prep Session Handout The AP Calculus Exams include multiple choice and free response questions in which the stem of the question includes a table of numerical information from which the students

More information

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION

( ) 4 and 20, find the value. v c is equal to this average CALCULUS WORKSHEET 1 ON PARTICLE MOTION CALCULUS WORKSHEET 1 ON PARTICLE MOTION Work these on notebook paper. Use your calculator only on part (f) of problems 1. Do not use your calculator on the other problems. Write your justifications in

More information

Differential Equaitons Equations

Differential Equaitons Equations Welcome to Multivariable Calculus / Dierential Equaitons Equations The Attached Packet is or all students who are planning to take Multibariable Multivariable Calculus/ Dierential Equations in the all.

More information

MATH CALCULUS I 4.1: Area and Distance

MATH CALCULUS I 4.1: Area and Distance MATH 12002 - CALCULUS I 4.1: Area and Distance Professor Donald L. White Department of Mathematical Sciences Kent State University D.L. White (Kent State University) 1 / 8 The Area and Distance Problems

More information

MAT137 Calculus! Lecture 5

MAT137 Calculus! Lecture 5 MAT137 Calculus! Lecture 5 Today: 2.5 The Pinching Theorem; 2.5 Trigonometric Limits. 2.6 Two Basic Theorems. 3.1 The Derivative Next: 3.2-3.6 DIfferentiation Rules Deadline to notify us if you have a

More information

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14

AP Calculus AB Ch. 2 Derivatives (Part I) Intro to Derivatives: Definition of the Derivative and the Tangent Line 9/15/14 AP Calculus AB Ch. Derivatives (Part I) Name Intro to Derivatives: Deinition o the Derivative an the Tangent Line 9/15/1 A linear unction has the same slope at all o its points, but non-linear equations

More information

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2

Math Worksheet 1 SHOW ALL OF YOUR WORK! f(x) = (x a) 2 + b. = x 2 + 6x + ( 6 2 )2 ( 6 2 )2 + 7 = (x 2 + 6x + 9) = (x + 3) 2 2 Names Date. Consider the function Math 0550 Worksheet SHOW ALL OF YOUR WORK! f() = + 6 + 7 (a) Complete the square and write the function in the form f() = ( a) + b. f() = + 6 + 7 = + 6 + ( 6 ) ( 6 ) +

More information

AP Calculus AB Chapter 1 Limits

AP Calculus AB Chapter 1 Limits AP Calculus AB Chapter Limits SY: 206 207 Mr. Kunihiro . Limits Numerical & Graphical Show all of your work on ANOTHER SHEET of FOLDER PAPER. In Exercises and 2, a stone is tossed vertically into the air

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

Basic mathematics of economic models. 3. Maximization

Basic mathematics of economic models. 3. Maximization John Riley 1 January 16 Basic mathematics o economic models 3 Maimization 31 Single variable maimization 1 3 Multi variable maimization 6 33 Concave unctions 9 34 Maimization with non-negativity constraints

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Deinition A unction has an absolute maimum (or global maimum) at c i ( c) ( ) or all in D, where D is the domain o. The number () c is called

More information

Consequences of Continuity and Differentiability

Consequences of Continuity and Differentiability Consequences of Continuity and Differentiability We have seen how continuity of functions is an important condition for evaluating limits. It is also an important conceptual tool for guaranteeing the existence

More information

Work the following on notebook paper. You may use your calculator to find

Work the following on notebook paper. You may use your calculator to find CALCULUS WORKSHEET ON 3.1 Work the following on notebook paper. You may use your calculator to find f values. 1. For each of the labeled points, state whether the function whose graph is shown has an absolute

More information

Theorems Solutions. Multiple Choice Solutions

Theorems Solutions. Multiple Choice Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

The concept of limit

The concept of limit Roberto s Notes on Dierential Calculus Chapter 1: Limits and continuity Section 1 The concept o limit What you need to know already: All basic concepts about unctions. What you can learn here: What limits

More information

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan,

What is on today. 1 Linear approximation. MA 123 (Calculus I) Lecture 17: November 2, 2017 Section A2. Professor Jennifer Balakrishnan, Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Linear approximation 1 1.1 Linear approximation and concavity....................... 2 1.2 Change in y....................................

More information

Section 2.9 The Mean Value Theorem

Section 2.9 The Mean Value Theorem 1 Section 2.9 The Mean Value Theorem Rolle s Theorem:( What goes up must come down theorem ) Suppose that f is continuous on the closed interval [a, b] f is differentiable on the open interval (a, b) f(a)

More information

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities

Math-3 Lesson 8-5. Unit 4 review: a) Compositions of functions. b) Linear combinations of functions. c) Inverse Functions. d) Quadratic Inequalities Math- Lesson 8-5 Unit 4 review: a) Compositions o unctions b) Linear combinations o unctions c) Inverse Functions d) Quadratic Inequalities e) Rational Inequalities 1. Is the ollowing relation a unction

More information

Theorems (IVT, EVT, and MVT)

Theorems (IVT, EVT, and MVT) Theorems (IVT, EVT, and MVT) Students should be able to apply and have a geometric understanding of the following: Intermediate Value Theorem Mean Value Theorem for derivatives Extreme Value Theorem Multiple

More information

Slopes and Rates of Change

Slopes and Rates of Change Slopes and Rates of Change If a particle is moving in a straight line at a constant velocity, then the graph of the function of distance versus time is as follows s s = f(t) t s s t t = average velocity

More information

Saturday X-tra X-Sheet: 8. Inverses and Functions

Saturday X-tra X-Sheet: 8. Inverses and Functions Saturda X-tra X-Sheet: 8 Inverses and Functions Ke Concepts In this session we will ocus on summarising what ou need to know about: How to ind an inverse. How to sketch the inverse o a graph. How to restrict

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 15 August 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday (this week): 11h20 12h30 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2

Math 131. Rolle s and Mean Value Theorems Larson Section 3.2 Math 3. Rolle s and Mean Value Theorems Larson Section 3. Many mathematicians refer to the Mean Value theorem as one of the if not the most important theorems in mathematics. Rolle s Theorem. Suppose f

More information

We would now like to turn our attention to a specific family of functions, the one to one functions.

We would now like to turn our attention to a specific family of functions, the one to one functions. 9.6 Inverse Functions We would now like to turn our attention to a speciic amily o unctions, the one to one unctions. Deinition: One to One unction ( a) (b A unction is called - i, or any a and b in the

More information

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem 0_00qd //0 0:50 AM Page 7 7 CHAPTER Applications o Dierentiation Section ROLLE S THEOREM French mathematician Michel Rolle irst published the theorem that bears his name in 9 Beore this time, however,

More information

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx

Final Exam Review Math Determine the derivative for each of the following: dy dx. dy dx. dy dx dy dx. dy dx dy dx. dy dx Final Eam Review Math. Determine the derivative or each o the ollowing: a. y 6 b. y sec c. y ln d. y e. y e. y sin sin g. y cos h. i. y e y log j. k. l. 6 y y cosh y sin m. y ln n. y tan o. y arctan e

More information

Asymptote. 2 Problems 2 Methods

Asymptote. 2 Problems 2 Methods Asymptote Problems Methods Problems Assume we have the ollowing transer unction which has a zero at =, a pole at = and a pole at =. We are going to look at two problems: problem is where >> and problem

More information

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions

9.3 Graphing Functions by Plotting Points, The Domain and Range of Functions 9. Graphing Functions by Plotting Points, The Domain and Range o Functions Now that we have a basic idea o what unctions are and how to deal with them, we would like to start talking about the graph o

More information

( x) f = where P and Q are polynomials.

( x) f = where P and Q are polynomials. 9.8 Graphing Rational Functions Lets begin with a deinition. Deinition: Rational Function A rational unction is a unction o the orm ( ) ( ) ( ) P where P and Q are polynomials. Q An eample o a simple rational

More information

Special types of Riemann sums

Special types of Riemann sums Roberto s Notes on Subject Chapter 4: Deinite integrals and the FTC Section 3 Special types o Riemann sums What you need to know already: What a Riemann sum is. What you can learn here: The key types o

More information

MATH section 2.3 Basic Differentiation Formulas Page 1 of 5

MATH section 2.3 Basic Differentiation Formulas Page 1 of 5 MATH 0100 section. Basic Dierentiation Formulas Page 1 o The tetbook is using Leibniz notation or this section. I ll continue to use this notation when we are using ormulas an rules. Notation: This means,

More information

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics

Mean Value Theorem. MATH 161 Calculus I. J. Robert Buchanan. Summer Department of Mathematics Mean Value Theorem MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Summer 2018 Background: Corollary to the Intermediate Value Theorem Corollary Suppose f is continuous on the closed interval

More information

Fact: All polynomial functions are continuous and differentiable everywhere.

Fact: All polynomial functions are continuous and differentiable everywhere. Dierentibility AP Clculus Denis Shublek ilernmth.net Dierentibility t Point Deinition: ( ) is dierentible t point We write: = i nd only i lim eists. '( ) lim = or '( ) lim h = ( ) ( ) h 0 h Emple: The

More information

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function.

Syllabus Objective: 2.9 The student will sketch the graph of a polynomial, radical, or rational function. Precalculus Notes: Unit Polynomial Functions Syllabus Objective:.9 The student will sketch the graph o a polynomial, radical, or rational unction. Polynomial Function: a unction that can be written in

More information

= first derivative evaluated at that point: ( )

= first derivative evaluated at that point: ( ) Calculus 130, section 5.1-5. Functions: Increasing, Decreasing, Extrema notes by Tim Pilachowski Reminder: You will not be able to use a graphing calculator on tests! First, a quick scan of what we know

More information

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation.

y2 = 0. Show that u = e2xsin(2y) satisfies Laplace's equation. Review 1 1) State the largest possible domain o deinition or the unction (, ) = 3 - ) Determine the largest set o points in the -plane on which (, ) = sin-1( - ) deines a continuous unction 3) Find the

More information

Chapter 2 Section 3. Partial Derivatives

Chapter 2 Section 3. Partial Derivatives Chapter Section 3 Partial Derivatives Deinition. Let be a unction o two variables and. The partial derivative o with respect to is the unction, denoted b D1 1 such that its value at an point (,) in the

More information

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere.

x 3x 1 if x 3 On problems 8 9, use the definition of continuity to find the values of k and/or m that will make the function continuous everywhere. CALCULUS AB WORKSHEET ON CONTINUITY AND INTERMEDIATE VALUE THEOREM Work the following on notebook paper. On problems 1 4, sketch the graph of a function f that satisfies the stated conditions. 1. f has

More information

IMPLICIT DIFFERENTIATION

IMPLICIT DIFFERENTIATION IMPLICIT DIFFERENTIATION Section.5 Calculus AP/Dual, Revised 017 viet.dang@humbleisd.net 7/30/018 1:47 AM.5: Implicit Differentiation 1 REVIEW Solve or d of 4 + 3 = 6 4 3 6 4 3 6 4 3 4 ' 3 3 7/30/018 1:47

More information

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d.

m2413f 4. Suppose that and . Find the following limit b. 10 c. 3 d Determine the limit (if it exists). 2. Find the lmit. a. 1 b. 0 c. d. m2413f Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find an equation of the line that passes through the point and has the slope. 4. Suppose that and

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

MAT01B1: the Mean Value Theorem

MAT01B1: the Mean Value Theorem MAT01B1: the Mean Value Theorem Dr Craig 21 August 2017 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 09h40 11h15 Friday (this week): 11h20 12h30 14h00 16h00 Office C-Ring 508

More information

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems.

10/9/10. The line x = a is a vertical asymptote of the graph of a function y = f(x) if either. Definitions and Theorems. Definitions and Theorems Introduction Unit 2 Limits and Continuity Definition - Vertical Asymptote Definition - Horizontal Asymptote Definition Continuity Unit 3 Derivatives Definition - Derivative Definition

More information

AP CALCULUS BC 2008 SCORING GUIDELINES

AP CALCULUS BC 2008 SCORING GUIDELINES AP CALCULUS BC 2008 SCORING GUIDELINES Question 4 A particle moves along the x-axis so that its velocity at time t, for 0 t 6, is given by a differentiable function v whose graph is shown above. The velocity

More information

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite

Exponential and Logarithmic. Functions CHAPTER The Algebra of Functions; Composite CHAPTER 9 Exponential and Logarithmic Functions 9. The Algebra o Functions; Composite Functions 9.2 Inverse Functions 9.3 Exponential Functions 9.4 Exponential Growth and Decay Functions 9.5 Logarithmic

More information

A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line.

A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line. The Mean Value Theorem 10-1-005 A secant line is a line drawn through two points on a curve. The Mean Value Theorem relates the slope of a secant line to the slope of a tangent line. The Mean Value Theorem.

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1

Math Worksheet 1. f(x) = (x a) 2 + b. = x 2 6x = (x 2 6x + 9) = (x 3) 2 1 Names Date Math 00 Worksheet. Consider the function f(x) = x 6x + 8 (a) Complete the square and write the function in the form f(x) = (x a) + b. f(x) = x 6x + 8 ( ) ( ) 6 6 = x 6x + + 8 = (x 6x + 9) 9

More information

Lecture 3 (Limits and Derivatives)

Lecture 3 (Limits and Derivatives) Lecture 3 (Limits and Derivatives) Continuity In the previous lecture we saw that very often the limit of a function as is just. When this is the case we say that is continuous at a. Definition: A function

More information

GENERAL TIPS WHEN TAKING THE AP CALC EXAM. Multiple Choice Portion

GENERAL TIPS WHEN TAKING THE AP CALC EXAM. Multiple Choice Portion GENERAL TIPS WHEN TAKING THE AP CALC EXAM. Multiple Choice Portion 1. You are hunting for apples, aka easy questions. Do not go in numerical order; that is a trap! 2. Do all Level 1s first. Then 2. Then

More information

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions

RATIONAL FUNCTIONS. Finding Asymptotes..347 The Domain Finding Intercepts Graphing Rational Functions RATIONAL FUNCTIONS Finding Asymptotes..347 The Domain....350 Finding Intercepts.....35 Graphing Rational Functions... 35 345 Objectives The ollowing is a list o objectives or this section o the workbook.

More information

Math 132 Mean Value Theorem Stewart 3.2

Math 132 Mean Value Theorem Stewart 3.2 Math 132 Mean Value Theorem Stewart 3.2 Vanishing derivatives. We will prove some basic theorems which relate the derivative of a function with the values of the function, culminating in the Uniqueness

More information

Review D: Potential Energy and the Conservation of Mechanical Energy

Review D: Potential Energy and the Conservation of Mechanical Energy MSSCHUSETTS INSTITUTE OF TECHNOLOGY Department o Physics 8. Spring 4 Review D: Potential Energy and the Conservation o Mechanical Energy D.1 Conservative and Non-conservative Force... D.1.1 Introduction...

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus. Worksheet Day All work must be shown in this course for full credit. Unsupported answers may receive NO credit.. The only way to guarantee the eistence of a it is to algebraically prove it.

More information

Calculus I Homework: The Tangent and Velocity Problems Page 1

Calculus I Homework: The Tangent and Velocity Problems Page 1 Calculus I Homework: The Tangent and Velocity Problems Page 1 Questions Example The point P (1, 1/2) lies on the curve y = x/(1 + x). a) If Q is the point (x, x/(1 + x)), use Mathematica to find the slope

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

Review for Chapter 2 Test

Review for Chapter 2 Test Review for Chapter 2 Test This test will cover Chapter (sections 2.1-2.7) Know how to do the following: Use a graph of a function to find the limit (as well as left and right hand limits) Use a calculator

More information

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables

ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Department o Electrical Engineering University o Arkansas ELEG 3143 Probability & Stochastic Process Ch. 4 Multiple Random Variables Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Two discrete random variables

More information

AP CALCULUS BC 2009 SCORING GUIDELINES

AP CALCULUS BC 2009 SCORING GUIDELINES AP CALCULUS BC 2009 SCORING GUIDELINES Question 5 x 2 5 8 1 f ( x ) 1 4 2 6 Let f be a function that is twice differentiable for all real numbers. The table above gives values of f for selected points

More information

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x)

Math 261 Calculus I. Test 1 Study Guide. Name. Decide whether the limit exists. If it exists, find its value. 1) lim x 1. f(x) 2) lim x -1/2 f(x) Math 261 Calculus I Test 1 Study Guide Name Decide whether the it exists. If it exists, find its value. 1) x 1 f(x) 2) x -1/2 f(x) Complete the table and use the result to find the indicated it. 3) If

More information

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis

z-axis SUBMITTED BY: Ms. Harjeet Kaur Associate Professor Department of Mathematics PGGCG 11, Chandigarh y-axis x-axis z-ais - - SUBMITTED BY: - -ais - - - - - - -ais Ms. Harjeet Kaur Associate Proessor Department o Mathematics PGGCG Chandigarh CONTENTS: Function o two variables: Deinition Domain Geometrical illustration

More information

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim

For a function f(x) and a number a in its domain, the derivative of f at a, denoted f (a), is: D(h) = lim Name: Section: Names of collaborators: Main Points: 1. Definition of derivative as limit of difference quotients 2. Interpretation of derivative as slope of graph 3. Interpretation of derivative as instantaneous

More information

When does the function assume this value?

When does the function assume this value? Calculus Write your questions and thoughts here! 9.3 Average Value Name: Recall: Average Rate of Change: Mean Value Theorem (MVT) for Derivatives: Notes Average Value of a Function: 1 1. Find the average

More information

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n

whose domain D is a set of n-tuples in is defined. The range of f is the set of all values f x1,..., x n Grade (MCV4UE) - AP Calculus Etended Page o A unction o n-variales is a real-valued unction... n whose domain D is a set o n-tuples... n in which... n is deined. The range o is the set o all values...

More information

The Mean Value Theorem Rolle s Theorem

The Mean Value Theorem Rolle s Theorem The Mean Value Theorem In this section, we will look at two more theorems that tell us about the way that derivatives affect the shapes of graphs: Rolle s Theorem and the Mean Value Theorem. Rolle s Theorem

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

means Name a function whose derivative is 2x. x 4, and so forth.

means Name a function whose derivative is 2x. x 4, and so forth. AP Slope Fields Worksheet Slope fields give us a great wa to visualize a famil of antiderivatives, solutions of differential equations. d Solving means Name a function whose derivative is. d Answers might

More information

=. Consider the following properties

=. Consider the following properties Name Date Period Worksheet 3.2 Rolle s Theorem and the MVT Show all work. No calculator unless otherwise stated. Multiple Choice 1. Determine if the function f ( x) = x 6 x satisfies the hypothesis of

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph.

If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Physics Lecture #2: Position Time Graphs If we plot the position of a moving object at increasing time intervals, we get a position time graph. This is sometimes called a distance time graph. Suppose a

More information