Chapter 12: Velocity, acceleration, and forces

Size: px
Start display at page:

Transcription

1 To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable bu ery small effec oer shor imes or disances, while he effecs of he moion of he earh around he sun can safely be ignored. A mass is said o be a res, saionary, or no moing, only if is posiion wih respec o he earh remains he same oer a ime ineral. A mass is said o be in moion, or is moing if is posiion changes oer a ime ineral. The measuremen of he posiion of he objec a a single ime canno deermine if he objec is a res or moing. For an objec o be a res beween wo imes, he posiion mus be he same a all inermediae imes. Newon s s law saes ha under he acion of balanced forces, a mass will remain a res or moe wih a consan speed and direcion. Newon s 3 rd law, describing he exisance of an acion reacion pair of forces a a poin of conac beween wo masses, is rue in all saes of moion: a res, moing wih consan speed and direcion, or moing wih a changing speed or direcion. B. Characerisics of moion Kineic energy and momenum are measures of he moion of a mass and use in heir definiions he insananeous elociy,, wih a speed,, and direcion (+ or ). Eeryone is familiar wih speed, and knows ha a consan speed can be measured by aking he raeled disance (a posiie scalar) and diiding by he ime of rael, = s. The elociy is obained by adding a sign in fron of he speed,, following he same conenion for direcion as used for displacemen. Formally, for elociies ha could be changing, he aerage elociy is defined as: s =, (.) where he displacemen ecor, s, is he same as he one used in he definiion of work ( w = F s). A consan elociy is no ery ineresing; he ne exernal force acing on he mass is zero. When he elociy changes oer ime, howeer, we are obsering he effecs of a non zero ne exernal force. Measuring he alue of he aerage elociy, as gien by Equaion., oer a long ime,, aerages oer eeryhing ha happened o he objec, and does no gie a good picure of wha effec he force is haing on he objec a any specific ime. The moion a any specific ime (or posiion), is called he insananeous elociy,, and can be deermined using Equaion. in he limi of ery small. A saemen ha = a a single ime (or posiion), howeer, gies no eidence for, or 5

2 To Feel a Force Chaper Spring, agains, he acion of a ne exernal force. Measuremens of local changes in deermine he presence of a ne exernal force on an objec. C. Effecs of an ne exernal force. The inernal ension or compression forces on he masses a he ends of an ideal spring, he graiaional forces beween wo masses, and he fricional forces beween masses in conac, are examples of acion - reacion force pairs. The definiions work, kineic and poenial energy, momenum and he conseraion laws ha goern heir behaior were obained by considering he acion of he inernal force pairs of an ideal spring on objecs wih mass. When one mass was small and he oher was ery large (he mass of he earh) he predicable effecs of he elasic force on he large mass allowed us o infer a law for he conseraion of energy. The effecs of inernal forces on finie masses a boh ends of a spring allowed us o infer a law for he conseraion of momenum. A force is called an exernal force if he oher member of he acion - reacion force pair is no considered. Considered in isolaion, he graiaional force on a small mass m near he surface of he earh is an exernal force wih a consan alue F G = mg (is weigh). A force of his magniude also acs on he earh in he opposie direcion, bu he effecs of his small force on he moion of he earh can safely be ignored. This allows us o use he earh as a poin of reference for he moion of he small mass. D. Newon s nd law of moion: effecs of a consan exernal force on a mass. Newon discoered ha here were wo properies of moion affeced by a ne exernal force: kineic energy, and momenum. An exernal force changes he kineic energy of a mass raeling a disance, and an exernal force changes he momenum of a mass raeling for a period of ime. The momenum change is equal o he produc of he aerage force and he acion ime, p= p + F, where momenum, p= m. Therefore, he relaionship beween he aerage force, he mass, and he change in elociy is F = p p = m F = m ( ) ( ) The obsered change in he elociy of a mass, diided by he ime of he moion, is called he aerage acceleraion, a =. If he ne force acing on a mass doesn change, hen F = F, and a = a, resuling in he mos famous of Newon s discoeries, F. = m a. (.) 6

3 To Feel a Force Chaper Spring, If here is more han one exernal force acing on a mass hen is acceleraion will be proporional o he ne force obained as usual by a ecor sum. E. Acceleraion due o graiy near he surface of he earh The graiaional force on a mass m near he surface of he earh is F G = mg (+ is upward) and is consan. If he only force acing on a mass is he graiaional force near he surface of he earh, Newon s second law, Equaion. aboe, yields: F = FG ma = mg and wih cancellaion of he common facor of m one finds ha he acceleraion of a mass near he surface of he earh is a = g. (.3) This is a saemen ha he acceleraion of a mass near he surface of he earh is always downward and always has he magniude, g = 98. m/s, wih he unis of an acceleraion. The graiaional force ecor on a mass hrown upward near he surface of he earh is F G = mg. Throughou he enire free fligh, he acceleraion ecor is a = g, and herefore, he elociy is always changing ( is no zero). A he ime he mass reaches is highes poin, where he speed, =, he mass is sill moing: a any ime earlier or laer he speed is no zero, and he heigh of he mass will be lower han is maximum heigh. F. The equaions of moion for a mass under a consan acceleraion The definiion of acceleraion if consan, a =, and of aerage elociy, = + s, were discussed aboe. They are he firs wo equaions of moion: = + a, (.4) and s= +. (.5) The kineic energy change is equal o he work done on he mass by all forces (including conseraie and non conseraie), m ( ) = F s. Replacing F by ma and diiding boh sides by m/, yields he hird equaion of moion: = a s. (.6) Eliminaing he final elociy,, from Equaion.6, yields he fourh equaion of moion: s= + a (.7) 7

4 To Feel a Force Chaper Spring, The subsiuion, a = g, will yield he four equaions of moion for a mass in free fligh near he surface of he earh: = + ( g ) s= + = ( g) s s= + ( g) If here is no ne force acing on he mass, he acceleraion will be zero, a =, he elociy will no change, =, and he four equaions reduce o he one for a consan elociy: s =. An aserisk (*) in he able idenifies four of he fie moion ariables,,, a, s, and, used in each of he equaions. In soling a moion problem, here will always be a leas hree equaions ha are poenially useful, because hey conain he unknown moion ariable. For problems where he iniial elociy,, and anoher ariable of ineres are no gien, he iniial elociy can be deermined from he equaion aboe missing he ariable of ineres. These relaionships beween,, a, s, and, hae energy conseraion hidden wihin hem and here is much ha hese equaions can explain abou he moion of an objec. They are quie useful in siuaions where he applied forces or he acceleraion is known. They gie ery lile informaion, howeer, on how acceleraed moion will be perceied if he acceleraed objec is a human being. The nex chaper addresses his deficiency. Table. Moion equaions for a consan acceleraion Eqs..8. Equaion a s missing Free Fligh Eq. = + a s = + ( g ) s= + a s = + = a s = ( g) s s= + a s = + ( g) 8

5 To Feel a Force Chaper Spring, Chaper Summary In he saes, a res, saionary, and no moing, an objec remains a he same place for a gien period of ime. An objec is MOVING (i is no a res, and i is no saionary), if i has a zero speed a one ime, bu a non-zero speed any shor ime earlier or laer. If an objec is subjeced o a consan acceleraion and he elociy changes sign, here is a cerain ime and locaion where he elociy is zero. A his ime he objec is no a res and no saionary, i is moing. I is moing because i does no say a he posiion where he elociy is zero for een he shores period of ime. Newon s nd law of moion: a consan ne exernal force, F, he ecor sum of all forces acing on a mass m, will cause a consan acceleraion gien by F = m a. The acceleraion of an objec in free fall near he surface of he earh is he consan, a = g. The four moion equaions for a consan acceleraion are shown in Table.. 9

1. The graph below shows the variation with time t of the acceleration a of an object from t = 0 to t = T. a

Kinemaics Paper 1 1. The graph below shows he ariaion wih ime of he acceleraion a of an objec from = o = T. a T The shaded area under he graph represens change in A. displacemen. B. elociy. C. momenum.

One-Dimensional Kinematics

One-Dimensional Kinemaics One dimensional kinemaics refers o moion along a sraigh line. Een hough we lie in a 3-dimension world, moion can ofen be absraced o a single dimension. We can also describe moion

Physics Notes - Ch. 2 Motion in One Dimension

Physics Noes - Ch. Moion in One Dimension I. The naure o physical quaniies: scalars and ecors A. Scalar quaniy ha describes only magniude (how much), NOT including direcion; e. mass, emperaure, ime, olume,

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

Equations of motion for constant acceleration

Lecure 3 Chaper 2 Physics I 01.29.2014 Equaions of moion for consan acceleraion Course websie: hp://faculy.uml.edu/andriy_danylo/teaching/physicsi Lecure Capure: hp://echo360.uml.edu/danylo2013/physics1spring.hml

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

INSTANTANEOUS VELOCITY

INSTANTANEOUS VELOCITY I claim ha ha if acceleraion is consan, hen he elociy is a linear funcion of ime and he posiion a quadraic funcion of ime. We wan o inesigae hose claims, and a he same ime, work

Physics 101: Lecture 03 Kinematics Today s lecture will cover Textbook Sections (and some Ch. 4)

Physics 101: Lecure 03 Kinemaics Today s lecure will coer Texbook Secions 3.1-3.3 (and some Ch. 4) Physics 101: Lecure 3, Pg 1 A Refresher: Deermine he force exered by he hand o suspend he 45 kg mass as

Physics for Scientists and Engineers. Chapter 2 Kinematics in One Dimension

Physics for Scieniss and Engineers Chaper Kinemaics in One Dimension Spring, 8 Ho Jung Paik Kinemaics Describes moion while ignoring he agens (forces) ha caused he moion For now, will consider moion in

IB Physics Kinematics Worksheet

IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

LAB # 2 - Equilibrium (static)

AB # - Equilibrium (saic) Inroducion Isaac Newon's conribuion o physics was o recognize ha despie he seeming compleiy of he Unierse, he moion of is pars is guided by surprisingly simple aws. Newon's inspiraion

Page 1 o 13 1. The brighes sar in he nigh sky is α Canis Majoris, also known as Sirius. I lies 8.8 ligh-years away. Express his disance in meers. ( ligh-year is he disance coered by ligh in one year. Ligh

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

Brock University Physics 1P21/1P91 Fall 2013 Dr. D Agostino. Solutions for Tutorial 3: Chapter 2, Motion in One Dimension

Brock Uniersiy Physics 1P21/1P91 Fall 2013 Dr. D Agosino Soluions for Tuorial 3: Chaper 2, Moion in One Dimension The goals of his uorial are: undersand posiion-ime graphs, elociy-ime graphs, and heir

Chapter 3 Kinematics in Two Dimensions

Chaper 3 KINEMATICS IN TWO DIMENSIONS PREVIEW Two-dimensional moion includes objecs which are moing in wo direcions a he same ime, such as a projecile, which has boh horizonal and erical moion. These wo

NEWTON S SECOND LAW OF MOTION

Course and Secion Dae Names NEWTON S SECOND LAW OF MOTION The acceleraion of an objec is defined as he rae of change of elociy. If he elociy changes by an amoun in a ime, hen he aerage acceleraion during

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

Q2.4 Average velocity equals instantaneous velocity when the speed is constant and motion is in a straight line.

CHAPTER MOTION ALONG A STRAIGHT LINE Discussion Quesions Q. The speedomeer measures he magniude of he insananeous eloci, he speed. I does no measure eloci because i does no measure direcion. Q. Graph (d).

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. A/Prof Tay Seng Chuan

Ground Rules PC11 Fundamenals of Physics I Lecures 3 and 4 Moion in One Dimension A/Prof Tay Seng Chuan 1 Swich off your handphone and pager Swich off your lapop compuer and keep i No alking while lecure

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

PHYSICS 220 Lecture 02 Motion, Forces, and Newton s Laws Textbook Sections

PHYSICS 220 Lecure 02 Moion, Forces, and Newon s Laws Texbook Secions 2.2-2.4 Lecure 2 Purdue Universiy, Physics 220 1 Overview Las Lecure Unis Scienific Noaion Significan Figures Moion Displacemen: Δx

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

Topic 1: Linear motion and forces

TOPIC 1 Topic 1: Linear moion and forces 1.1 Moion under consan acceleraion Science undersanding 1. Linear moion wih consan elociy is described in erms of relaionships beween measureable scalar and ecor

PHYSICS 149: Lecture 9

PHYSICS 149: Lecure 9 Chaper 3 3.2 Velociy and Acceleraion 3.3 Newon s Second Law of Moion 3.4 Applying Newon s Second Law 3.5 Relaive Velociy Lecure 9 Purdue Universiy, Physics 149 1 Velociy (m/s) The

Integration of the equation of motion with respect to time rather than displacement leads to the equations of impulse and momentum.

Inegraion of he equaion of moion wih respec o ime raher han displacemen leads o he equaions of impulse and momenum. These equaions greal faciliae he soluion of man problems in which he applied forces ac

Suggested Practice Problems (set #2) for the Physics Placement Test

Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

Kinematics in two dimensions

Lecure 5 Phsics I 9.18.13 Kinemaics in wo dimensions Course websie: hp://facul.uml.edu/andri_danlo/teaching/phsicsi Lecure Capure: hp://echo36.uml.edu/danlo13/phsics1fall.hml 95.141, Fall 13, Lecure 5

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

0 time. 2 Which graph represents the motion of a car that is travelling along a straight road with a uniformly increasing speed?

1 1 The graph relaes o he moion of a falling body. y Which is a correc descripion of he graph? y is disance and air resisance is negligible y is disance and air resisance is no negligible y is speed and

Main Ideas in Class Today

Main Ideas in Class Toda Inroducion o Falling Appl Consan a Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs Refers o objecs

Displacement ( x) x x x

Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

s in boxe wers ans Put

Pu answers in boxes Main Ideas in Class Toda Inroducion o Falling Appl Old Equaions Graphing Free Fall Sole Free Fall Problems Pracice:.45,.47,.53,.59,.61,.63,.69, Muliple Choice.1 Freel Falling Objecs

Physics 131- Fundamentals of Physics for Biologists I

10/3/2012 - Fundamenals of Physics for iologiss I Professor: Wolfgang Loser 10/3/2012 Miderm review -How can we describe moion (Kinemaics) - Wha is responsible for moion (Dynamics) wloser@umd.edu Movie

RECTILINEAR MOTION. Contents. Theory Exercise Exercise Exercise Exercise Answer Key

RECTILINEAR MOTION Conens Topic Page No. Theory 01-01 Exercise - 1 0-09 Exercise - 09-14 Exercise - 3 15-17 Exercise - 4 17-0 Answer Key 1 - Syllabus Kinemaics in one dimension. Name : Conac No. ARRIDE

x(m) t(sec ) Homework #2. Ph 231 Introductory Physics, Sp-03 Page 1 of 4

Homework #2. Ph 231 Inroducory Physics, Sp-03 Page 1 of 4 2-1A. A person walks 2 miles Eas (E) in 40 minues and hen back 1 mile Wes (W) in 20 minues. Wha are her average speed and average velociy (in ha

Q.1 Define work and its unit?

CHP # 6 ORK AND ENERGY Q.1 Define work and is uni? A. ORK I can be define as when we applied a force on a body and he body covers a disance in he direcion of force, hen we say ha work is done. I is a scalar

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

Two Dimensional Dynamics

Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Saring Wed Sep 15, W-F oice hours will be in 3 Loomis. Exam I M oice hours will coninue in 36 Loomis Physics 11: Lecure 6,

Course II. Lesson 7 Applications to Physics. 7A Velocity and Acceleration of a Particle

Course II Lesson 7 Applicaions o Physics 7A Velociy and Acceleraion of a Paricle Moion in a Sraigh Line : Velociy O Aerage elociy Moion in he -ais + Δ + Δ 0 0 Δ Δ Insananeous elociy d d Δ Δ Δ 0 lim [ m/s

Two Dimensional Dynamics

Physics 11: Lecure 6 Two Dimensional Dynamics Today s lecure will coer Chaper 4 Exam I Physics 11: Lecure 6, Pg 1 Brie Reiew Thus Far Newon s Laws o moion: SF=ma Kinemaics: x = x + + ½ a Dynamics Today

Motion along a Straight Line

chaper 2 Moion along a Sraigh Line verage speed and average velociy (Secion 2.2) 1. Velociy versus speed Cone in he ebook: fer Eample 2. Insananeous velociy and insananeous acceleraion (Secions 2.3, 2.4)

2002 November 14 Exam III Physics 191

November 4 Exam III Physics 9 Physical onsans: Earh s free-fall acceleraion = g = 9.8 m/s ircle he leer of he single bes answer. quesion is worh poin Each 3. Four differen objecs wih masses: m = kg, m

A B C D September 25 Exam I Physics 105. Circle the letter of the single best answer. Each question is worth 1 point

2012 Sepember 25 Eam I Physics 105 Circle he leer of he single bes answer. Each uesion is worh 1 poin Physical Consans: Earh s free-fall acceleraion = g = 9.80 m/s 2 3. (Mark wo leers!) The below graph

(c) Several sets of data points can be used to calculate the velocity. One example is: distance speed = time 4.0 m = 1.0 s speed = 4.

Inquiry an Communicaion 8. (a) ensiy eermine by Group A is he mos reasonable. (b) When roune off o wo significan igis, Group B has he same alue as Group A. Howeer, saing an experimenal measuremen o six

4.5 Constant Acceleration

4.5 Consan Acceleraion v() v() = v 0 + a a() a a() = a v 0 Area = a (a) (b) Figure 4.8 Consan acceleraion: (a) velociy, (b) acceleraion When he x -componen of he velociy is a linear funcion (Figure 4.8(a)),

MECHANICAL PROPERTIES OF FLUIDS NCERT

Chaper Ten MECHANICAL PROPERTIES OF FLUIDS MCQ I 10.1 A all cylinder is filled wih iscous oil. A round pebble is dropped from he op wih zero iniial elociy. From he plo shown in Fig. 10.1, indicae he one

dp dt For the time interval t, approximately, we can write,

PHYSICS OCUS 58 So far we hae deal only wih syses in which he oal ass of he syse, sys, reained consan wih ie. Now, we will consider syses in which ass eners or leaes he syse while we are obsering i. The

Physics 221 Fall 2008 Homework #2 Solutions Ch. 2 Due Tues, Sept 9, 2008

Physics 221 Fall 28 Homework #2 Soluions Ch. 2 Due Tues, Sep 9, 28 2.1 A paricle moving along he x-axis moves direcly from posiion x =. m a ime =. s o posiion x = 1. m by ime = 1. s, and hen moves direcly

and v y . The changes occur, respectively, because of the acceleration components a x and a y

Week 3 Reciaion: Chaper3 : Problems: 1, 16, 9, 37, 41, 71. 1. A spacecraf is raveling wih a veloci of v0 = 5480 m/s along he + direcion. Two engines are urned on for a ime of 84 s. One engine gives he

total distance cov ered time int erval v = average speed (m/s)

Physics Suy Noes Lesson 4 Linear Moion 1 Change an Moion a. A propery common o eeryhing in he unierse is change. b. Change is so imporan ha he funamenal concep of ime woul be meaningless wihou i. c. Since

Kinematics. introduction to kinematics 15A

15 15A Inroducion o kinemaics 15B Velociy ime graphs and acceleraion ime graphs 15C Consan acceleraion formulas 15D Insananeous raes of change Kinemaics AreAS of STuDy Diagrammaic and graphical represenaion

Kinematics Vocabulary. Kinematics and One Dimensional Motion. Position. Coordinate System in One Dimension. Kinema means movement 8.

Kinemaics Vocabulary Kinemaics and One Dimensional Moion 8.1 WD1 Kinema means movemen Mahemaical descripion of moion Posiion Time Inerval Displacemen Velociy; absolue value: speed Acceleraion Averages

PHYSICS 151 Notes for Online Lecture #4

PHYSICS 5 Noe for Online Lecure #4 Acceleraion The ga pedal in a car i alo called an acceleraor becaue preing i allow you o change your elociy. Acceleraion i how fa he elociy change. So if you ar fro re

Motion, Forces, and Newton s Laws

Chaper 2 Moion, Forces, and Newon s Laws OUTLINE 2.1 ARISTOTLE S MECHANICS 2.2 WHAT IS MOTION? 2.3 THE PRINCIPLE OF INERTIA 2.4 NEWTON S LAWS OF MOTION 2.5 WHY DID IT TAKE NEWTON TO DISCOVER NEWTON S LAWS?

2) Of the following questions, which ones are thermodynamic, rather than kinetic concepts?

AP Chemisry Tes (Chaper 12) Muliple Choice (40%) 1) Which of he following is a kineic quaniy? A) Enhalpy B) Inernal Energy C) Gibb s free energy D) Enropy E) Rae of reacion 2) Of he following quesions,

Of all of the intellectual hurdles which the human mind has confronted and has overcome in the last fifteen hundred years, the one which seems to me

Of all of he inellecual hurdles which he human mind has confroned and has overcome in he las fifeen hundred years, he one which seems o me o have been he mos amazing in characer and he mos supendous in

Let us start with a two dimensional case. We consider a vector ( x,

Roaion marices We consider now roaion marices in wo and hree dimensions. We sar wih wo dimensions since wo dimensions are easier han hree o undersand, and one dimension is a lile oo simple. However, our

2001 November 15 Exam III Physics 191

1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

Chapter 2. Motion along a straight line

Chaper Moion along a sraigh line Kinemaics & Dynamics Kinemaics: Descripion of Moion wihou regard o is cause. Dynamics: Sudy of principles ha relae moion o is cause. Basic physical ariables in kinemaics

Applications of the Basic Equations Chapter 3. Paul A. Ullrich

Applicaions of he Basic Equaions Chaper 3 Paul A. Ullrich paullrich@ucdavis.edu Par 1: Naural Coordinaes Naural Coordinaes Quesion: Why do we need anoher coordinae sysem? Our goal is o simplify he equaions

Farr High School NATIONAL 5 PHYSICS. Unit 3 Dynamics and Space. Exam Questions

Farr High School NATIONAL 5 PHYSICS Uni Dynamics and Space Exam Quesions VELOCITY AND DISPLACEMENT D B D 4 E 5 B 6 E 7 E 8 C VELOCITY TIME GRAPHS (a) I is acceleraing Speeding up (NOT going down he flume

Physics 5A Review 1. Eric Reichwein Department of Physics University of California, Santa Cruz. October 31, 2012

Physics 5A Review 1 Eric Reichwein Deparmen of Physics Universiy of California, Sana Cruz Ocober 31, 2012 Conens 1 Error, Sig Figs, and Dimensional Analysis 1 2 Vecor Review 2 2.1 Adding/Subracing Vecors.............................

Chapter 2: One-Dimensional Kinematics

Chaper : One-Dimensional Kinemaics Answers o Een-Numbered Concepual Quesions. An odomeer measures he disance raeled by a car. You can ell his by he fac ha an odomeer has a nonzero reading afer a round

Physics 180A Fall 2008 Test points. Provide the best answer to the following questions and problems. Watch your sig figs.

Physics 180A Fall 2008 Tes 1-120 poins Name Provide he bes answer o he following quesions and problems. Wach your sig figs. 1) The number of meaningful digis in a number is called he number of. When numbers

Section 3.8, Mechanical and Electrical Vibrations

Secion 3.8, Mechanical and Elecrical Vibraions Mechanical Unis in he U.S. Cusomary and Meric Sysems Disance Mass Time Force g (Earh) Uni U.S. Cusomary MKS Sysem CGS Sysem fee f slugs seconds sec pounds

Physics Equation List :Form 4 Introduction to Physics

Physics Equaion Lis :Form 4 Inroducion o Physics Relaive Deviaion Relaive Deviaion Mean Deviaion 00% Mean Value Prefixes Unis for Area and Volume Prefixes Value Sandard form Symbol Tera 000 000 000 000

Physics 2107 Moments of Inertia Experiment 1

Physics 107 Momens o Ineria Experimen 1 Prelab 1 Read he ollowing background/seup and ensure you are amiliar wih he heory required or he experimen. Please also ill in he missing equaions 5, 7 and 9. Background/Seup

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

Structural Dynamics and Earthquake Engineering

Srucural Dynamics and Earhquae Engineering Course 1 Inroducion. Single degree of freedom sysems: Equaions of moion, problem saemen, soluion mehods. Course noes are available for download a hp://www.c.up.ro/users/aurelsraan/

MEI Mechanics 1 General motion. Section 1: Using calculus

Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

We may write the basic equation of motion for the particle, as

We ma wrie he basic equaion of moion for he paricle, as or F m dg F F linear impulse G dg G G G G change in linear F momenum dg The produc of force and ime is defined as he linear impulse of he force,

x i v x t a dx dt t x

Physics 3A: Basic Physics I Shoup - Miderm Useful Equaions A y A sin A A A y an A y A A = A i + A y j + A z k A * B = A B cos(θ) A B = A B sin(θ) A * B = A B + A y B y + A z B z A B = (A y B z A z B y

Electrical and current self-induction

Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

SPH3U1 Lesson 03 Kinematics

SPH3U1 Lesson 03 Kinemaics GRAPHICAL ANALYSIS LEARNING GOALS Sudens will Learn how o read values, find slopes and calculae areas on graphs. Learn wha hese values mean on boh posiion-ime and velociy-ime

The study of the motion of a body along a general curve. û N the unit vector normal to the curve. Clearly, these unit vectors change with time, uˆ

Secion. Curilinear Moion he sudy of he moion of a body along a general cure. We define û he uni ecor a he body, angenial o he cure û he uni ecor normal o he cure Clearly, hese uni ecors change wih ime,

Gravity and SHM Review Questions

Graviy an SHM Review Quesions 1. The mass of Plane X is one-enh ha of he Earh, an is iameer is one-half ha of he Earh. The acceleraion ue o raviy a he surface of Plane X is mos nearly m/s (B) 4m/s (C)

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

Introduction and Mathematical Concepts

Basic Physics I Seleced Soled Problems from Cunell & Johnson Texbook 7 h Ediion Wiley Compiled by Associae Professor Dr. Jaafar Janan aka Dr JJ Faculy of Applied Sciences, Uniersiy Teknologi MARA, Shah

Summary:Linear Motion

Summary:Linear Moion D Saionary objec V Consan velociy D Disance increase uniformly wih ime D = v. a Consan acceleraion V D V = a. D = ½ a 2 Velociy increases uniformly wih ime Disance increases rapidly

Math 2214 Solution Test 1 B Spring 2016

Mah 14 Soluion Te 1 B Spring 016 Problem 1: Ue eparaion of ariable o ole he Iniial alue DE Soluion (14p) e =, (0) = 0 d = e e d e d = o = ln e d uing u-du b leing u = e 1 e = + where C = for he iniial

3.6 Derivatives as Rates of Change

3.6 Derivaives as Raes of Change Problem 1 John is walking along a sraigh pah. His posiion a he ime >0 is given by s = f(). He sars a =0from his house (f(0) = 0) and he graph of f is given below. (a) Describe

I. OBJECTIVE OF THE EXPERIMENT.

I. OBJECTIVE OF THE EXPERIMENT. Swissmero raels a high speeds hrough a unnel a low pressure. I will hereore undergo ricion ha can be due o: ) Viscosiy o gas (c. "Viscosiy o gas" eperimen) ) The air in

Kinematics in two Dimensions

Lecure 5 Chaper 4 Phsics I Kinemaics in wo Dimensions Course websie: hp://facul.uml.edu/andri_danlo/teachin/phsicsi PHYS.141 Lecure 5 Danlo Deparmen of Phsics and Applied Phsics Toda we are oin o discuss:

Some Basic Information about M-S-D Systems

Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

MOMENTUM CONSERVATION LAW

1 AAST/AEDT AP PHYSICS B: Impulse and Momenum Le us run an experimen: The ball is moving wih a velociy of V o and a force of F is applied on i for he ime inerval of. As he resul he ball s velociy changes

Physics 30: Chapter 2 Exam Momentum & Impulse

Physics 30: Chaper 2 Exam Momenum & Impulse Name: Dae: Mark: /29 Numeric Response. Place your answers o he numeric response quesions, wih unis, in he blanks a he side of he page. (1 mark each) 1. A golfer

Kinematics in One Dimension

Kinemaics in One Dimension PHY 7 - d-kinemaics - J. Hedberg - 7. Inroducion. Differen Types of Moion We'll look a:. Dimensionaliy in physics 3. One dimensional kinemaics 4. Paricle model. Displacemen Vecor.

Review Equations. Announcements 9/8/09. Table Tennis

Announcemens 9/8/09 1. Course homepage ia: phsics.bu.edu Class web pages Phsics 105 (Colon J). (Class-wide email sen) Iclicker problem from las ime scores didn ge recorded. Clicker quizzes from lecures

The Contradiction within Equations of Motion with Constant Acceleration

The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

AP Chemistry--Chapter 12: Chemical Kinetics

AP Chemisry--Chaper 12: Chemical Kineics I. Reacion Raes A. The area of chemisry ha deals wih reacion raes, or how fas a reacion occurs, is called chemical kineics. B. The rae of reacion depends on he

Two Coupled Oscillators / Normal Modes

Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

Physics 101 Fall 2006: Exam #1- PROBLEM #1

Physics 101 Fall 2006: Exam #1- PROBLEM #1 1. Problem 1. (+20 ps) (a) (+10 ps) i. +5 ps graph for x of he rain vs. ime. The graph needs o be parabolic and concave upward. ii. +3 ps graph for x of he person

Solutions from Chapter 9.1 and 9.2

Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

Q2.1 This is the x t graph of the motion of a particle. Of the four points P, Q, R, and S, the velocity v x is greatest (most positive) at

Q2.1 This is he x graph of he moion of a paricle. Of he four poins P, Q, R, and S, he velociy is greaes (mos posiive) a A. poin P. B. poin Q. C. poin R. D. poin S. E. no enough informaion in he graph o

Oscillations. Periodic Motion. Sinusoidal Motion. PHY oscillations - J. Hedberg

Oscillaions PHY 207 - oscillaions - J. Hedberg - 2017 1. Periodic Moion 2. Sinusoidal Moion 3. How do we ge his kind of moion? 4. Posiion - Velociy - cceleraion 5. spring wih vecors 6. he reference circle