How to Solve System Dynamic s Problems

Size: px
Start display at page:

Download "How to Solve System Dynamic s Problems"

Transcription

1 How o Solve Sye Dynaic Proble A ye dynaic proble involve wo or ore bodie (objec) under he influence of everal exernal force. The objec ay uliaely re, ove wih conan velociy, conan acceleraion or oe cobinaion of hee, bu all objec of he ye have he ae oion. Anoher hing of iporance i he diincion beween inernal and exernal force. 1. Read he proble carefully! A hi poin you need o deerine wha objec coprie he ye. An objec uually belong o he ye if i i a i known and / or i i known o be conneced o anoher objec. Generally, urface and he Earh ielf are no conidered a par of he ye Read he following pracice exercie and deerine wha objec ake up he ye. i. Pracice 1: A caerpillar racor puhe a couple of car wreck on a level junk yard. One car ha a a of 1500 kg. Thi car ouche a ruck wih a a of 2300 kg. The racor applie 20 kn of force o he car. The coefficien of kineic fricion beween boh wreck and he ground i Deerine he ye acceleraion and he force of he car on he ruck and he ruck on he car. The car and he ruck coprie hi ye. We exclude he racor a we do no know i a. We exclude he urface for eenially he ae reaon. ii. Pracice 2: Uing he diagra provided deerine (a) which way he ye ove, (b) if he ye ponaneouly ove, (c) if i were in oion i acceleraion and (d) if i were in oion he enion in all connecing ring. M1 and M2 are he ye, a we know heir ae and hey are conneced by a coon ring. The urface of he incline and he Earh will be ouide hi ye.

2 2. Nex you need o deerine he direcion of ravel for he ye and he locaion of he x-axi. You ay need o conider hi objec by objec epecially if each objec i on a differen urface. However, in general er all objec will ove eiher o he lef or righ. i. Pracice 1: A caerpillar racor puhe a couple of car wreck on a level junk yard. One car ha a a of 1500 kg. Thi car ouche a ruck wih a a of 2300 kg. The racor applie 20 kn of force o he car. The coefficien of kineic fricion beween boh wreck and he ground i Deerine he ye acceleraion and he force of he car on he ruck and he ruck on he car. We are old he yard i level o he x-axi i horizonal. In hi proble i i enirely up o you o have he racor puh righ or lef bu i u ouch he car. I have arbirarily choen righ. ii. Pracice 2: Uing he diagra provided deerine (a) which way he ye ove, (b) if he ye ponaneouly ove, (c) if i were in oion i acceleraion and (d) if i were in oion he enion in all connecing ring. Boh ae can only ove along he incline plane, herefore he x-axi will be iled for each a. A for direcion of ravel we have wo opion eiher i will be obviou or no. I uually no obviou if one or ore objec are on an inclined plane. So wha you do when i i no obviou i calculae he exernal force on he objec ha could ake he ove. Ignore all fricion a hey will no caue oion. Ignore force or coponen perpendicular o he poenial direcion of

3 ravel. Ignore connecing force a hey are inernal. In hi exaple, i i only he x-coponen of graviy ha can caue oion. You now u deerine he ize of all of hee and add up he one poining righ, and hen add up he one poining lef. Which ever ide i bigger deerine he direcion of ravel. Since F g2x > F g1x, hen M2 ove down hill while M1 ove up hill. 3. In pracice 2 we have an addiional challenge of deciding if an iniially reing ye will ponaneouly ove. Thi require olving for he ye acceleraion. However, if a fricion will be ued in he ne force equaion i will only be aic fricion. You hould now calculae he oher exernal force uch a noral force and aic fricion. Once you know he value of hee exernal force olve for he ye acceleraion wih he ne force equaion. Again only ue force along he x-axi o calculae acceleraion. The value of he acceleraion deerine he anwer. If a i negaive or zero, hen he ye ay a re. If a i poiive, i will ponaneouly ove. i. Pracice 2: Uing he diagra provided deerine (a) which way he ye ove, (b) if he ye ponaneouly ove, (c) if i were in oion i acceleraion and (d) if i were in oion he enion in all connecing ring. F = a=σf ΣF ne wih again ΣF wih ΣF again F F F F g2x g1x 1 2 ( ) N = kg Thi ye ponaneouly accelerae. 2

4 4. In boh pracice, we u find he acceleraion auing ha oehow hey go in oion. If olving for he ye acceleraion and fricion are involved only be kineic fricion will appear in he ne force equaion. NEVER USE STATIC AND KINETIC FRICTION AT THE SAME TIME. Only ue force on he x-axi o olve for he acceleraion. The value of he acceleraion deerine he naure of he oion. If a i negaive hen he ye low down and op. I o likely will reain opped unle he aic fricion i really low. If a i zero, hen he ye ove wih conan velociy in he deired direcion of ravel. If a i poiive, he ye will accelerae. i. Pracice 1: A caerpillar racor puhe a couple of car wreck on a level junk yard. One car ha a a of 1500 kg. Thi car ouche a ruck wih a a of 2300 kg. The racor applie 20 kn of force o he car. The coefficien of kineic fricion beween boh wreck and he ground i Deerine he ye acceleraion and he force of he car on he ruck and he ruck on he car. F = ΣF ΣF ne wih again ΣF wih ΣF F F F again 1 k1 k2 ( ) N = kg Thi ye i lowing down o a hal. 2

5 ii. Pracice 2: Uing he diagra provided deerine (a) which way he ye ove, (b) if he ye ponaneouly ove, (c) if i were in oion i acceleraion and (d) if i were in oion he enion in all connecing ring. F = a=σf ΣF ne wih again ΣF wih ΣF again F F F F g2x g1x k1 k2 ( ) N = kg Thi ye i peeding up. 2

6 5. Finding connecing force in any proble require elecing one objec and olving he ne force equaion for i. Ue he ye acceleraion calculaed in he la ep. i. Pracice 1: A caerpillar racor puhe a couple of car wreck on a level junk yard. One car ha a a of 1500 kg. Thi car ouche a ruck wih a a of 2300 kg. The racor applie 20 kn of force o he car. The coefficien of kineic fricion beween boh wreck and he ground i Deerine he ye acceleraion and he force of he car on he ruck and he ruck on he car. Uing he ruck a he arge objec: F = ΣF ΣF ne 2 wih again 2300( ) rd car on ruck k 2 F = ( ) N = 12077N car on ruck = F F By Newon' 3 Law, he force of he ruck on he car ha he ae value in he oppoie direcion.

7 ii. Pracice 2: Uing he diagra provided deerine (a) which way he ye ove, (b) if he ye ponaneouly ove, (c) if i were in oion i acceleraion and (d) if i were in oion he enion in all connecing ring. Uing M1 a he arge objec: F = ΣF ΣF ne 1 wih again 15(0.758) = F - F - F T g1x k1 F = F + F T g1x k1 F = ( ) N = 64.4N T

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Iporan Linear Moion, Speed & Velociy Page: 136 Linear Moion, Speed & Velociy NGSS Sandard: N/A MA Curriculu Fraework (2006): 1.1, 1.2 AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3 Knowledge/Underanding

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30

Energy Problems 9/3/2009. W F d mgh m s 196J 200J. Understanding. Understanding. Understanding. W F d. sin 30 9/3/009 nderanding Energy Proble Copare he work done on an objec o a.0 kg a) In liing an objec 0.0 b) Puhing i up a rap inclined a 30 0 o he ae inal heigh 30 0 puhing 0.0 liing nderanding Copare he work

More information

x y θ = 31.8 = 48.0 N. a 3.00 m/s

x y θ = 31.8 = 48.0 N. a 3.00 m/s 4.5.IDENTIY: Vecor addiion. SET UP: Use a coordinae sse where he dog A. The forces are skeched in igure 4.5. EXECUTE: + -ais is in he direcion of, A he force applied b =+ 70 N, = 0 A B B A = cos60.0 =

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x

v 1 =4 m/s v 2 =0 m 1 =0.5kg m 2 Momentum F (N) t (s) v 0y v x Moenu Do our work on a earae hee of aer or noebook. or each roble, draw clearl labeled diagra howing he ae and elociie for each objec before and afer he colliion. Don forge abou direcion oenu, eloci and

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 151 Notes for Online Lecture #4 PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

PHYSICS 149: Lecture 9

PHYSICS 149: Lecture 9 PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Practicing Problem Solving and Graphing

Practicing Problem Solving and Graphing Pracicing Problem Solving and Graphing Tes 1: Jan 30, 7pm, Ming Hsieh G20 The Bes Ways To Pracice for Tes Bes If need more, ry suggesed problems from each new opic: Suden Response Examples A pas opic ha

More information

EF 151 Exam #2 - Spring, 2014 Page 1 of 6

EF 151 Exam #2 - Spring, 2014 Page 1 of 6 EF 5 Exam # - Spring, 04 Page of 6 Name: Secion: Inrucion: Pu your name and ecion on he exam. Do no open he e unil you are old o do o. Wrie your final anwer in he box proided If you finih wih le han 5

More information

Physics 20 Lesson 5 Graphical Analysis Acceleration

Physics 20 Lesson 5 Graphical Analysis Acceleration Physics 2 Lesson 5 Graphical Analysis Acceleraion I. Insananeous Velociy From our previous work wih consan speed and consan velociy, we know ha he slope of a posiion-ime graph is equal o he velociy of

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

Motion In One Dimension. Graphing Constant Speed

Motion In One Dimension. Graphing Constant Speed Moion In One Dimenion PLATO AND ARISTOTLE GALILEO GALILEI LEANING TOWER OF PISA Graphing Conan Speed Diance v. Time for Toy Car (0-5 ec.) be-fi line (from TI calculaor) d = 207.7 12.6 Diance (cm) 1000

More information

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method

5.2 GRAPHICAL VELOCITY ANALYSIS Polygon Method ME 352 GRHICL VELCITY NLYSIS 52 GRHICL VELCITY NLYSIS olygon Mehod Velociy analyi form he hear of kinemaic and dynamic of mechanical yem Velociy analyi i uually performed following a poiion analyi; ie,

More information

13.1 Accelerating Objects

13.1 Accelerating Objects 13.1 Acceleraing Objec A you learned in Chaper 12, when you are ravelling a a conan peed in a raigh line, you have uniform moion. However, mo objec do no ravel a conan peed in a raigh line o hey do no

More information

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of.

Introduction to Numerical Analysis. In this lesson you will be taken through a pair of techniques that will be used to solve the equations of. Inroducion o Nuerical Analysis oion In his lesson you will be aen hrough a pair of echniques ha will be used o solve he equaions of and v dx d a F d for siuaions in which F is well nown, and he iniial

More information

NEWTON S SECOND LAW OF MOTION

NEWTON S SECOND LAW OF MOTION Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

More information

MOMENTUM CONSERVATION LAW

MOMENTUM CONSERVATION LAW 1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

More information

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

More information

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

More information

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

More information

4.5 Constant Acceleration

4.5 Constant Acceleration 4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

More information

Elastic and Inelastic Collisions

Elastic and Inelastic Collisions laic and Inelaic Colliion In an LASTIC colliion, energy i conered (Kbefore = Kafer or Ki = Kf. In an INLASTIC colliion, energy i NOT conered. (Ki > Kf. aple: A kg block which i liding a 0 / acro a fricionle

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Chapter 9: Oscillations

Chapter 9: Oscillations Chaper 9: Ocillaion Now if hi elecron i diplaced fro i equilibriu poiion, a force ha i direcly proporional o he diplaceen reore i like a pendulu o i poiion of re. Pieer Zeean Objecive 1. Decribe he condiion

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

WELCOME TO 1103 PERIOD 3. Homework Exercise #2 is due at the beginning of class. Please put it on the stool in the front of the classroom.

WELCOME TO 1103 PERIOD 3. Homework Exercise #2 is due at the beginning of class. Please put it on the stool in the front of the classroom. WELCOME TO 1103 PERIOD 3 Homework Exercise #2 is due a he beginning of class. Please pu i on he sool in he fron of he classroom. Ring of Truh: Change 1) Give examples of some energy ransformaions in he

More information

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008 Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

More information

PHYSICS Solving Equations

PHYSICS Solving Equations Sepember 20, 2013 PHYSIS Solving Equaion Sepember 2013 www.njcl.org Solving for a Variable Our goal i o be able o olve any equaion for any variable ha appear in i. Le' look a a imple equaion fir. The variable

More information

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed? 1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

More information

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4) Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

More information

Chapter 8 Torque and Angular Momentum

Chapter 8 Torque and Angular Momentum Chaper 8 Torque and Angular Moenu Reiew of Chaper 5 We had a able coparing paraeer fro linear and roaional oion. Today we fill in he able. Here i i Decripion Linear Roaional poiion diplaceen Rae of change

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s.

A man pushes a 500 kg block along the x axis by a constant force. Find the power required to maintain a speed of 5.00 m/s. Coordinaor: Dr. F. hiari Wednesday, July 16, 2014 Page: 1 Q1. The uniform solid block in Figure 1 has mass 0.172 kg and edge lenghs a = 3.5 cm, b = 8.4 cm, and c = 1.4 cm. Calculae is roaional ineria abou

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Q.1 Define work and its unit?

Q.1 Define work and its unit? CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

More information

u(t) Figure 1. Open loop control system

u(t) Figure 1. Open loop control system Open loop conrol v cloed loop feedbac conrol The nex wo figure preen he rucure of open loop and feedbac conrol yem Figure how an open loop conrol yem whoe funcion i o caue he oupu y o follow he reference

More information

Angular Motion, Speed and Velocity

Angular Motion, Speed and Velocity Add Imporan Angular Moion, Speed and Velociy Page: 163 Noe/Cue Here Angular Moion, Speed and Velociy NGSS Sandard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objecive: 3.A.1.1, 3.A.1.3

More information

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4 Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

More information

Physics 131- Fundamentals of Physics for Biologists I

Physics 131- Fundamentals of Physics for Biologists I 10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

More information

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time

d = ½(v o + v f) t distance = ½ (initial velocity + final velocity) time BULLSEYE Lab Name: ANSWER KEY Dae: Pre-AP Physics Lab Projecile Moion Weigh = 1 DIRECTIONS: Follow he insrucions below, build he ramp, ake your measuremens, and use your measuremens o make he calculaions

More information

4. Electric field lines with respect to equipotential surfaces are

4. Electric field lines with respect to equipotential surfaces are Pre-es Quasi-saic elecromagneism. The field produced by primary charge Q and by an uncharged conducing plane disanced from Q by disance d is equal o he field produced wihou conducing plane by wo following

More information

!!"#"$%&#'()!"#&'(*%)+,&',-)./0)1-*23)

!!#$%&#'()!#&'(*%)+,&',-)./0)1-*23) "#"$%&#'()"#&'(*%)+,&',-)./)1-*) #$%&'()*+,&',-.%,/)*+,-&1*#$)()5*6$+$%*,7&*-'-&1*(,-&*6&,7.$%$+*&%'(*8$&',-,%'-&1*(,-&*6&,79*(&,%: ;..,*&1$&$.$%&'()*1$$.,'&',-9*(&,%)?%*,('&5

More information

Best test practice: Take the past test on the class website

Best test practice: Take the past test on the class website Bes es pracice: Take he pas es on he class websie hp://communiy.wvu.edu/~miholcomb/phys11.hml I have posed he key o he WebAssign pracice es. Newon Previous Tes is Online. Forma will be idenical. You migh

More information

Summary:Linear Motion

Summary:Linear Motion Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

More information

dp dt For the time interval t, approximately, we can write,

dp dt For the time interval t, approximately, we can write, PHYSICS OCUS 58 So far we hae deal only wih syses in which he oal ass of he syse, sys, reained consan wih ie. Now, we will consider syses in which ass eners or leaes he syse while we are obsering i. The

More information

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object.

15 N 5 N. Chapter 4 Forces and Newton s Laws of Motion. The net force on an object is the vector sum of all forces acting on that object. Chapter 4 orce and ewton Law of Motion Goal for Chapter 4 to undertand what i force to tudy and apply ewton irt Law to tudy and apply the concept of a and acceleration a coponent of ewton Second Law to

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

Constant Acceleration

Constant Acceleration Objecive Consan Acceleraion To deermine he acceleraion of objecs moving along a sraigh line wih consan acceleraion. Inroducion The posiion y of a paricle moving along a sraigh line wih a consan acceleraion

More information

University Physics with Modern Physics 14th Edition Young TEST BANK

University Physics with Modern Physics 14th Edition Young TEST BANK Universi Phsics wih Modern Phsics 14h Ediion Young SOLUTIONS MANUAL Full clear download (no formaing errors) a: hps://esbankreal.com/download/universi-phsics-modern-phsics- 14h-ediion-oung-soluions-manual-/

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav

~v = x. ^x + ^y + ^x + ~a = vx. v = v 0 + at. ~v P=A = ~v P=B + ~v B=A. f k = k. W tot =KE. P av =W=t. W grav = mgy 1, mgy 2 = mgh =,U grav PHYSICS 5A FALL 2001 FINAL EXAM v = x a = v x = 1 2 a2 + v 0 + x 0 v 2 = v 2 0 +2a(x, x 0) a = v2 r ~v = x ~a = vx v = v 0 + a y z ^x + ^y + ^z ^x + vy x, x 0 = 1 2 (v 0 + v) ~v P=A = ~v P=B + ~v B=A ^y

More information

Interpretation of special relativity as applied to earth-centered locally inertial

Interpretation of special relativity as applied to earth-centered locally inertial Inerpreaion of special relaiviy as applied o earh-cenered locally inerial coordinae sysems in lobal osiioning Sysem saellie experimens Masanori Sao Honda Elecronics Co., Ld., Oyamazuka, Oiwa-cho, Toyohashi,

More information

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout.

Guest Lecturer Friday! Symbolic reasoning. Symbolic reasoning. Practice Problem day A. 2 B. 3 C. 4 D. 8 E. 16 Q25. Will Armentrout. Pracice Problem day Gues Lecurer Friday! Will Armenrou. He d welcome your feedback! Anonymously: wrie somehing and pu i in my mailbox a 111 Whie Hall. Email me: sarah.spolaor@mail.wvu.edu Symbolic reasoning

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Instructor: Barry McQuarrie Page 1 of 5

Instructor: Barry McQuarrie Page 1 of 5 Procedure for Solving radical equaions 1. Algebraically isolae one radical by iself on one side of equal sign. 2. Raise each side of he equaion o an appropriae power o remove he radical. 3. Simplify. 4.

More information

Curvature. Institute of Lifelong Learning, University of Delhi pg. 1

Curvature. Institute of Lifelong Learning, University of Delhi pg. 1 Dicipline Coure-I Semeer-I Paper: Calculu-I Leon: Leon Developer: Chaianya Kumar College/Deparmen: Deparmen of Mahemaic, Delhi College of r and Commerce, Univeriy of Delhi Iniue of Lifelong Learning, Univeriy

More information

Equations of motion for constant acceleration

Equations of motion for constant acceleration Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

More information

AP Physics 1 - Summer Assignment

AP Physics 1 - Summer Assignment AP Physics 1 - Summer Assignmen This assignmen is due on he firs day of school. You mus show all your work in all seps. Do no wai unil he las minue o sar his assignmen. This maerial will help you wih he

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8. Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

More information

WORK, ENERGY AND POWER NCERT

WORK, ENERGY AND POWER NCERT Exemplar Problems Physics Chaper Six WORK, ENERGY AND POWER MCQ I 6.1 An elecron and a proon are moving under he influence of muual forces. In calculaing he change in he kineic energy of he sysem during

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

Welcome Back to Physics 215!

Welcome Back to Physics 215! Welcome Back o Physics 215! (General Physics I) Thurs. Jan 19 h, 2017 Lecure01-2 1 Las ime: Syllabus Unis and dimensional analysis Today: Displacemen, velociy, acceleraion graphs Nex ime: More acceleraion

More information

Variable acceleration, Mixed Exercise 11

Variable acceleration, Mixed Exercise 11 Variable acceleraion, Mixed Exercise 11 1 a v 1 P is a res when v 0. 0 1 b s 0 0 v d (1 ) 1 0 1 0 7. The disance ravelled by P is 7. m. 1 a v 6+ a d v 6 + When, a 6+ 0 The acceleraion of P when is 0 m

More information

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

More information

2002 November 14 Exam III Physics 191

2002 November 14 Exam III Physics 191 November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

More information

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs. Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

More information

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s)

a 10.0 (m/s 2 ) 5.0 Name: Date: 1. The graph below describes the motion of a fly that starts out going right V(m/s) Name: Dae: Kinemaics Review (Honors. Physics) Complee he following on a separae shee of paper o be urned in on he day of he es. ALL WORK MUST BE SHOWN TO RECEIVE CREDIT. 1. The graph below describes he

More information

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 =

v 1 a rad = v2 R = 4 2 R T 2 v 1 2 =v 0 2 2a x 1 x 0 1mi=5280 ft=1709m 1Calorie=4200 J = kx F f = m i m i t 1 2 = Name Secion Phsics 1210 Final Exam Ma 2011 v1.0 This es is closed-noe and closed-book. No wrien, prined, or recorded maerial is permied. Calculaors are permied bu compuers are no. No collaboraion, consulaion,

More information

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1.

Viscous Damping Summary Sheet No Damping Case: Damped behaviour depends on the relative size of ω o and b/2m 3 Cases: 1. Viscous Daping: && + & + ω Viscous Daping Suary Shee No Daping Case: & + ω solve A ( ω + α ) Daped ehaviour depends on he relaive size of ω o and / 3 Cases:. Criical Daping Wee 5 Lecure solve sae BC s

More information

Chapter 2. Motion along a straight line

Chapter 2. Motion along a straight line Chaper Moion along a sraigh line Kinemaics & Dynamics Kinemaics: Descripion of Moion wihou regard o is cause. Dynamics: Sudy of principles ha relae moion o is cause. Basic physical ariables in kinemaics

More information

Motion along a Straight Line

Motion along a Straight Line chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

More information

x i v x t a dx dt t x

x i v x t a dx dt t x Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

More information

1.6. Slopes of Tangents and Instantaneous Rate of Change

1.6. Slopes of Tangents and Instantaneous Rate of Change 1.6 Slopes of Tangens and Insananeous Rae of Change When you hi or kick a ball, he heigh, h, in meres, of he ball can be modelled by he equaion h() 4.9 2 v c. In his equaion, is he ime, in seconds; c represens

More information

Gravity and SHM Review Questions

Gravity and SHM Review Questions Graviy an SHM Review Quesions 1. The mass of Plane X is one-enh ha of he Earh, an is iameer is one-half ha of he Earh. The acceleraion ue o raviy a he surface of Plane X is mos nearly m/s (B) 4m/s (C)

More information

CHAPTER 7: SECOND-ORDER CIRCUITS

CHAPTER 7: SECOND-ORDER CIRCUITS EEE5: CI RCUI T THEORY CHAPTER 7: SECOND-ORDER CIRCUITS 7. Inroducion Thi chaper conider circui wih wo orage elemen. Known a econd-order circui becaue heir repone are decribed by differenial equaion ha

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

AP Physics 1 - Summer Assignment

AP Physics 1 - Summer Assignment AP Physics 1 - Summer Assignmen This assignmen is due on he firs day of school. You mus show all your work in all seps. Do no wai unil he las minue o sar his assignmen. This maerial will help you wih he

More information

Let us consider equation (6.16) once again. We have, can be found by the following equation

Let us consider equation (6.16) once again. We have, can be found by the following equation 41 Le us consider equaion (6.16) once again. We hae, dp d Therefore, d p d Here dp is he change in oenu caused by he force in he ie ineral d. Change in oenu caused by he force for a ie ineral 1, can be

More information

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012 Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

More information

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r.

Physics 3A: Basic Physics I Shoup Sample Midterm. Useful Equations. x f. x i v x. a x. x i. v xi v xf. 2a x f x i. y f. a r. Physics 3A: Basic Physics I Shoup Sample Miderm Useful Equaions A y Asin A A x A y an A y A x A = A x i + A y j + A z k A * B = A B cos(θ) A x B = A B sin(θ) A * B = A x B x + A y B y + A z B z A x B =

More information

PROBLEMS ON RECTILINEAR MOTION

PROBLEMS ON RECTILINEAR MOTION PROBLEMS ON RECTILINEAR MOTION PROBLEM 1. The elociy of a paricle which oe along he -ai i gien by 5 (/). Ealuae he diplaceen elociy and acceleraion a when = 4. The paricle i a he origin = when =. (/) /

More information

1. Kinematics I: Position and Velocity

1. Kinematics I: Position and Velocity 1. Kinemaics I: Posiion and Velociy Inroducion The purpose of his eperimen is o undersand and describe moion. We describe he moion of an objec by specifying is posiion, velociy, and acceleraion. In his

More information

Thus the force is proportional but opposite to the displacement away from equilibrium.

Thus the force is proportional but opposite to the displacement away from equilibrium. Chaper 3 : Siple Haronic Moion Hooe s law saes ha he force (F) eered by an ideal spring is proporional o is elongaion l F= l where is he spring consan. Consider a ass hanging on a he spring. In equilibriu

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16.

2. What is the displacement of the bug between t = 0.00 s and t = 20.0 s? A) cm B) 39.9 cm C) cm D) 16.1 cm E) +16. 1. For which one of he following siuaions will he pah lengh equal he magniude of he displacemen? A) A jogger is running around a circular pah. B) A ball is rolling down an inclined plane. C) A rain ravels

More information