Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS

Size: px
Start display at page:

Download "Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS"

Transcription

1 Fundamental Challenges of QCD Schladming 6 March 29 Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Wolfram Weise Is the NAMBU-GOLDSTONE scenario of spontaneous CHIRAL SYMMETRY BREAKING well established? Entanglement of CHIRAL and DECONFINEMENT transitions in QCD? PHASE DIAGRAM at finite BARYON DENSITY, NUCLEAR MATTER, CRITICAL POINT, and all that...

2 Topic I LOW-ENERGY QCD with Light Quarks Meson Sector... a QUANTITATIVE Science!

3 Chiral Symmetry Breaking Scenario - Lattice QCD -.8 (am! ) 2.6 Chiral Perturbation Theory m! "676 MeV.8.6 fit to 5 points (am PS ) 2 fit to 4 points (pion mass) M. Lüscher Proc. Lattice 25 physical point amq.2.4 Ph. Boucaud et al. (ETM Coll.) Phys. Lett. B65 (27) 34.8 quark mass (aµ) Gell-Mann, Oakes, Renner relation works m 2 π = m u + m d qq + O(m 2 q) f 2 π Chiral Perturbation Theory applicable up to pion masses < 5 MeV ~ confirmation of standard spontaneous symmetry breaking with Pion as Nambu-Goldstone Boson and Strong Chiral Condensate

4 Test of Chiral Symmetry Breaking Scenario - Low-Energy Constants on the Lattice - Chiral Perturbation Theory at NLO vs. Lattice QCD: m 2 π = m 2 [ 1 + m2 32π 2 f 2 lnm2 Λ 2 3 ] + O(m 4 ) f π = f [1 m2 16π 2 f 2 lnm2 Λ 2 4 ( m 2 = m ) q f 2 ψψ ] + O(m 4 ) Low-Energy constants: l 3 ln Λ2 3 m 2 π l 4 ln Λ2 4 m 2 π wyler ( 85) ) N f =2 2 8) N f =2+1, SU(2) 8) N f =2+1, SU(3) =2+1, SU(2) f N f =2+1, SU(3) +1, SU(3) PACS-CS(`8) ETM(`7) JLQCD(`8) JLQCD(`8) l l 3 RBC/ UKQCD(`8) l l 4 ETM(`7) ETM(`7) PACS-CS(`8) RBC/UKQCD(`8) JLQCD JLQCD (`8) (`8) Colan ETM JLQC RBC RBC PACS PACS MILC Gasser & Leutwyler(`85) Colangelo et al. (`1)

5 Test of Chiral Symmetry Breaking Scenario - Pion-Pion Scattering Theory: Chiral Symmetry + Roy Equations G. Colangelo et al. Nucl. Phys. B 63 (21) 125 NA48/2 Ke4 (23+24) δ = δ δ1 1 [rad] sππ [GeV] a a 2 Precision measurements of ππ scattering lengths a, a 2 Sensitivity to K ± π + π e ± ν Theory (ChPT) l 3, l 4 EPJ C54 (28) 411 PRELIMINARY NA48/2 Ke4 (prel.) Exp (NA48/2).22 ± ± ± ±.84 (in units of m 1 π ) * NA48/2 E865 E865 Geneva Saclay NA48/2 CGKR NA48/2 CI DIRAC 25 Ke4 Data cusp Data atoms 6pts 5pts from: B. Bloch-Devaux Confinement8 5% th error Preliminary % 7

6 Test of Chiral Symmetry Breaking Scenario K S γγ... one more example of Chiral Perturbation Theory at work: ()*#+, ' "$&% "$% "$!% "./5J./1KLL K S γγ./1k45 new KLOE result: M. Martini et al. (28)!$&%!$%!$!%! #$&% #$% #$!% #!?@IE2! I6 CDEF B(K S γγ) = B(K S γγ) = (2.26 ±.12 ±.6) 1 6 in perfect agreement with ChPT

7 Low-Energy QCD with light quarks is indeed realized as an Effective Field Theory of Nambu-Goldstone Bosons with spontaneously broken Chiral Symmetry SU(N f ) L SU(N f ) R SU(N f ) V Non-Linear Sigma Model plus well organized corrections Chiral Perturbation Theory works as expansion in p/λ χ, m π /Λ χ Λ χ 4π f π 1 GeV N f = 2 : established as a quantitative science in the meson (Nambu-Goldstone boson) sector N f = 3 : also successful with s-quarks, but slower convergence

8 %KK-bar(MC) n spectrum, 1 the spectral informations contained in T) of the).5 correlators, schematically v 1 FT V V.! " #(V ",I=1)$! ALEPH Perturbative QCD (massless) Parton model prediction %% %3%,3%%,6%(MC) the one1.5 contained in V and the one contained in A. &%,'%%,KK (MC) Mass 2 (GeV/c 2 ) 2 y a chiral transformation. Thus, if chiral symmetry fferences of a few MeV. These spectral informations in Fig One observes the ρ-peak in the vector a ρ Mass 2 (GeV/c 2 ) 2! " #(A ",I=1)$! v Perturbative QCD (massless) Parton model prediction a 1 2 %%.8 Note on PARITY %3%,3%%,6%(MC) PARTNERS 1.5 &%,'%%,KK (MC).6 ALEPH %2%,3% %4%,3%2%,5% %KK-bar(MC) %KK-bar(MC) Spontaneous Chiral Symmetry.4 Breaking v 1 -a 1 a 1 is a (dynamical) low-energy,.2 long wavelength phenomenon Current algebra: m 2 a 1 m 2 ρ = 8π 2 fπ Mass 2 (GeV/c 2 ) 2 Traces of ChSB disappear at high energy s >> 4π fπ 1 GeV ρ a 1! " #(V,A,I=1)$! ALEPH Perturbative QCD/Parton model V A %4%, %KK-b Mass 2 (GeV/c 2 ) Mass 2 (GeV/c 2 ) 2

9 Topic II DECONFINEMENT and CHIRAL TRANSITION Dynamical entanglement?

10 LATTICE QCD THERMODYNAMICS: CHIRAL and DECONFINEMENT TRANSITIONS spontaneously broken chiral symmetry ψψ T l,s ψψ T= Tr chiral condensate p4fat3: N τ =4 6 8 T [MeV] crossover transitions no critical temperature in strict sense chiral and deconfinement transitions seem to coincide LΦ ren Lattice QCD (2+1 flavours) almost physical quark masses M. Cheng et al. Bielefeld/BNL-Riken/Columbia Phys. Rev. D77 (28) F. Karsch et al. arxiv: [hep-lat] spontaneously broken Z(3) symmetry Tr Polyakov loop N τ =4 6 8 T [MeV] but: still under dispute (see: Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo; Phys. Lett. B643 (26) 46 )

11 Modelling the CHIRAL and DECONFINEMENT Transitions POLYAKOV LOOP dynamics Confinement Synthesis of K. Fukushima (23) C. Ratti, M. Thaler, W.W. (25) PNJL MODEL NAMBU & JONA-LASINIO model Chiral Symmetry Action : S(ψ, ψ, φ) = β=1/t Fermion (quark) effective Hamiltonian Polyakov loop effective potential dτ d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] V T U(φ, T) VT V identify collective degrees of freedom (order parameters) which drive dynamics and thermodynamics quarks as quasiparticles with dynamically generated masses

12 Sketch of (non-local) PNJL MODEL Action : S(ψ, ψ, φ) = β=1/t dτ V d 3 x [ ψ τ ψ + H(ψ, ψ, φ) ] T V VT U(φ, T) Fermionic Hamiltonian density (NJL) : H = iψ ( α + γ 4 m φ) ψ + V(ψ, ψ ) chiral invariant Non-local fermion interaction Temporal background gauge field Φ = 1 N c Tr [ exp ( i 1/T φ = φ 3 λ 3 + φ 8 λ 8 )] dτ A 4 1 Tr exp(iφ/t) 3 SU(3) Polyakov loop Effective potential : U(Φ) confinement T < T c U(Φ) T > T c deconfinement

13 Polyakov Loop Effective Potential from PURE GLUE Lattice Thermodynamics Minimization of U(Φ(T), T) = p(t) R. Pisarsky (2) K. Fukushima (24) U(Φ, T) = 1 2 a(t) Φ Φ b(t) ln[1 6 Φ Φ + 4(Φ 3 + Φ 3 ) 3(Φ Φ) 2 ] energy density, entropy density, pressure ε T 4 3 s 4 T 3 3 p T TT c lattice results: O. Kaczmarek et al. PLB 543 (22) 41 first order phase transition U U T Polyakov loop effective potential.5 T.75 T 2. T 1. T 1.25 T S. Rößner, C. Ratti, W. W. PRD 75 (27) 347 T c (pure gauge) T 27 MeV

14 GAP EQUATION momentum dependent, dynamical quark mass M(p) = M(p) m + = 4N f N c G d 4 q M(q) C(p q) (2π) 4 q 2 + M 2 (q) M(p) [GeV].4 dynamical quark mass old NJL instanton model non-local PNJL lattice QCD P.O. Bowman et al. (22) consistent with self-energy from Dyson-Schwinger calc. (Landau gauge) iσ(p) = p [GeV] T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) 1422 C.D. Roberts, S.M. Schmidt, et al. R. Alkofer et al. + many others

15 Entanglement of CONFINEMENT and SPONTANEOUS CHIRAL SYMMETRY BREAKING... within thermodynamics of PNJL model σ/σ chiral condensate ψψ T Φ ψψ 2nd order T [GeV] Polyakov loop 1st order chiral limit m q = model (2 flavors) m q 3.5 MeV S. Rößner, C. Ratti, W. W.: Phys. Rev. D 75 (27) 347 T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) Φ M. Cheng et al. Phys. Rev. D77 (28) chiral condensate ψψ T ψψ Lattice QCD (2+1 flavours) Φ Polyakov loop T/T c

16 LATTICE QCD THERMODYNAMICS: TRANSITION TEMPERATURE(S) Chiral ( ) and Deconfinement ( ) transitions monitored through susceptibilities T [MeV] } N f = 2?? } M. Cheng et al., Phys. Rev. D77 (28) N f = Y. Aoki et al., Phys. Lett. B643 (26) 46 from: F. Karsch arxiv: [hep-lat]

17 Topic III SCENARIOS at FINITE DENSITY Critical Point? (Existence? Location?) Constraints from NUCLEAR MATTER

18 PHASE DIAGRAM and CRITICAL POINT temperature µ [GeV].3.4 quark chemical potential σ/ σ.5. CEP profile of scalar field / chiral order parameter from non-local PNJL model T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) T [GeV]

19 PHASE DIAGRAM Issues: Critical Point Diquarks and SuperConducting Phase hadronic phase qq PNJL model with local fermion interactions quark gluon phase N f = 2 diquark phase qq S. Rößner, C. Ratti, W. W.: Phys. Rev. D 75 (27) 347 T MeV quark chemical potential K 1.4 K K 1.2 K K K K.7 K K.656 K K.654 K Μ MeV N f = K.9 K K.8 K K. Fukushima (28); N. Bratovich, T. Hell, S. Rößner, W.W. (29) critical point: role of axial U(1) A breaking (`t Hooft interaction) u u d d K s s Location of critical point depends sensitively on quark masses, axial anomaly, etc.... U(1) A (Yamamoto, Hatsuda, Baym)

20 non-zero CHEMICAL POTENTIAL (contd.) µ µ P. de Forcrand, O. Philipsen m s physical point * QCD critical point m u,d µ = µ m u,d X m u,d crossover m s 1rst m s! Strategies: QCD critical point DISAPPEARED Taylor expansion around µ = µ iµ analytic continuation m u,d X m u,d crossover m s 1rst m s!

21 NUCLEAR THERMODYNAMICS NUCLEAR CHIRAL (PION) DYNAMICS BINDING & SATURATION: Yukawa + Van der Waals + Pauli N π π N V(r) e 2m πr + N N... plus contact terms N, r 6 P(m π r) P [MeV/fm 3 ] nuclear matter: equation of state pressure 3-loop in-medium ChEFT T = 25 MeV 2 T=25MeV T=2MeV T=15MeV T=1MeV T=5MeV ρ [fm -3 ] T = T=MeV Liquid - Gas Transition at Critical Temperature T = 15 MeV c (empirical: T = MeV) c baryon density S. Fritsch, N. Kaiser, W. W. : Nucl. Phys. A 75 (25) 259

22 NUCLEAR MATTER EQUATION of STATE VIRIAL EXPANSION P = ρ T [ 1 + B(T) ρ + C(T) ρ ] *)+),- & ). )"!("!'"!&"!%"!$"!#" Nuclear *@/A Matter %6B)C5?15)DCEFGH-H4E),H )9)!)(('),- & ) :)9)(!;'<&&),- & )1=!( >)9)!(;'#$),- & )12!'?)9)";"%%###!),- & )1=!& 1)9)!";"""#),- B(T) & )12!% 1st virial coefficient 4 35 in-medium chiral effective field theory S. Fiorilla, N. Kaiser, W. W. C(T) Hyperbolic fit Nuclear Matter!!" )$ )(" )($ )'" )'$ /)+12. Virial coefficients have a chiral expansion as well: C [fm 6 ] nd virial coefficient Parameter: C(T) K = 1528±12 MeV fm 6 B(T, m π ), C(T, m π ) T [MeV]

23 CHIRAL CONDENSATE at finite DENSITY T sigma term qq ρ qq = 1 ρ f 2 π baryon chemical potential m q M N m q [ σn m 2 π? ( 1 3 p2 F 1 M 2 N T first ψψ order ψψ µ B in-medium chiral effective field theory ) +... baryon density ρ + m 2 π coexistence N? π π ( )] Eint (p F ) A N (T = ) (free) Fermi gas of nucleons nuclear interactions (dependence on pion mass)

24 CHIRAL CONDENSATE: DENSITY DEPENDENCE In-medium Chiral Effective Field Theory (NLO 3-loop) constrained by realistic nuclear equation of state N. Kaiser, Ph. de Homont, W. W. Phys. Rev. C 77 (28) 2524 Symmetric Nuclear Matter condensate ratio ψψ (ρ) ψψ (ρ = ). chiral limit m π ρ ρ [fmρ [fm 3-3 ] chiral limit m π T = chiral in-medium dynamics m π =.14 GeV leading order leading order (Fermi gas) Substantial change of symmetry breaking scenario between chiral limit m q = and physical quark mass m q 5 MeV Nuclear Physics would be very different in the chiral limit!

25 Selected Challenges in LOW ENERGY QCD and HADRON PHYSICS Is the NAMBU-GOLDSTONE scenario of spontaneous CHIRAL SYMMETRY BREAKING well established? Yes! Entanglement of CHIRAL and DECONFINEMENT crossover transitions in QCD? transition temperatures coincide in PNJL models and on the Lattice (modulo Lattice disputes) PHASE DIAGRAM at low T, finite BARYON DENSITY, NUCLEAR MATTER, CRITICAL POINT, and all that... basically unknown role of axial U(1) anomaly constraints from realistic nuclear EoS

26 Supplementary Materials

27 Results PNJL model vs. Lattice QCD Thermodynamics PRESSURE and ENERGY DENSITY at zero chemical potential p = Ω(T, µ = ) ε = T p(t, µ = ) T p(t, µ = ) (ε 3P )/T MF+π, σ MF interaction measure T/T c (ε-3p)/t 4 T [MeV] Tr asqtad: N τ =6 8 p4: N τ =6 8 hotqcd preliminary T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) 1422 lattice data: F. Karsch et al. : arxiv: [hep-lat]

28 Sound Velocity: PNJL and LATTICE QCD PNJL model PNJL S. Rössner, Th. Hell, C. Ratti, W.W. arxiv: [hep-ph] c 2 s = dp dε p ε N f = p/! Lattice C. Bernard et al., Phys. Rev. D 75 (27) T [MeV] N f = F. Karsch, arxiv: [hep-lat] N " =4 6 fit: p/! HRG: p/! c s 2 SB! 1/4 [(GeV/fm 3 ) 1/4 ] PNJL model works Active degrees of freedom around critical temperature Quarks as quasiparticles interacting with Polyakov loop T > T c :

29 Beyond Mean Field: Mesonic Excitations [ P/T 4 contribution of mesonic quark-antiquark modes to pressure 2.5 MF + π, σ (in-medium) 2. MF + π (in-medium) MF quarks [ ] [ mesons (mostly π) T. Hell, S. Rößner, M. Cristoforetti, W. W. Phys. Rev. D79 (29) 1422 p qk p q + pk. Π π,σ (ν m, p ) = 4N f i=,± T n Z T/T c P meson (T ) = M=π,σ d M 2 T m Z d 3 p (2π) 3 ln [1 GΠ M(ν m, p )] d 3 k (2π) 3 C(ωi n + ν m, k + p ) C(ω i n, k ) ωn i (ωi n + ν m) + k( k + p ) ± M(ωn i + ν m, k + p )M(ωM n i, k ) [(ωn i + ν m) 2 + ( k + p ) 2 + M(ωn i + ν m, ] k + p ) [(ω 2 n i )2 + ] +M 2 k 2 + +MM 2i (ωn i, k ) 2 (3.1

30 Non-zero QUARK CHEMICAL POTENTIAL Role of CONFINEMENT (POLYAKOV loop dynamics) suppression of quark propagator in forbidden region 1.8 NJL classic (no confinement) quark number density C. Ratti, M. Thaler, W.W. PRD 73 (26) nqt PNJL (incl. confinement) Μ 12 MeV TT c Lattice data : Allton et al. Phys. Rev. D 68 (23)

31 Non-zero QUARK CHEMICAL POTENTIAL Taylor expansion of pressure: p(t, µ) = T 4 n c n (T) ( µ T) n c 2 c 4 c 6 S. Rößner, C. Ratti, W. W. Phys. Rev. D 75 (27) 347 Lattice: C.R. Allton et al. Phys. Rev. D 71 (25) 5458

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions

SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions QCD Green s Functions, Confinement and Phenomenology ECT*, Trento, 1 September 29 SYMMETRY BREAKING PATTERNS in QCD: CHIRAL and DECONFINEMENT Transitions Wolfram Weise Modelling the PHASES of QCD in contact

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

LOW-ENERGY QCD and STRANGENESS in the NUCLEON PAVI 09 Bar Harbor, Maine, June 009 LOW-ENERGY QCD and STRANGENESS in the NUCLEON Wolfram Weise Strategies in Low-Energy QCD: Lattice QCD and Chiral Effective Field Theory Scalar Sector: Nucleon Mass and

More information

Thermodynamics. Quark-Gluon Plasma

Thermodynamics. Quark-Gluon Plasma Thermodynamics of the Quark-Gluon Plasma Claudia Ratti Torino University and INFN, Italy Claudia Ratti 1 Quick review of thermodynamics In lectures I and II we saw... QCD and its symmetries Polyakov loop

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

arxiv: v1 [hep-lat] 26 Dec 2009

arxiv: v1 [hep-lat] 26 Dec 2009 arxiv:091.5037v1 [hep-lat] 6 Dec 009 On Equation of State at physical quark masses Physics Department, Brookhaven National Laboratory, Upton NY 11973 E-mail: petreczk@bnl.gov QCD equation of state is calculated

More information

arxiv: v1 [hep-lat] 5 Nov 2007

arxiv: v1 [hep-lat] 5 Nov 2007 arxiv:0711.0661v1 [hep-lat] 5 Nov 2007 Recent lattice results on finite temperature and density QCD, part II Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA E-mail: karsch@bnl.gov

More information

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky

LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky LQCD at non-zero temperature : strongly interacting matter at high temperatures and densities Péter Petreczky QCD and hot and dense matter Lattice formulation of QCD Deconfinement transition in QCD : EoS

More information

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256.

Selected Publications Wolfram Weise. B. Selected Publications last years (since 2005) status: December 2017 A. Monographs 256. Selected Publications Wolfram Weise status: December 2017 A. Monographs Pions and Nuclei (with T.E.O. Ericson) International Series of Monographs in Physics Oxford University Press Clarendon, Oxford 1988

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors

Thermodynamics of a Nonlocal PNJL Model for Two and Three Flavors for Two and Three Flavors Thomas Hell, Simon Rößner, Marco Cristoforetti, and Wolfram Weise Physik Department Technische Universität München INT Workshop The QCD Critical Point July 28 August 22, 2008

More information

Bulk Thermodynamics: What do we (want to) know?

Bulk Thermodynamics: What do we (want to) know? Bulk Thermodynamics: What do we (want to) know? µ = : properties of transition in, ( + 1)-flavor QCD: crossover or phase transition, deconfinement vs. chiral symmetry restoration, universality,... T c,

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] (to appear in Phys. Lett. B)

More information

arxiv: v1 [hep-ph] 15 Jul 2013

arxiv: v1 [hep-ph] 15 Jul 2013 Compact Stars in the QCD Phase Diagram III (CSQCD III) December 2-5, 202, Guarujá, SP, Brazil http://www.astro.iag.usp.br/~foton/csqcd3 Phase diagram of strongly interacting matter under strong magnetic

More information

High Temperature/Density QCD

High Temperature/Density QCD High Temperature/Density QCD Frithjof Karsch, BNL and Bielefeld University Temperature ~17 MeV Early Universe Future LHC Experiments Crossover Current RHIC Experiments RHIC Energy Scan Critical Point 1

More information

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1

Lattice QCD. QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics QCD 2002, I. I. T. Kanpur, November 19, 2002 R. V. Gavai Top 1 Lattice QCD : Some Topics Basic Lattice

More information

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky

Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky Deconfinement at high temperatures and moderately high baryon densities Péter Petreczky What is the limiting temperature on hadronic matter? What is the nature of the deconfined matter? In this talk: Chiral

More information

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004

from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 The chiral critical point in 3 flavor QCD from Taylor expansion at non-zero density From Lattices to Stars INT, University of Washington, Seattle, 28. April 2004 Christian Schmidt Universität Wuppertal

More information

arxiv: v1 [hep-ph] 2 Nov 2009

arxiv: v1 [hep-ph] 2 Nov 2009 arxiv:911.296v1 [hep-ph] 2 Nov 29 QCD Thermodynamics: Confronting the Polyakov-Quark-Meson Model with Lattice QCD J. Wambach Institut für Kernphysik, TU Darmstadt, D-64289 Darmstadt, Germany and B.-J.

More information

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory

F. Karsch for USQCD, LQCD II p. 1/27. Lattice QCD at High Temperature and Density. Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 1/27 Lattice QCD at High Temperature and Density Frithjof Karsch for USQCD Brookhaven National Laboratory F. Karsch for USQCD, LQCD II p. 2/27 Towards A New State of Matter

More information

INTERFACE of QCD and NUCLEAR PHYSICS

INTERFACE of QCD and NUCLEAR PHYSICS Confinement8 Mainz 5 September 28 ITERFACE of QCD and UCLEAR PHYSICS Wolfram Weise Low-Energy QCD and CHIRAL SYMMETRY uclear Forces in the context of CHIRAL EFFECTIVE FIELD THEORY uclear Matter Energy

More information

Bulk Thermodynamics in SU(3) gauge theory

Bulk Thermodynamics in SU(3) gauge theory Bulk Thermodynamics in SU(3) gauge theory In Monte-Carlo simulations ln Z(T) cannot be determined but only its derivatives computational cost go as large cutoff effects! Boyd et al., Nucl. Phys. B496 (1996)

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Can we locate the QCD critical endpoint with the Taylor expansion?

Can we locate the QCD critical endpoint with the Taylor expansion? Can we locate the QCD critical endpoint with the Taylor expansion? in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach 23.6.21 Mathias Wagner Institut für Kernphysik TU Darmstadt Outline

More information

arxiv: v2 [hep-ph] 17 Dec 2008

arxiv: v2 [hep-ph] 17 Dec 2008 Dynamics and thermodynamics of a nonlocal Polyakov Nambu Jona-Lasinio model with running coupling T. Hell, S. Rößner, M. Cristoforetti, and W. Weise arxiv:0810.1099v [hep-ph] 17 Dec 008 Physik-Department,

More information

Role of fluctuations in detecting the QCD phase transition

Role of fluctuations in detecting the QCD phase transition Role of fluctuations in detecting the QCD phase transition Fluctuations of the Polyakov loop and deconfinement in a pure SU(N) gauge theory and in QCD Fluctuations of conserved charges as probe for the

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations

Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations Chiral and angular momentum content of rho and rho mesons from dynamical lattice calculations L. Ya. Glozman Institut für Physik, FB Theoretische Physik, Universität Graz With Christian Lang and Markus

More information

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential

From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential From Quarks and Gluons to Hadrons: Functional RG studies of QCD at finite Temperature and chemical potential Jens Braun Theoretisch-Physikalisches Institut Friedrich-Schiller Universität Jena Quarks, Hadrons

More information

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature

Lecture II: Owe Philipsen. The ideal gas on the lattice. QCD in the static and chiral limit. The strong coupling expansion at finite temperature Lattice QCD, Hadron Structure and Hadronic Matter Dubna, August/September 2014 Lecture II: Owe Philipsen The ideal gas on the lattice QCD in the static and chiral limit The strong coupling expansion at

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

QCD in an external magnetic field

QCD in an external magnetic field QCD in an external magnetic field Gunnar Bali Universität Regensburg TIFR Mumbai, 20.2.12 Contents Lattice QCD The QCD phase structure QCD in U(1) magnetic fields The B-T phase diagram Summary and Outlook

More information

The QCD phase diagram at real and imaginary chemical potential

The QCD phase diagram at real and imaginary chemical potential Strongnet Meeting Trento, October 211 The QCD phase diagram at real and imaginary chemical potential Owe Philipsen Is there a critical end point in the QCD phase diagram? Is it connected to a chiral phase

More information

Thermodynamics of (2+1)-flavor QCD from the lattice

Thermodynamics of (2+1)-flavor QCD from the lattice INT Seattle, December 7, 2006 Thermodynamics of (2+1)-flavor QCD from the lattice Christian Schmidt for the RBC-Bielefeld Collaboration --- results from QCDOC --RIKEN BNL Saumen Datta Frithjof Karsch Chulwoo

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR CBM Meeting VECC Kolkata July 31, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry Broken

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

QCD Thermodynamics Péter Petreczky

QCD Thermodynamics Péter Petreczky QCD Thermodynamics Péter Petreczky What is deconfinement in QCD? What is the nature of the deconfined matter? Tools: screening of color charges, EoS, fluctuation of conserved quantum numbers QGP: state

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Heavy quark free energies and screening from lattice QCD

Heavy quark free energies and screening from lattice QCD Heavy quark free energies and screening from lattice QCD Olaf Kaczmarek Universität Bielefeld February 9, 29 RBC-Bielefeld collaboration O. Kaczmarek, PoS CPOD7 (27) 43 RBC-Bielefeld, Phys.Rev.D77 (28)

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL

QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Marco Ruggieri [ 魔流虎ルジエーリ ]) 京都大学基礎物理学研究所 QUARK MATTER WITH AXIAL CHEMICAL POTENTIAL Bari, 2011 年 09 月 23 日 Outline Axial Chemical Potential: motivations The Model Phase Diagram with an Axial Chemical

More information

arxiv:hep-lat/ v1 5 Oct 2006

arxiv:hep-lat/ v1 5 Oct 2006 arxiv:hep-lat/6141v1 5 Oct 26 Singlet Free Energies and the Renormalized Polyakov Loop in full QCD for RBC-Bielefeld collaboration Niels Bohr Institute E-mail: kpetrov@nbi.dk We calculate the free energy

More information

With the FRG towards the QCD Phase diagram

With the FRG towards the QCD Phase diagram With the FRG towards the QCD Phase diagram Bernd-Jochen Schaefer University of Graz, Austria RG Approach from Ultra Cold Atoms to the Hot QGP 22 nd Aug - 9 th Sept, 211 Helmholtz Alliance Extremes of Density

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

Towards thermodynamics from lattice QCD with dynamical charm Project A4

Towards thermodynamics from lattice QCD with dynamical charm Project A4 Towards thermodynamics from lattice QCD with dynamical charm Project A4 Florian Burger Humboldt University Berlin for the tmft Collaboration: E.-M. Ilgenfritz (JINR Dubna), M. Müller-Preussker (HU Berlin),

More information

The QCD phase diagram at low baryon density from lattice simulations

The QCD phase diagram at low baryon density from lattice simulations ICHEP 2010 Paris, July 2010 The QCD phase diagram at low baryon density from lattice simulations Owe Philipsen Introduction Lattice techniques for finite temperature and density The phase diagram: the

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Phase diagram of strongly interacting matter under strong magnetic fields.

Phase diagram of strongly interacting matter under strong magnetic fields. Phase diagram of strongly interacting matter under strong magnetic fields. Introduction N. N. Scoccola Tandar Lab -CNEA Buenos Aires The PNJL and the EPNJL models under strong magnetic fields Results PLAN

More information

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa

Bottomonium melting at T >> Tc. Pedro Bicudo CFTP, IST, Lisboa Bottomonium melting at T >> Tc Pedro Bicudo CFTP, IST, Lisboa Motivation The finite T string tension The quark mass gap equation with finite T and finite quark mass Chiral symmetry and confinement crossovers

More information

PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN

PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN Mainz, 23. November 2004 PHYSIK der STARKEN WECHSELWIRKUNG: PHASEN und STRUKTUREN aus QUARKS und GLUONEN Wolfram Weise TU München Stichworte zur Quanten Chromo Dynamik Struktur und Masse des Nukleons Niederenergie

More information

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany

G2 gauge theories. Axel Maas. 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany G2 gauge theories Axel Maas 14 th of November 2013 Strongly-Interacting Field Theories III Jena, Germany Overview Why G2? Overview Why G2? G2 Yang-Mills theory Running coupling [Olejnik, Maas JHEP'08,

More information

QCD confinement and chiral crossovers, two critical points?

QCD confinement and chiral crossovers, two critical points? QCD confinement and chiral crossovers, two critical points? CFTP, Dep. Física, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal E-mail: bicudo@ist.utl.pt We study the QCD phase diagram,

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

Spin-Orbit Interactions in Nuclei and Hypernuclei

Spin-Orbit Interactions in Nuclei and Hypernuclei Ab-Initio Nuclear Structure Bad Honnef July 29, 2008 Spin-Orbit Interactions in Nuclei and Hypernuclei Wolfram Weise Phenomenology Aspects of Chiral Dynamics and Spin-Orbit Forces Nuclei vs. -Hypernuclei:

More information

The QCD CEP in the 3 flavoured constituent quark model

The QCD CEP in the 3 flavoured constituent quark model The QCD CEP in the 3 flavoured constituent quark model Péter Kovács HAS-ELTE Statistical and Biological Physics Research Group Rab, aug. 3 - sept. 3, 27 Motivation for using effective models to describe

More information

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution

Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Lattice based Equation(s) of State and its (their) effect(s) on the hydrodynamical evolution Pasi Huovinen J. W. Goethe Universität, Frankfurt Quantifying the properties of Hot QCD matter June 11, 1, Institute

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Axial symmetry in the chiral symmetric phase

Axial symmetry in the chiral symmetric phase Axial symmetry in the chiral symmetric phase Swagato Mukherjee June 2014, Stoney Brook, USA Axial symmetry in QCD massless QCD Lagrangian is invariant under U A (1) : ψ (x) e i α ( x) γ 5 ψ(x) μ J 5 μ

More information

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field

The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field The Phase Structure of the Polyakov Quark-Meson Model beyond Mean Field Tina Katharina Herbst In Collaboration with B.-J. Schaefer and J.M. Pawlowski arxiv: 18.81 [hep-ph] 5th International Conference

More information

N f = 1. crossover. 2nd order Z(2) m, m

N f = 1. crossover. 2nd order Z(2) m, m April 24 QCD Thermodynamics from Imaginary Owe Philipsen (University of Sussex) with Philippe de Forcrand (ETH/CERN) Motivation Imaginary chemical potential "Analyticity" of the pseudo-critical line T

More information

The QCD phase diagram from the lattice

The QCD phase diagram from the lattice The QCD phase diagram from the lattice Sourendu Gupta ILGTI: TIFR ICPAGQP Student Day Doan Paula, Goa December 5, 2010 Zero baryon density Background Exact SU(2) flavour symmetry Exact SU(3) flavour symmetry

More information

The Polyakov loop and the Hadron Resonance Gas Model

The Polyakov loop and the Hadron Resonance Gas Model Issues The Polyakov loop and the Hadron Resonance Gas Model 1, E. Ruiz Arriola 2 and L.L. Salcedo 2 1 Grup de Física Teòrica and IFAE, Departament de Física, Universitat Autònoma de Barcelona, Spain 2

More information

Phase diagram and EoS from a Taylor expansion of the pressure

Phase diagram and EoS from a Taylor expansion of the pressure he XXVI International Symposium on Lattice Field heory (Lattice 28), Williamsburg, Virginia, USA, 28 July 14 19. Phase diagram and EoS from a aylor expansion of the pressure Christian Schmidt Universität

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

Deconfinement and Polyakov loop in 2+1 flavor QCD

Deconfinement and Polyakov loop in 2+1 flavor QCD Deconfinement and Polyakov loop in 2+ flavor QCD J. H. Weber in collaboration with A. Bazavov 2, N. Brambilla, H.T. Ding 3, P. Petreczky 4, A. Vairo and H.P. Schadler 5 Physik Department, Technische Universität

More information

Probing the QCD phase diagram with higher moments

Probing the QCD phase diagram with higher moments Probing the QCD phase diagram with higher moments in collaboration with: F. Karsch B.-J. Schaefer A. Walther J. Wambach Outline Why higher moments? Algorithmic differentiation Lattice Taylor expansion

More information

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2

POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2015.. 46.. 5 POLYAKOV LOOP FLUCTUATIONS AND DECONFINEMENT IN THE LIMIT OF HEAVY QUARKS P. M. Lo 1,, K. Redlich 1, C. Sasaki 1,2 1 Institute of Theoretical Physics, University of Wroclaw,

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

QCD thermodynamics with two-flavours of Wilson fermions on large lattices

QCD thermodynamics with two-flavours of Wilson fermions on large lattices QCD thermodynamics with two-flavours of Wilson fermions on large lattices Bastian Brandt Institute for nuclear physics In collaboration with A. Francis, H.B. Meyer, O. Philipsen (Frankfurt) and H. Wittig

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

8 September Dear Paul...

8 September Dear Paul... EXA 2011 Vienna PK Symposium 8 September 2011 Dear Paul... DEEPLY BOUND STATES of PIONIC ATOMS Experiment (GSI): K. Suzuki et al. Phys. Rev. Lett. 92 (2004) 072302 Theory: Energy Dependent Pion-Nucleus

More information

Effective Field Theories for lattice QCD

Effective Field Theories for lattice QCD Effective Field Theories for lattice QCD Stephen R. Sharpe University of Washington S. Sharpe, EFT for LQCD: Lecture 1 3/21/12 @ New horizons in lattice field theory, Natal, Brazil 1 Outline of Lectures

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13

QCD Phase Diagram. M. Stephanov. U. of Illinois at Chicago. QCD Phase Diagram p. 1/13 QCD Phase Diagram p. 1/13 QCD Phase Diagram M. Stephanov U. of Illinois at Chicago QCD Phase Diagram p. 2/13 QCD phase diagram (contemporary view) T, GeV QGP 0.1 crossover critical point hadron gas vacuum

More information

(De-)Confinement from QCD Green s functions

(De-)Confinement from QCD Green s functions (De-)Confinement from QCD Green s functions Christian S. Fischer JLU Giessen March 2012 with Jan Luecker, Jens Mueller, Christian Kellermann, Stefan Strauss Christian S. Fischer (JLU Giessen) (De-)Confinement

More information

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations Bastian Kubis Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) Bethe Center for Theoretical Physics

More information

Lattice QCD at non-zero temperature and density

Lattice QCD at non-zero temperature and density Lattice QCD at non-zero temperature and density Frithjof Karsch Bielefeld University & Brookhaven National Laboratory QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations

More information

Baryonic Spectral Functions at Finite Temperature

Baryonic Spectral Functions at Finite Temperature Baryonic Spectral Functions at Finite Temperature Masayuki Asakawa Department of Physics, Osaka University July 2008 @ XQCD 2008 QCD Phase Diagram T LHC 160-190 MeV 100MeV ~ 10 12 K RHIC crossover CEP(critical

More information

Spectral Properties of Quarks in the Quark-Gluon Plasma

Spectral Properties of Quarks in the Quark-Gluon Plasma Lattice27 : 2, Aug., 27 Spectral Properties of Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) F. Karsch and M.K., arxiv:78.299 Why Quark? Because there are quarks. in the deconfined phase

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Confinement in Polyakov gauge

Confinement in Polyakov gauge Confinement in Polyakov gauge Florian Marhauser arxiv:812.1144 QCD Phase Diagram chiral vs. deconfinement phase transition finite density critical point... Confinement Order Parameter ( β ) φ( x) = L(

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3)

Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Phase diagram at finite temperature and quark density in the strong coupling limit of lattice QCD for color SU(3) Akira Ohnishi in Collaboration with N. Kawamoto, K.Miura, T.Ohnuma Hokkaido University,

More information

QCD and the Nambu Jona-Lasinio Model

QCD and the Nambu Jona-Lasinio Model Lecture 1 QCD and the Nambu Jona-Lasinio Model Ian Cloët The University of Adelaide & Argonne National Laboratory CSSM Summer School Non-perturbative Methods in Quantum Field Theory 11 th 15 th February

More information

Investigation of QCD phase diagram from imaginary chemical potential

Investigation of QCD phase diagram from imaginary chemical potential Investigation of QCD phase diagram from imaginary chemical potential Kouji Kashiwa Collaborators of related studies Masanobu Yahiro (Kyushu Univ.) Hiroaki Kouno (Kyushu Univ.) Yuji Sakai (RIKEN) Wolfram

More information

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results

Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results Two Loop Partially Quenched and Finite Volume Chiral Perturbation Theory Results E-mail: bijnens@thep.lu.se Niclas Danielsson and Division of Mathematical Physics, LTH, Lund University, Box 118, S 221

More information

Fluctuations and QCD phase structure

Fluctuations and QCD phase structure Fluctuations and QCD phase structure Guo-yun Shao ( 邵国运 ) Xi an Jiaotong University Outline: Motivation Methods to describe fluctuations of conserved charges in heavy-ion collisions Numerical results and

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Complex Saddle Points in Finite Density QCD

Complex Saddle Points in Finite Density QCD Complex Saddle Points in Finite Density QCD Michael C. Ogilvie Washington University in St. Louis in collaboration with Hiromichi Nishimura (Bielefeld) and Kamal Pangeni (WUSTL) XQCD4 June 9th, 24 Outline

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

Constraints on the QCD phase diagram from imaginary chemical potential

Constraints on the QCD phase diagram from imaginary chemical potential SM+FT 211 Bari, September 211 Constraints on the QCD phase diagram from imaginary chemical potential Owe Philipsen Introduction: summary on QCD phase diagram Taking imaginary µ more seriously Triple, critical

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

Weakly coupled QGP? Péter Petreczky

Weakly coupled QGP? Péter Petreczky Weakly coupled QGP? Péter Petreczky QGP is expected to be strongly coupled around T c : how does this features manifest itself in terms of different quantities, how do we observe it on lattice? QGP: state

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information