The interplay of flavour- and Polyakov-loop- degrees of freedom

Size: px
Start display at page:

Download "The interplay of flavour- and Polyakov-loop- degrees of freedom"

Transcription

1 The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday, August 1 th, 2008 The QCD Critical Point Institute for Nuclear Theory, Seattle

2 Outline Connections between colour and flavour (N f = 2 thermodynamics) Flavour blind dofs couple to up- and down- quark densities Up- and down- quark densities couple to flavour blind dofs Up- and down- quarks communicate via an intermediary: Polyakov loop dofs Quantitative investigation of induced flavour mixing: NJL-model + Polyakov-loop model PNJL model A perturbative approach 1 to investigate: The Polyakov loop Φ and its conjugate Φ Non-vanishing up- and down-quark susceptibilies χ uu and χ ud Conclusion & Outlook 1 R., Hell, Ratti, Weise arxiv: [hep-ph], [RHRW07]

3 QCD thermodynamics Symmetry breaking patterns of QCD at finite T Chiral symmetry 1 Explicit breaking m q > 0 2 Dynamic breaking at low T 3 Order parameter: Chiral condensate qq Quarks are coloured objects Dynamic quark masses Confinement-deconfinement 1 Explicit breaking m q < 2 Dynamic breaking at high T 3 Order parameter: Polyakov loop Φ and Φ Colour screening by vacuum fluctuations of quarks Colour confinement Chiral symmetry breaking + Z(3) symmetry breaking are closely linked Joint crossover transition

4 Modelling colour and flavour dynamics The Polyakov loop extended Nambu and Jona-Lasinio model (PNJL model) NJL-model + Polyakov loop model = PNJL model Joint crossover of Φ and qq Ψ Ψ Ψ Ψ NJL chiral limit PNJL pure gauge nd order 1 st order T T c R., Hell, Ratti, Weise arxiv: [hep-ph] [RHRW07] PNJL: Joint effects of quarks and Polyakov loop Confinement (colour) affecting quark densities

5 Modelling colour and flavour dynamics The Polyakov loop extended Nambu and Jona-Lasinio model (PNJL model) NJL-model + Polyakov loop model = PNJL model PNJL: Ψ Ψ Ψ Ψ 0 Joint crossover of Φ and qq NJL chiral limit Quark densities n q T 3 Μ.55 T PNJL c 1 pure gauge Joint effects of quarks and Polyakov loop Confinement (colour) affecting quark densities NJL nd order 0. 1 st order 0.2 PNJL SB limit lattice T T c T T c R., Hell, Ratti, Weise arxiv: [hep-ph] [RHRW07] Ratti, Thaler, Weise PRD 73 (2006) [RTW06]

6 Diagrammatic view to quark number densities n qx = Ω µ x = ω n d 3 [ ] p S 1 (2π) 3 tr S = µ x Ω : thermodynamic potential Ω = d 3 p ω n tr ln [ βs 1] (2π) 3 : γ 0 τ x, where τ x is a matrix in flavour space Quark number susceptibilities χ ux n u n x n u n x = = γ 0 τ u = γ 0 τ x No explicit isospin breaking (thoughout this presentation)

7 Introduction of a perturbative interaction δu Ω = Ω MF + δu(ζ) (Ω MF indep. of ζ) Propagators remain unchanged Use the same quasiparticles as in MF Quark density operators induce new Feynman rules: = S 1 ζ = [ 2 δu ζ ζ ] 1 Corrections to the susceptibilities: δχ ux = ζ couples to n qx ζ χ ζ charge ζ conjugation [ 1 2 δu ζ ζ] 0 ζ-susceptibility χ ζ [ 2 δu ζ ζ] 1 a δχ ud n qx -susceptibility a The mean field contribution of χ ud vanishes due to flavour symmetry.

8 Polyakov loop degrees of freedom Polyakov loop Φ( x) is the trace of a time-like { Wilson-line Φ( x) = 1 } β tr c L( x) L( x) = P exp i dτ A a N ( x) t a c Order parameter for de-confinement Φ = 0 confined Φ 0 deconfined Define Polyakov loop fields with good charge conjugation parity: Φ + = 1 2 Φ + Φ Φ = 1 2 Φ Φ QCD toy model (Ginzburg-Landau-type) S QCD eff = S QCD eff, 0 }{{} indep. of Φ Treat S QCD eff, 0 in mean field + δu(φ ) 0 Treat δu pertubatively χ ud = χ MF ud + 2 S eff µ u Φ [ 2 ] 1 δu 2 S eff Φ Φ µ d Φ < 0

9 Part 1: NJL model Free quarks L NJL = ψ ( /p m 0 ) ψ g ( ψγ µ λ a ψ ) ( ψγ µ λ a ψ ) Integrated out gluons Local SU(3) c Local color current interaction Chiral symmetry QCD NJL Global SU(3) c No confinement Spontaneous chiral symmetry breaking Ω NJL = σ2 + N 2 2G T d 3 p 2 (2π) 3 Tr log S 1 (ω n, p) T ω n Hartree-Fock approximation using Fierz-transformations Bosonization in channels with large -quark coupling σ = G ψψ M = m 0 σ N = G ψiγ 5 τ 1 ψ ( ) S 1 /p M + γ0 (µ + µ = I ) iγ 5 N iγ 5 N /p M + γ 0 (µ µ I ) No explicit isospin breaking terms (Zhang, Liu [ZL07]) N = 0

10 Part 2: Polyakov loop model Model for SU(3) c -gauge theory Confinement 1 st -order Spontaneous breakdown of Z(3)-center sym. Order parameter for de-confinement Polyakov loop Polyakov loop Φ( x) is the trace of a time-like Wilson-line { Φ( x) = 1 } β tr c L( x) L( x) = P exp i dτ A a N ( x) t a c Φ = 0 confined Φ 0 deconfined 0 Ginzburg-Landau effective potential U = U(Φ, Φ, T) { } Simplified loop: Φ = 1 N c Tr exp i Aa ta T a { 3, 8 } Integrate out all dofs that do not change order parameters DΦ DΦ e U(Φ, Φ,T) = DA e S eff(φ(a),φ (A),T)

11 Polyakov loop model adjusted to lattice QCD data Ansatz for the Polyakov loop potential (K. Fukushima [Fuk0]) U(Φ,Φ, T) T = 1 2 b 2 (T) Φ Φ + 1 b (T) log [J(Φ,Φ )] ( J(Φ,Φ ) = 1 6Φ Φ + Φ 3 + Φ 3) 3(Φ Φ) 2 ( ) 3 ( ) ( T0 T0 T0 b (T) = b b 2 (T) = a 0 + a 1 + a 2 T T T Temperature dependent coupling strength b 2 = b 2 (T) ) 2 G. Boyd et. al. [B + 96], O. Kaczmarek et. al. [KKPZ02, KZ05] Φ = Φ at N f = 0: U(Φ,Φ, T) only fixed in 1 2 (Φ + Φ) Stiffness of U(Φ,Φ, T) in 1 2 (Φ Φ) is free to be adjusted

12 Polyakov loop extended NJL (PNJL) Substitute the Matsubara frequencies ω n by ω n + A Formal substitution µ µ ia after Matsubara summation Ω 0 = Ω NJL µ µ ia + U(Φ,Φ, T) Defining mean field as 0 th perturbative order Fermion sign problem: µ µ ia Identification in 0 th order: Mean field: Ω MF = Re Ω 0 Ω 0 = T V S E C p (T) = Ω MF(T) + Ω MF(T=0) Maximization of e S E /T ( quenched mean field) Re Ω 0 σ = Re Ω 0 = Re Ω 0 A (3) = Re Ω 0 A (8) = 0 Constraints: Ω MF! R ΦMF = Φ MF...

13 Polyakov loop extended NJL (PNJL) Substitute the Matsubara frequencies ω n by ω n + A Formal substitution µ µ ia after Matsubara summation Ω 0 = Ω NJL µ µ ia + U(Φ,Φ, T) Joint crossover of Φ and qq T c in MeV Ψ Ψ Ψ Ψ NJL chiral limit 2 nd order PNJL pure gauge 1 st order Kaczmarek et al. [KZ05] (N f = 2) Cheng et al. [C + 06] (N f = 2+1) PNJL (N f = 2) 215 T T c R., Hell, Ratti, Weise arxiv: [hep-ph], [RHRW07]

14 Polyakov loop extended NJL (PNJL) Substitute the Matsubara frequencies ω n by ω n + A Formal substitution µ µ ia after Matsubara summation Ω 0 = Ω NJL µ µ ia + U(Φ,Φ, T) Joint crossover of Φ and qq Ψ Ψ Ψ Ψ NJL chiral limit 2 nd order PNJL pure gauge 1 st order T T c R., Hell, Ratti, Weise arxiv: [hep-ph], [RHRW07] PNJL-Confinement Confinement at T < T c : Polyakov loop Φ 1 Free quarks suppressed Statisical confinement: Active (color-neutral) quasi-particles: m = 3 M M N

15 Corrections to the PNJL mean field solutions Unquenching the PNJL model Goal: Release constraints on the mean fields Integrate out the approximate order parameters (mean fields) Subtile cancellation of imaginary parts is guaranteed How? Perturbative expansion about the (constraint) MF solution Taylor expansion of the action with respect to the fields S = V T Ω 0 = V 1 T k! ω k ξ k with ξ = θ θ 0 k The vector arrow p Set of all fields θ = (σ, N, A (3), A(8) )T θ 0 is the new minimum after SSB Separate free and perturbative parts: Free part: k = 0, 1, 2 Interactions: k 3 Note: Im[ω 1 ] 0 for the (former) gauge field A (8)

16 Expectation values of the Polyakov loop Φ and Φ In mean field MF + corrections Φ MF = Φ MF No split of Φ and Φ Φ R and Φ R Φ Φ at µ 0 Fluctuation effects beyond mean field produce Φ Φ R., Hell, Ratti, Weise arxiv: [hep-ph], [RHRW07]

17 Susceptibilities: c2 uu, cud 2, cuu, cud beyond mean field c2 uu c2 ud in MF c n (T) = 1 n (Ω/T ) n! (µ/t) n cn(t) I = 1 n (Ω/T ) µ=µi =0 n! (µ I /T) 2 (µ/t) (n 2) cn uu = 1 ( cn + c I n) cn ud = 1 ( cn c I n) Isovector moments in agreement with lattice data as well Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll. µ=µi =0

18 Susceptibilities: c2 uu, cud 2, cuu, cud beyond mean field c uu c2 ud in MF c n (T) = 1 n (Ω/T ) n! (µ/t) n cn(t) I = 1 n (Ω/T ) µ=µi =0 n! (µ I /T) 2 (µ/t) (n 2) cn uu = 1 ( cn + c I n) cn ud = 1 ( cn c I n) Isovector moments in agreement with lattice data as well Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll. µ=µi =0

19 Susceptibilities: c2 uu, cud 2, cuu, cud beyond mean field c uu c2 ud in MF c n (T) = 1 n (Ω/T ) n! (µ/t) n cn(t) I = 1 n (Ω/T ) µ=µi =0 n! (µ I /T) 2 (µ/t) (n 2) cn uu = 1 ( cn + c I n) cn ud = 1 ( cn c I n) Isovector moments in agreement with lattice data as well Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll. µ=µi =0

20 Susceptibilities: c2 uu, cud 2, cuu, cud beyond mean field c uu c2 ud beyond MF c n (T) = 1 n (Ω/T ) n! (µ/t) n cn(t) I = 1 n (Ω/T ) µ=µi =0 n! (µ I /T) 2 (µ/t) (n 2) cn uu = 1 ( cn + c I n) cn ud = 1 ( cn c I n) Isovector moments in agreement with lattice data as well Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll. µ=µi =0

21 Susceptibilities: c2 uu, cud 2, cuu, cud beyond mean field c uu c ud c n (T) = 1 n (Ω/T ) n! (µ/t) n cn(t) I = 1 n (Ω/T ) µ=µi =0 n! (µ I /T) 2 (µ/t) (n 2) cn uu = 1 ( cn + c I n) cn ud = 1 ( cn c I n) Isovector moments in agreement with lattice data as well Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll. µ=µi =0

22 Adjusted Polyakov loop effective potentials Connection to the Polyakov loop degrees of freedom Polyakov loop effective potential adjusted at N f = 0 δu(φ,φ, T) T Φ Φ = Φ+2 Φ 2 Φ+2 k Φ 2 Thermodynamics unchanged by varying k c ud 2 with modified Φ -potential Φ at µ > 0 Φ -dof c ud 2 < 0

23 c ud 2 controlled by Φ = 1 2 Φ Φ Φ around µ = 0 c ud 2 normalized to Φ -variation Lattice: Döring [PhD Thesis] Universal for varying k Variations of Φ are responsable for c ud 2 < 0.

24 Susceptibilities χ ud beyond mean field χ ud /χ uu in MF χ ux (T, µ) T 2 ( µ = 2c2 ux + 12cux T Fluctuation effects: χ ud 0 ) 2 ( + 30c ux µ ) 6 + with x { u, d } T Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll.

25 Susceptibilities χ ud beyond mean field χ ud /χ uu beyond MF χ ux (T, µ) T 2 ( µ = 2c2 ux + 12cux T Fluctuation effects: χ ud 0 ) 2 ( + 30c ux µ ) 6 + with x { u, d } T Lattice data: Allton et al. [A + 05], Bielefeld-Swansea coll.

26 Conclusion PNJL: Chiral symmetry breaking Confinement Entanglement of chiral and deconfinement crossover Perturbative approach used to investigate Polyakov loop: Φ Φ at µ 0 Isovector susceptibilities Variations of Φ are responsable for c2 ud < 0 Stiffness of Polyakov loop effective potential directly governs c2 ud c2 ud contains information about Polyakov loop effective potential Outlook flavors Extract Polyakov loop effective potential using c ud 2 from the lattice

27 The end. Thank you for your attention We thank the BMBF, GSI, INFN, by the DFG excellence cluster Origin and Structure of the Universe and the Elitenetzwerk Bayern for supporting this work.

28 Bibliography I C. R. Allton et al., Thermodynamics of two flavor qcd to sixth order in quark chemical potential, Phys. Rev. D71 (2005), G. Boyd et al., Thermodynamics of su(3) lattice gauge theory, Nucl. Phys. B69 (1996), 19. M. Cheng et al., The transition temperature in QCD, Phys. Rev. D7 (2006), Kenji Fukushima, Chiral effective model with the polyakov loop, Phys. Lett. B591 (200), O. Kaczmarek, F. Karsch, P. Petreczky, and F. Zantow, Heavy quark anti-quark free energy and the renormalized polyakov loop, Phys. Lett. B53 (2002), 1 7. Olaf Kaczmarek and Felix Zantow, Static quark anti-quark interactions in zero and finite temperature qcd. i: Heavy quark free energies, running coupling and quarkonium binding, Phys. Rev. D71 (2005),

29 Bibliography II S. Roessner, T. Hell, C. Ratti, and W. Weise, The chiral and deconfinement crossover transitions: PNJL model beyond mean field. Claudia Ratti, Michael A. Thaler, and Wolfram Weise, Phases of QCD: Lattice thermodynamics and a field theoretical model, Phys. Rev. D73 (2006), Zhao Zhang and Yu-Xin Liu, Coupling of pion condensate, chiral condensate and polyakov loop in an extended njl model, Phys. Rev. C75 (2007),

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Cristoforetti, and Wolfram Weise Physik Department Technische Universität München INT Workshop The QCD Critical Point July 28 August 22, 2008

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Fundamental Challenges of QCD Schladming 6 March 29 Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Wolfram Weise Is the NAMBU-GOLDSTONE scenario of spontaneous CHIRAL SYMMETRY BREAKING well established?

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

Dynamical Locking of the Chiral and the Deconfinement Phase Transition

Dynamical Locking of the Chiral and the Deconfinement Phase Transition Dynamical Locking of the Chiral and the Deconfinement Phase Transition Jens Braun Friedrich-Schiller-University Jena Quarks, Gluons, and Hadronic Matter under Extreme Conditions St. Goar 17/03/2011 J.

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

Heavy quark free energies, screening and the renormalized Polyakov loop

Heavy quark free energies, screening and the renormalized Polyakov loop Heavy quark free energies, screening and the renormalized Polyakov loop Olaf Kaczmarek Felix Zantow Universität Bielefeld October 6, 26 VI Workshop III, Rathen, October, 26 p./9 Charmonium suppression..75.5

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Dimensional reduction near the deconfinement transition

Dimensional reduction near the deconfinement transition Dimensional reduction near the deconfinement transition Aleksi Kurkela ETH Zürich Wien 27.11.2009 Outline Introduction Dimensional reduction Center symmetry The deconfinement transition: QCD has two remarkable

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking

Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Lattice QCD study for relation between quark-confinement and chiral symmetry breaking Quantum Hadron Physics Laboratory, Nishina Center, RIKEN Takahiro M. Doi ( 土居孝寛 ) In collaboration with Hideo Suganuma

More information

The Flavors of the Quark-Gluon Plasma

The Flavors of the Quark-Gluon Plasma The Flavors of the Quark-Gluon Plasma Berndt Mueller SQM 2008 - October 6-10, 2008 The QGP is a strange state of matter 2 QCD phase diagram T Quark- Gluon Critical end point? Plasma Strange quarks play

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

QCD thermodynamics OUTLINE:

QCD thermodynamics OUTLINE: QCD thermodynamics Frithjof Karsch, BNL OUTLINE: Equation of state and transition temperature QCD phase diagram close to the chiral limit Charge fluctuations and the RHIC search for the critical point

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University

1/N Expansions in String and Gauge Field Theories. Adi Armoni Swansea University 1/N Expansions in String and Gauge Field Theories Adi Armoni Swansea University Oberwoelz, September 2010 1 Motivation It is extremely difficult to carry out reliable calculations in the strongly coupled

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

arxiv:hep-lat/ v2 17 Jun 2005

arxiv:hep-lat/ v2 17 Jun 2005 BI-TP 25/8 and BNL-NT-5/8 Static quark anti-quark interactions in zero and finite temperature QCD. I. Heavy quark free energies, running coupling and quarkonium binding Olaf Kaczmarek Fakultät für Physik,

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

Lattice QCD and transport coefficients

Lattice QCD and transport coefficients International Nuclear Physics Conference, Adelaide, Australia, 13 Sep. 2016 Cluster of Excellence Institute for Nuclear Physics Helmholtz Institute Mainz Plan Strongly interacting matter at temperatures

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

Quark condensates and the deconfinement transition

Quark condensates and the deconfinement transition Quark condensates and the deconfinement transition Institute for Nuclear Physics, Darmstadt University of Technology, Schlossgartenstraße 9, 64289 Darmstadt, Germany GSI Helmholtzzentrum für Schwerionenforschung

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Polyakov loop extended NJL model with imaginary chemical potential

Polyakov loop extended NJL model with imaginary chemical potential SAGA-HE-238-7 Polyakov loop extended NJL model with imaginary chemical potential Yuji Sakai, 1, Kouji Kashiwa, 1, Hiroaki Kouno, 2, and Masanobu Yahiro 1, 1 Department of Physics, Graduate School of Sciences,

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

The phase diagram of two flavour QCD

The phase diagram of two flavour QCD The phase diagram of two flavour QCD Jan M. Pawlowski Universität Heidelberg & ExtreMe Matter Institute Quarks, Gluons and the Phase Diagram of QCD St. Goar, September 2nd 2009 Outline Phase diagram of

More information

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256.

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256. Selected Publications Wolfram Weise status: December 2017 A. Monographs Pions and Nuclei (with T.E.O. Ericson) International Series of Monographs in Physics Oxford University Press Clarendon, Oxford 1988

More information

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD

Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Critical Temperature and Equation of state from N f = 2 twisted mass lattice QCD Florian Burger Humboldt University Berlin for the tmft Collaboration: E. M. Ilgenfritz, M. Müller-Preussker, M. Kirchner

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

arxiv:hep-lat/ v1 5 Feb 2007

arxiv:hep-lat/ v1 5 Feb 2007 BI-TP 27/1 BNL-NT-7/5 Color Screening and Quark-Quark Interactions in Finite Temperature QCD Matthias Döring, Kay Hübner, Olaf Kaczmarek, and Frithjof Karsch Fakultät für Physik, Universität Bielefeld,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Center-symmetric dimensional reduction of hot Yang-Mills theory

Center-symmetric dimensional reduction of hot Yang-Mills theory Center-symmetric dimensional reduction of hot Yang-Mills theory Institut für Theoretische Physik, ETH Zürich, CH-809 Zürich, Switzerland E-mail: kurkela@phys.ethz.ch It is expected that incorporating the

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Quarkonium Free Energy on the lattice and in effective field theories

Quarkonium Free Energy on the lattice and in effective field theories Quarkonium Free Energy on the lattice and in effective field theories J. H. Weber 1,2 in collaboration with A. Bazavov 2, N. Brambilla 1, P. Petreczky 3 and A. Vairo 1 (TUMQCD collaboration) 1 Technische

More information

Analytic continuation from an imaginary chemical potential

Analytic continuation from an imaginary chemical potential Analytic continuation from an imaginary chemical potential A numerical study in 2-color QCD (hep-lat/0612018, to appear on JHEP) P. Cea 1,2, L. Cosmai 2, M. D Elia 3 and A. Papa 4 1 Dipartimento di Fisica,

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Gapless Dirac Spectrum at High Temperature

Gapless Dirac Spectrum at High Temperature Department of Physics, University of Pécs H-7624 Pécs, Ifjúság útja 6. E-mail: kgt@fizika.ttk.pte.hu Using the overlap Dirac operator I show that, contrary to some expectations, even well above the critical

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

(Inverse) magnetic catalysis and phase transition in QCD

(Inverse) magnetic catalysis and phase transition in QCD (Inverse) magnetic catalysis and phase transition in QCD 1 Theory Seminar ITP Wien, Monday October 6 2014. 1 In collaboration with Anders Tranberg (University of Stavanger), William Naylor and Rashid Khan

More information

Lattice calculation of the Polyakov loop and Polyakov loop correlators

Lattice calculation of the Polyakov loop and Polyakov loop correlators Lattice calculation of the Polyakov loop and Polyakov loop correlators Johannes Heinrich Weber 1,a (on behalf of TUMQCD collaboration) 1 Technische Universität München, Physik Department Tf, James-Franck-Str.

More information

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT

Quark Mass and Flavour Dependence of the QCD Phase Transition. F. Karsch, E. Laermann and A. Peikert ABSTRACT BI-TP 2000/41 Quark Mass and Flavour Dependence of the QCD Phase Transition F. Karsch, E. Laermann and A. Peikert Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany ABSTRACT We analyze

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Heavy quark bindings at high temperature

Heavy quark bindings at high temperature Universität Bielefeld Olaf Kaczmarek Felix Zantow Matthias Döring Kay Hübner Frithjof Karsch RBC-Bielefeld Sourendu Gupta February 9, 27 apenext workshop, Firenze, February 9, 27 p.1/25 Machines for lattice

More information

Goldstone bosons in the CFL phase

Goldstone bosons in the CFL phase Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and

More information

The symmetries of QCD (and consequences)

The symmetries of QCD (and consequences) The symmetries of QCD (and consequences) Sinéad M. Ryan Trinity College Dublin Quantum Universe Symposium, Groningen, March 2018 Understand nature in terms of fundamental building blocks The Rumsfeld

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

Finite Chemical Potential in N t = 6 QCD

Finite Chemical Potential in N t = 6 QCD Finite Chemical Potential in N t = 6 QCD Rajiv Gavai and Sourendu Gupta ILGTI: TIFR Lattice 2008, Williamsburg July 15, 2008 Rajiv Gavai and Sourendu Gupta ILGTI: TIFRLattice Finite Chemical 2008, Williamsburg

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

arxiv: v1 [hep-ph] 10 Jan 2019

arxiv: v1 [hep-ph] 10 Jan 2019 Nisho-1-2019 Nonvanishing pion masses for vanishing bare quark masses Aiichi Iwazaki Nishogakusha University, 6-16 Sanbancho Chiyoda-ku Tokyo 102-8336, Japan. (Dated: Jan. 10, 2019) arxiv:1901.03045v1

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

arxiv: v2 [hep-ph] 8 May 2009

arxiv: v2 [hep-ph] 8 May 2009 Pion Superfluidity beyond Mean Field Approximation In Nambu Jona-Lasinio Model Chengfu Mu, Pengfei Zhuang Physics Department, Tsinghua University, Beijing 184, China (Dated: May 11, 29) We investigate

More information

arxiv: v1 [hep-ph] 18 Feb 2016

arxiv: v1 [hep-ph] 18 Feb 2016 Nuclear Physics A Nuclear Physics A 00 (2016) 1 5 www.elsevier.com/locate/procedia arxiv:1602.05811v1 [hep-ph] 18 Feb 2016 Abstract Confronting fluctuations of conserved charges in central nuclear collisions

More information

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer

QCD matter with isospin-asymmetry. Gergely Endrődi. Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer QCD matter with isospin-asymmetry Gergely Endrődi Goethe University of Frankfurt in collaboration with Bastian Brandt, Sebastian Schmalzbauer SIGN 2017 22. March 2017 Outline introduction: QCD with isospin

More information

Orientifold planar equivalence.

Orientifold planar equivalence. Orientifold planar equivalence. An overview and some hints from the lattice**. Agostino Patella* Scuola Normale Superiore, Pisa INFN, Pisa 21/3/2007 * PhD advisor: Adriano Di Giacomo ** Based on: - A.

More information