MODEL PAPER 2 PHYSICS. I PUC Time: 3 hours Max Marks: 70

Size: px
Start display at page:

Download "MODEL PAPER 2 PHYSICS. I PUC Time: 3 hours Max Marks: 70"

Transcription

1 MODEL PAPE PHYSICS I PUC Time: hour Ma Mark: 7 General Inrucion: i) All par are compulory. ii) Anwer wihou relean diagram / figure/ circui whereer neceary will no carry any mark. iii) Direc anwer o he numerical problem wihou deailed oluion will no carry any mark. PAT A I Anwer he following: X. The SI prefi for -5 i fermi. The epreion for cenripeal acceleraion in erm of angular elociy i a ω c r. kwh i equal o.6 6 J 4. Graiaional conan i defined a he force of aracion which ei beween wo uni mae eparaed by a uni diance. 5. The alue of abolue zero of emperaure i K or -7.5 C 6. Perfec black body i defined a he body which aborb all he radiaion inciden on i. 7. SI uni of pecific hea of a ubance i J kg - K - 8. The equaion for frequency of a fundamenal mode in open pipe i gien by f L Here, m L.m f 85 Hz. 9. λ 4m The diance beween a node and an aninode i gien by 4 λ Bu λ 4m 4 m 4. The paricle aain a minimum acceleraion a he mean poiion. PAT B II Anwer any FIE of he following: 5 X. Conider he equaion m mgh According o he principle of homogeneiy of dimenion, each erm of he phyical quaniy mu be of equal dimenion. LHS HS [ m] [ M ] [ m] [ M ] [ ] [ LT ] [ L T ] [ m ] [ MLT ] [ ML T ] [ ML T ] [ g] [ LT ] [ h] [ L] [ ] [ ] mgh ML T The gien equaion i found o be dimenionally correc.

2 .. (i) (ii). The acceleraion acing on a body eecuing circular moion i known a cenripeal acceleraion. (r ω) ac ac rω r r 4. A rigid body i aid o be under mechanical equnium when i ha no ranlaional and roaional moion. A rigid body i aid o be a no ranlaional moion when i linear elociy i zero or angular acceleraion i. Thi happen only when ecor um of all force acing on a body i zero. F A body i aid o be a no roaional moion only wen ecor um of all he orque acing on he body i zero. i.e., τ 5. i) Thermal radiaion do no require a maerial medium for propagaion and can rael in acuum alo ii) Thermal radiaion alway rael in raigh line. 6. Co-efficien of performance of a refrigeraor i defined a he raio of hea remoed from a low emperaure region o he work done in order o remoe hea. Q Mahemaically, β W Bu W Q Q Q β Q Q β Q Q Q β Q Q Q Q Q T β Bu Q Q T Q β T T β T T T T β T T 7. (i) The frequencie greaer han he fundamenal frequency are called oerone. (ii) The frequencie which are inegral muliple of fundamenal frequencie are known a harmonic. 8. I) elociy i maimum a mean poiion ii) I i minimum a ereme poiion.

3 PAT C III Anwer any FIE of he following: 5 X 5 9. Conider a paricle moing along a raigh line wih uniform elociy. Le be he diance coered by he paricle in a ime wih a elociy. elociy Then, graph of a paricle moing wih uniform elociy i a hown. Area below he cure AB area of recangle OABC A B OC OA ime O C (diplacemen). Conider an objec of ma m moing wih a elociy ''. Then, he linear momenum of he objec i p m le F be he force applied on he objec if dp i he mall change in momenum during a cerain ime d hen, ime rae of change of momenum dp d hen, according o he aemen of Newon nd law of moion, dp F d dp F k where k conan of proporionaliy d Bu p m d(m) F k d d F km d Bu d a d F k ma The alue of k depend upon he yem of uni in SI yem of uni. For he ake of impliciy k F ma. Time of fligh i defined a he ime aken by he projecile o reach a poin of he ame eleaion along i parabolic pah If a and d repreen ime of acen and ime of decen hen, a d f a + d f + f :...() Conider + a bu a - g in θ y in θ + ( g) inθ g g inθ inθ g Subiuing in he equaion () inθ g f

4 . Conider a body projeced from he earh urface wih a elociy equal o ecape elociy ( e) Then he body will neer reurn back o earh and eaily ecape from he graiaional field of he earh A infiniy, EK EP Applying law of coneraion of energy ( E + E ) ( E + E ) K P earh K P inf iniy GMm me + + GMm me m e GMm e GM GM e Bu g g e e e GM g g Thi i he epreion for ecape elociy of he body from he urface of he earh. Elaic colliion Inelaic colliion i) colliion in which linear momenum i) colliion in which linear momenum i and kineic energy are conered conered and i alway a lo of kineic energy. ii) elaic colliion rarely occur in ii) majoriy of he colliion are inelaic naure. colliion. E: colliion beween wo ub-aomic E: A mud ball ruck o he wall paricle. 4. Angular momenum of a paricle i defined a he momen of linear momenum of he paricle and i meaured a he cro produc of poiion ecor [ r ] and liner momenum of he paricle [ p] Conider a paricle of ma m roaing in a circular pah. Le [ r ] be he radiu ecor of he paricle. Then, angular momenum of he paricle i gien by L r p On differeniaion, dl d ( r p ) d d dl dr dp p + r d d d Bu, dr d Alo, dp F d dl p r F d + Bu, p m &

5 r F τ orque dl m +τ d dl ( ) m +τ d dl +τ d dl τ d 5. Sefan 4 h power law ae ha The oal radiaion E from a perfecly black body per econd per uni area i direcly proporional o he fourh power of i abolue emperaure. Mahemaically, E 4 T A E σt 4 A E σt 4 A where σ conan of proporionaliy called Sefan conan and i alue i Wm - K 4 6. The apparen change in frequency of ound due o he relaie moion beween ource of ound and he liener i called Doppler effec i) The ource and liener approach each oher + L f f ii) The liener moe away from he aionary ource f L f PAT D I Anwer any TWO of he following: X 5 7. elociy D B A E o o C ime Conider a paricle moing wih uniform acceleraion along a raigh line. Then he graph of he paricle moing wih uniform acceleraion i hown aboe, where OC ime OA iniial elociy OD final elociy The area below he - cure repreen diance raelled Mahemaically, Diance raelled area blow he cure AB area of rapezium OABC (um of parallel ide) ( diance) (OA + BC)(OC)

6 8. + Bu, + a [ ][ ] [ + + a] [ + a] + a + a + a y-ai P(, y) y y θ -ai Conider a projecile projeced upward wih projecile elociy. Le θ be he angle of projecion. Le P(, y) be he poin reached by he projecile afer a cerain ime along he rajecory. On reoling projecile elociy, horizonal componen o and erical componen y are obained a hown in he diagram. Le and y be he diance coered by he projecile wih repec o poin P. The diance coered along -ai i elociy diance coered ime aken o o coθ Similarly, diance alone y ai i y yo + ( g) y yo g y ( in θ) g co θ co θ g y ( an θ) co θ g y ( anθ ) + co θ Thi equaion reemble he general equaion of a parabola y a + b where a anθ g b co θ Thi clearly how ha, rajecory of a projecile i a parabola.

7 9. Law of coneraion of energy ae ha energy can neiher be creaed nor be deroyed bu can only be ranformed from one form ino anoher form uch ha he ne energy of an iolaed yem alway remain unalered. Conider a body of ma m a a cerain heigh h from he ground. The body i hen allowed o fall freely under he influence of earh graiy. The oal energy E of he body i he um of i kineic energy [E k ] and poenial energy [E p ] E E k + E p A poiion A, E k m E k Bu mgh Ep E E + E k E + mgh E mgh A poiion B, p E mg( h ) p Conider,...() + a Bu,, a + g g Conider, Ek m Ek m( g) Ek mg h (h-) m m m Poiion A E k E p ma Poiion B E k, E p Poiion C E p E E k + E p mg + mg (h - ) mg + mgh mg E mgh...() A poiion C, Heigh h E p Conider, + a Bu, a g, h + gh gh Ek m m gh E E + E p k ( ) E + mgh E mgh...() Comparing eqn. (), () and () i i ery clear ha a freely falling body i in accordance wih law of coneraion of energy.

8 Anwer any TWO of he following: X 5. Conider an objec of ma m placed on he urface of he earh. Le be he cener of he earh, M be he ma of he earh. Applying Newon unieral law of graiaion GMm F g' m The force eered by he earh on he objec ielf i h regarded a he weigh of he objec. F W mg Equaing he aboe equaion, g m GMm mg GM g () M Le he objec be now placed a a heigh of h from he earh urface. Le g be he acceleraion due o graiy a heigh h Applying Newon Unieral law of graiaion. GMm F ( + h) Bu, F W mg Equaing he aboe eqn. GMm GM mg g () ( + h) ( + h) Eqn.() : Eqn. () gie GM g ( + h) g GM g g ( + h) g g h + g g h + g h g + Uing binomial epanion and neglecing higher order erm, we wrie, h h + g h g h g g From he eqn. i i clear ha, acceleraion due o graing decreae wih he increae in heigh.

9 . Conider n mole of an ideal ga filled in a cylinder. Le he ga be allowed epand ery lowly a conan emperaure a decribed in he P- diagram. Toal work done during iohermal proce o epand he ga from A o B i W dw Bu dw Pd W Pd Bu P nt P nt W nt d W nt d d log e [ log ] e W nt W nt loge loge W nt log e W. nt log P P Preure A (P ) W Conider P nt, If T i conan, P conan P Hence, P P P W (.) nt log P P. Newon formula for peed of ound i gien by P ρ According o Newon, peed of ound i gien by where E i modulu of elaiciy E ρ i he deniy of air. ρ For gaeou medium, E k k bulk modulu k () ρ B (P ) olume

10 According o Laplace, he change in preure and olume occur under adiabaic condiion inead of iohermal condiion. The eqn. of ae for an adiabaic proce i P γ conan cp Where γ c Conider P γ conan Taking log on boh ide, log ( P γ e ) conan log P + log γ conan e e On differeniaion, dp + γ d P dp d + γ P dp γ d P The e ign indicae ha wih he increae in preure olume decreae. dp γ d P dp γ P d Bu dp k d K γ P Subiuing K in eqn. (), we ge γ P ρ Thi mahemaical relaion i called Newon Laplace formula for peed of ound. I Anwer any THEE of he following: X 5 5. M kg M? M? 6kmph m/ 5m/.5 m/ By law of coneraion of energy m m + m ( )() m m 5 (5) (.5) m + m 65m m () By applying coneraion of momenum, m u m + m ()() m (5) + m (.5)

11 4. 5m +.5 m () On oling () and () ( 5m +.5 m ) 5 65m m 5 65m +.5m ( ) 65m m 5 m 56.5 m 9.6kg ( ) ( ) m 5m +.5m 5m +.5(9.6) 5m + M.8 kg The mae of he fragmen i.8kg and 9.6 kg. i 8rpm 8 π ω 6π rad 6 f rpm π ω 4π rad 6 min α? θ? n? ω f ωi ω f ωi + α α 6π 4π π.4.5rad θ ω + i α (4 π )() + (.5)() 57 + (.5)(44) rad θ θ π n n π n.4 n roaion for S roaion? 5 5 roaion in

12 5. h 6 km.6 6 m 64 km m M 6 4 kg g 9.8m - i) orbial elociy g + h (6.4 ) ( ) m.69km 6. T K T K η.8 T η T η η. η.7 i) T New emp of he ource T η T.8 T 6 ii) Period of reoluion T π T π T π ( + h) g (( ) ) 6 9.8(6.4 ) T (.4).5 T 6.8( ) T.5 T.94 T T T. T. 5 T T 5K Increae in emp of ource T T 5 5 K ii) T New emp of he ink T η T

13 T.8 7. T.8 T (.) T K Decreae in he emperaure of he ink T T K m ɺ ɺ o f f...() () () f f 6 F 5 f f f m γɺ ɺ F f...() +

TP B.2 Rolling resistance, spin resistance, and "ball turn"

TP B.2 Rolling resistance, spin resistance, and ball turn echnical proof TP B. olling reiance, pin reiance, and "ball urn" upporing: The Illuraed Principle of Pool and Billiard hp://billiard.coloae.edu by Daid G. Alciaore, PhD, PE ("Dr. Dae") echnical proof originally

More information

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

More information

Rectilinear Kinematics

Rectilinear Kinematics Recilinear Kinemaic Coninuou Moion Sir Iaac Newon Leonard Euler Oeriew Kinemaic Coninuou Moion Erraic Moion Michael Schumacher. 7-ime Formula 1 World Champion Kinemaic The objecie of kinemaic i o characerize

More information

Elastic and Inelastic Collisions

Elastic and Inelastic Collisions laic and Inelaic Colliion In an LASTIC colliion, energy i conered (Kbefore = Kafer or Ki = Kf. In an INLASTIC colliion, energy i NOT conered. (Ki > Kf. aple: A kg block which i liding a 0 / acro a fricionle

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Chapter 3 Kinematics in Two Dimensions

Chapter 3 Kinematics in Two Dimensions Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum. Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

EF 151 Exam #2 - Spring, 2014 Page 1 of 6

EF 151 Exam #2 - Spring, 2014 Page 1 of 6 EF 5 Exam # - Spring, 04 Page of 6 Name: Secion: Inrucion: Pu your name and ecion on he exam. Do no open he e unil you are old o do o. Wrie your final anwer in he box proided If you finih wih le han 5

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

Physics Notes - Ch. 2 Motion in One Dimension

Physics Notes - Ch. 2 Motion in One Dimension Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

One-Dimensional Kinematics

One-Dimensional Kinematics One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

More information

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x Moenu Do our work on a earae hee of aer or noebook. or each roble, draw clearl labeled diagra howing he ae and elociie for each objec before and afer he colliion. Don forge abou direcion oenu, eloci and

More information

Chapter 8 Torque and Angular Momentum

Chapter 8 Torque and Angular Momentum Chaper 8 Torque and Angular Moenu Reiew of Chaper 5 We had a able coparing paraeer fro linear and roaional oion. Today we fill in he able. Here i i Decripion Linear Roaional poiion diplaceen Rae of change

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

MECHANICAL PROPERTIES OF FLUIDS NCERT

MECHANICAL PROPERTIES OF FLUIDS NCERT Chaper Ten MECHANICAL PROPERTIES OF FLUIDS MCQ I 10.1 A all cylinder is filled wih iscous oil. A round pebble is dropped from he op wih zero iniial elociy. From he plo shown in Fig. 10.1, indicae he one

More information

Topic 1: Linear motion and forces

Topic 1: Linear motion and forces TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

More information

PROBLEMS ON RECTILINEAR MOTION

PROBLEMS ON RECTILINEAR MOTION PROBLEMS ON RECTILINEAR MOTION PROBLEM 1. The elociy of a paricle which oe along he -ai i gien by 5 (/). Ealuae he diplaceen elociy and acceleraion a when = 4. The paricle i a he origin = when =. (/) /

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Kinematics in two dimensions

Kinematics in two dimensions Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

More information

Curvature. Institute of Lifelong Learning, University of Delhi pg. 1

Curvature. Institute of Lifelong Learning, University of Delhi pg. 1 Dicipline Coure-I Semeer-I Paper: Calculu-I Leon: Leon Developer: Chaianya Kumar College/Deparmen: Deparmen of Mahemaic, Delhi College of r and Commerce, Univeriy of Delhi Iniue of Lifelong Learning, Univeriy

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

You have met function of a single variable f(x), and calculated the properties of these curves such as

You have met function of a single variable f(x), and calculated the properties of these curves such as Chaper 5 Parial Derivaive You have me funcion of a ingle variable f(, and calculaed he properie of hee curve uch a df d. Here we have a fir look a hee idea applied o a funcion of wo variable f(,. Graphicall

More information

4 3 a b (C) (a 2b) (D) (2a 3b)

4 3 a b (C) (a 2b) (D) (2a 3b) * A balloon is moving verically pwards wih a velociy of 9 m/s. A sone is dropped from i and i reaches he grond in 10 sec. The heigh of he balloon when he sone was dropped is (ake g = 9.8 ms - ) (a) 100

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point 2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

More information

13.1 Accelerating Objects

13.1 Accelerating Objects 13.1 Acceleraing Objec A you learned in Chaper 12, when you are ravelling a a conan peed in a raigh line, you have uniform moion. However, mo objec do no ravel a conan peed in a raigh line o hey do no

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

Angular Motion, Speed and Velocity

Angular Motion, Speed and Velocity Add Imporan Angular Moion, Speed and Velociy Page: 163 Noe/Cue Here Angular Moion, Speed and Velociy NGSS Sandard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3

More information

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems

Sample Final Exam (finals03) Covering Chapters 1-9 of Fundamentals of Signals & Systems Sample Final Exam Covering Chaper 9 (final04) Sample Final Exam (final03) Covering Chaper 9 of Fundamenal of Signal & Syem Problem (0 mar) Conider he caual opamp circui iniially a re depiced below. I LI

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

New View of Relativity Theory

New View of Relativity Theory Journal of Phyic: Conference Serie OPEN ACCESS New View of Relaiiy Theory To cie hi aricle: Luiz Cear Marini 4 J Phy: Conf Ser 495 View he aricle online for updae enhancemen Relaed conen - The Space-Time

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a

1. The 200-kg lunar lander is descending onto the moon s surface with a velocity of 6 m/s when its retro-engine is fired. If the engine produces a PROBLEMS. The -kg lunar lander is descending ono he moon s surface wih a eloci of 6 m/s when is rero-engine is fired. If he engine produces a hrus T for 4 s which aries wih he ime as shown and hen cus

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship

To become more mathematically correct, Circuit equations are Algebraic Differential equations. from KVL, KCL from the constitutive relationship Laplace Tranform (Lin & DeCarlo: Ch 3) ENSC30 Elecric Circui II The Laplace ranform i an inegral ranformaion. I ranform: f ( ) F( ) ime variable complex variable From Euler > Lagrange > Laplace. Hence,

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

CONTROL SYSTEMS. Chapter 10 : State Space Response

CONTROL SYSTEMS. Chapter 10 : State Space Response CONTROL SYSTEMS Chaper : Sae Space Repone GATE Objecive & Numerical Type Soluion Queion 5 [GATE EE 99 IIT-Bombay : Mark] Conider a econd order yem whoe ae pace repreenaion i of he form A Bu. If () (),

More information

Chapter 15 Oscillatory Motion I

Chapter 15 Oscillatory Motion I Chaper 15 Oscillaory Moion I Level : AP Physics Insrucor : Kim Inroducion A very special kind of moion occurs when he force acing on a body is proporional o he displacemen of he body from some equilibrium

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

INTRODUCTION TO INERTIAL CONFINEMENT FUSION

INTRODUCTION TO INERTIAL CONFINEMENT FUSION INTODUCTION TO INETIAL CONFINEMENT FUSION. Bei Lecure 7 Soluion of he imple dynamic igniion model ecap from previou lecure: imple dynamic model ecap: 1D model dynamic model ρ P() T enhalpy flux ino ho

More information

Chapter 1 Rotational dynamics 1.1 Angular acceleration

Chapter 1 Rotational dynamics 1.1 Angular acceleration Chaper Roaional dynamics. Angular acceleraion Learning objecives: Wha do we mean by angular acceleraion? How can we calculae he angular acceleraion of a roaing objec when i speeds up or slows down? How

More information

Physics 2107 Moments of Inertia Experiment 1

Physics 2107 Moments of Inertia Experiment 1 Physics 107 Momens o Ineria Experimen 1 Prelab 1 Read he ollowing background/seup and ensure you are amiliar wih he heory required or he experimen. Please also ill in he missing equaions 5, 7 and 9. Background/Seup

More information

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

More information

Chapter 7: Inverse-Response Systems

Chapter 7: Inverse-Response Systems Chaper 7: Invere-Repone Syem Normal Syem Invere-Repone Syem Baic Sar ou in he wrong direcion End up in he original eady-ae gain value Two or more yem wih differen magniude and cale in parallel Main yem

More information

Math 2214 Solution Test 1 B Spring 2016

Math 2214 Solution Test 1 B Spring 2016 Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Velocity is a relative quantity

Velocity is a relative quantity Veloci is a relaie quani Disenangling Coordinaes PHY2053, Fall 2013, Lecure 6 Newon s Laws 2 PHY2053, Fall 2013, Lecure 6 Newon s Laws 3 R. Field 9/6/2012 Uniersi of Florida PHY 2053 Page 8 Reference Frames

More information

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

More information

We may write the basic equation of motion for the particle, as

We may write the basic equation of motion for the particle, as We ma wrie he basic equaion of moion for he paricle, as or F m dg F F linear impulse G dg G G G G change in linear F momenum dg The produc of force and ime is defined as he linear impulse of he force,

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

AP Calculus BC Chapter 10 Part 1 AP Exam Problems

AP Calculus BC Chapter 10 Part 1 AP Exam Problems AP Calculus BC Chaper Par AP Eam Problems All problems are NO CALCULATOR unless oherwise indicaed Parameric Curves and Derivaives In he y plane, he graph of he parameric equaions = 5 + and y= for, is a

More information

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

More information

Physics Equation List :Form 4 Introduction to Physics

Physics Equation List :Form 4 Introduction to Physics Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

More information

Buckling of a structure means failure due to excessive displacements (loss of structural stiffness), and/or

Buckling of a structure means failure due to excessive displacements (loss of structural stiffness), and/or Buckling Buckling of a rucure mean failure due o exceive diplacemen (lo of rucural iffne), and/or lo of abiliy of an equilibrium configuraion of he rucure The rule of humb i ha buckling i conidered a mode

More information

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

More information

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP).

where the coordinate X (t) describes the system motion. X has its origin at the system static equilibrium position (SEP). Appendix A: Conservaion of Mechanical Energy = Conservaion of Linear Momenum Consider he moion of a nd order mechanical sysem comprised of he fundamenal mechanical elemens: ineria or mass (M), siffness

More information

Chapter 6. Laplace Transforms

Chapter 6. Laplace Transforms 6- Chaper 6. Laplace Tranform 6.4 Shor Impule. Dirac Dela Funcion. Parial Fracion 6.5 Convoluion. Inegral Equaion 6.6 Differeniaion and Inegraion of Tranform 6.7 Syem of ODE 6.4 Shor Impule. Dirac Dela

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

18.03SC Unit 3 Practice Exam and Solutions

18.03SC Unit 3 Practice Exam and Solutions Sudy Guide on Sep, Dela, Convoluion, Laplace You can hink of he ep funcion u() a any nice mooh funcion which i for < a and for > a, where a i a poiive number which i much maller han any ime cale we care

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Motion In One Dimension. Graphing Constant Speed

Motion In One Dimension. Graphing Constant Speed Moion In One Dimenion PLATO AND ARISTOTLE GALILEO GALILEI LEANING TOWER OF PISA Graphing Conan Speed Diance v. Time for Toy Car (0-5 ec.) be-fi line (from TI calculaor) d = 207.7 12.6 Diance (cm) 1000

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key RECTILINEAR MOTION Conens Topic Page No. Theory 01-01 Exercise - 1 0-09 Exercise - 09-14 Exercise - 3 15-17 Exercise - 4 17-0 Answer Key 1 - Syllabus Kinemaics in one dimension. Name : Conac No. ARRIDE

More information

AQA Maths M2. Topic Questions from Papers. Differential Equations. Answers

AQA Maths M2. Topic Questions from Papers. Differential Equations. Answers AQA Mahs M Topic Quesions from Papers Differenial Equaions Answers PhysicsAndMahsTuor.com Q Soluion Marks Toal Commens M 600 0 = A Applying Newonís second law wih 0 and. Correc equaion = 0 dm Separaing

More information

Kinematics of Wheeled Robots

Kinematics of Wheeled Robots 1 Kinemaics of Wheeled Robos hps://www.ouube.com/wach?=gis41ujlbu 2 Wheeled Mobile Robos robo can hae one or more wheels ha can proide seering direcional conrol power eer a force agains he ground an ideal

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

More information

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2)

Laplace Transform. Inverse Laplace Transform. e st f(t)dt. (2) Laplace Tranform Maoud Malek The Laplace ranform i an inegral ranform named in honor of mahemaician and aronomer Pierre-Simon Laplace, who ued he ranform in hi work on probabiliy heory. I i a powerful

More information

Two Dimensional Dynamics

Two Dimensional Dynamics Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

More information

How to Solve System Dynamic s Problems

How to Solve System Dynamic s Problems How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion

More information

UNIT # 01 (PART I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS. 8. Resultant = R P Q, R P 2Q

UNIT # 01 (PART I) BASIC MATHEMATICS USED IN PHYSICS, UNIT & DIMENSIONS AND VECTORS. 8. Resultant = R P Q, R P 2Q J-Phsics UNI # 0 (PAR I) ASIC MAHMAICS USD IN PHYSICS, UNI & DIMNSIONS AND VCORS XRCIS I. nclosed area : A r so da dr r Here r 8 cm, dr da 5 cm/s () (8) (5) 80 cm /s. Slope d d 6 9 if angen is parallel

More information

Gravity and SHM Review Questions

Gravity and SHM Review Questions Graviy an SHM Review Quesions 1. The mass of Plane X is one-enh ha of he Earh, an is iameer is one-half ha of he Earh. The acceleraion ue o raviy a he surface of Plane X is mos nearly m/s (B) 4m/s (C)

More information

Main Ideas in Class Today

Main Ideas in Class Today Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ Secion. Curilinear Moion he sudy of he moion of a body along a general cure. We define û he uni ecor a he body, angenial o he cure û he uni ecor normal o he cure Clearly, hese uni ecors change wih ime,

More information

Kinematics in two Dimensions

Kinematics in two Dimensions Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

More information

CHAPTER THREE MOTION IN A STRAIGHT LINE

CHAPTER THREE MOTION IN A STRAIGHT LINE PHYSICS Moion In ne Dimenion j k CHPTER THREE MTIN IN STRIGHT LINE. INTRDUCTIN Moion n objec i aid o be in moion, if i poiion chane wih repec o ime. Thi i relaed o he oberer. If i poiion i no chanin, he

More information

total distance cov ered time int erval v = average speed (m/s)

total distance cov ered time int erval v = average speed (m/s) Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

More information

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line. CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

More information

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout.

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout. Pracice Problem day Gues Lecurer Friday! Will Armenrou. He d welcome your feedback! Anonymously: wrie somehing and pu i in my mailbox a 111 Whie Hall. Email me: sarah.spolaor@mail.wvu.edu Symbolic reasoning

More information