Goldstone bosons in the CFL phase

Size: px
Start display at page:

Download "Goldstone bosons in the CFL phase"

Transcription

1 Goldstone bosons in the CFL phase Verena Werth 1 Michael Buballa 1 Micaela Oertel 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Observatoire de Paris-Meudon Dense Hadronic Matter and QCD Phase Transitions Workshop III Rathen, October 15, 2006

2 Outline 1 Motivation 2 Formalism Model Method 3 Results Equal quark masses Dependence on the strange quark mass Calculation of f π 4 Summary & Outlook

3 Phase diagram of neutral dense quark matter [Rüster, V.W., Buballa, Shovkovy, Rischke Phys. Rev. D 72 (2005)] first order phase transition second order phase transition normal quark matter: ud = us = ds = 0 2SC phase: ud 0, us = ds = 0 usc phase: ud, us 0, ds = 0 CFL phase: ud, us, ds 0

4 Phase diagram of neutral dense quark matter [Rüster, V.W., Buballa, Shovkovy, Rischke Phys. Rev. D 72 (2005)] first order phase transition second order phase transition normal quark matter: ud = us = ds = 0 2SC phase: ud 0, us = ds = 0 usc phase: ud, us 0, ds = 0 CFL phase: ud, us, ds 0

5 Why are we interested in Goldstone bosons? chiral symmetry breaking Goldstone bosons lightest excitations: mesons effective theories predict low meson masses and meson condensation

6 Why are we interested in Goldstone bosons? chiral symmetry breaking Goldstone bosons lightest excitations: mesons effective theories predict low meson masses and meson condensation influence of the pseudoscalar meson condensates studied by Warringa [hep-ph/ ]

7 CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q τ A : flavor space λ A : color space

8 CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q color-flavor locking Condensates invariant under q e iθa τa λt a 2 q τ A : flavor space λ A : color space

9 CFL phase Diquark condensates diquark condensates: q T Ôq Ô antisymmetric scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q τ A : flavor space λ A : color space color-flavor locking Condensates invariant under q e iθa τa λt a 2 q chiral symmetry breaking A not invariant under q e iθa τa 2 γ 5 q Goldstone bosons

10 Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )]

11 Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )] work in Nambu-Gorkov space ψ = 1 ( ) q 1 2 C q T, ψ = 2 ( q, q T C )

12 Nambu Jona-Lasinio model Lagrangian L eff = q(i / ˆm)q + H [( qiγ5 τ A λ A C q T ) ( q T Ciγ 5 τ A λ A q ) A=2,5,7 A =2,5,7 + ( qτ A λ A C q T ) ( q T Cτ A λ A q )] four vertices in Nambu-Gorkov space ( ) Γ ll 0 0 s = iγ 5 τ A λ A 0 ( ) Γ ll 0 0 ps =, Γ ur ps = τ A λ A 0, Γ ur s = ( ) 0 iγ5 τ A λ A 0 0 ( ) 0 τa λ A 0 0

13 Ingredients inverse propagator in Nambu-Gorkov space p/ + ˆµγ 0 ˆm A γ 5 τ A λ A S 1 = A=2,5,7 Aγ 5 τ A λ A p/ ˆµγ 0 ˆm A=2,5,7 scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q

14 Ingredients inverse propagator in Nambu-Gorkov space p/ + ˆµγ 0 ˆm A γ 5 τ A λ A S 1 = A=2,5,7 Aγ 5 τ A λ A p/ ˆµγ 0 ˆm A=2,5,7 scalar diquark condensates ud = 2 q T Cγ 5 τ 2 λ 2 q us = 5 q T Cγ 5 τ 5 λ 5 q ds = 7 q T Cγ 5 τ 7 λ 7 q A and µ 8 derived from self-consistent solution of the CFL gap equation + neutrality conditions

15 Bethe-Salpeter equation Bethe-Salpeter equation = = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT

16 Bethe-Salpeter equation Bethe-Salpeter equation = = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT ˆT = Γ i T ij Γ j ˆV = Γ i V ij Γ j Γ i ĴΓ j = J ij

17 Bethe-Salpeter equation Bethe-Salpeter equation = = + i ˆT = i ˆV + i ˆV ( iĵ)i ˆT T -matrix ˆT = Γ i T ij Γ j Γ i ĴΓ j = J ij ˆV = Γ i V ij Γ j T = V + V JT = T = ( 1 V J) 1 V

18 Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p (2π) Tr[Γ j is(p + q)γ kis(p)] p

19 Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p 1 (2π) 4 2 Tr[Γ j is(p + q)γ kis(p)] p applying Matsubara formalism and restriction to q = 0 q=0 ij Γ j Γ (q) = i k 2 T n d 3 p (2π) Tr[Γ j is(iω n + iω m, p)γ k is(iω n, p)]

20 Polarization function Γ j p + q Γ k ij Γ j Γ k (q) = d 4 p 1 (2π) 4 2 Tr[Γ j is(p + q)γ kis(p)] p applying Matsubara formalism and restriction to q = 0 q=0 ij Γ j Γ (q) = i k 2 T n d 3 p 1 (2π) 3 2 Tr[Γ j is(iω n + iω m, p)γ k is(iω n, p)] only a few vertex-combinations non-vanishing J can be transformed into block-diagonal structure

21 Structure of T choose the basis in which J is block-diagonal V is diagonal T is block-diagonal problem can be decomposed into smaller blocks: six 2x2 blocks (correspond to π +, π, K +, K, K 0, and K 0 ) one 6x6 block (corresponds to π 0, η, and η )

22 Mesons ˆT couples to external meson current Γ M

23 Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M

24 Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M meson vertices Γ π ± = i «τ1 ± iτ γ5 0 τ 1 iτ 2 Γ K ± = i «τ4 ± iτ γ5 0 τ 4 iτ 5 Γ ( ) = i «τ6 ± iτ 7 0 K 0 2 γ5 0 τ 6 iτ 7

25 Mesons ˆT couples to external meson current = we have to calculate which diquark vertices contribute to the loop Γ M Γ j Γ M meson vertices Γ π ± = i «τ1 ± iτ γ5 0 τ 1 iτ 2 Γ K ± = i «τ4 ± iτ γ5 0 τ 4 iτ 5 Γ ( ) = i «τ6 ± iτ 7 0 K 0 2 γ5 0 τ 6 iτ 7 non-vanishing combinations Γ π + Γ ll 75, Γ ur 57 Γ π Γ ll 57, Γ ur 75 Γ K + Γ ll 72, Γ ur 27 Γ K Γ ll 27, Γ ur 72 Γ K 0 Γ ll 52, Γ ur 25 Γ K0 Γ ll 25, Γ ur 52

26 Meson mass for equal quark masses π ±, K ±, K 0, K m meson [MeV] m q [MeV]

27 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] m q [MeV] prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)]

28 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] calculated from EFT m q [MeV] MeV : ) a fit 0.38 a EFT 0.58 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 35 % smaller

29 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] calculated from EFT m q [MeV] MeV : ) a fit 0.29 a EFT 0.39 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 28 % smaller

30 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] calculated from EFT m q [MeV] MeV : ) a fit 0.21 a EFT 0.27 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 23 % smaller

31 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] calculated from EFT m q [MeV] MeV : ) a fit 0.14 a EFT 0.16 prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] fit 14 % smaller

32 Meson mass for equal quark masses π ±, K ±, K 0, K 0 m meson [MeV] calculated from EFT m q [MeV] 9.53 MeV : ) a fit a EFT prediction from EFT: m M = am q r 8A a = f 2 π A = 3 2 4π 2 fπ ln 2 µ 2 = 18 2π 2 [Son, Stephanov, Phys. Rev. D 61 (2000)] deviation < 1%

33 Dependence on the coupling comparison with EFT a calc / a EFT [MeV] for weaker interaction meson masses approach the EFT result

34 Dependence on the strange quark mass m u = m d = 30 MeV q 0 (pole) [MeV] π ± K -, K 0 K +, K m s [MeV]

35 Dependence on the strange quark mass m u = m d = 30 MeV prediction from EFT q 0 (pole) [MeV] π ± K -, K 0 K +, K m s [MeV] [Bedaque, Schaefer, Nucl.Phys. A697 (2002)] q meson(pole) = µ meson + m meson q π ± (pole) = m2 d m2 u 2µ s 4A + fπ 2 m s(m u + m d ) q K ± (pole) = m2 s m 2 u 2µ s 4A + fπ 2 m d (m u + m s) q K 0, K 0(pole) = m2 s m 2 d 2µ s 4A + fπ 2 m u(m d + m s)

36 Dependence on the strange quark mass m u = m d = 30 MeV prediction from EFT q 0 (pole) [MeV] π ± K -, K 0 K +, K m s [MeV] [Bedaque, Schaefer, Nucl.Phys. A697 (2002)] q meson(pole) = µ meson + m meson q π ± (pole) = m2 d m2 u 2µ s 4A + fπ 2 m s(m u + m d ) q K ± (pole) = m2 s m 2 u 2µ s 4A + fπ 2 m d (m u + m s) r 4A f 2 π a fit 2 q K 0, K 0(pole) = m2 s m 2 d 2µ s 4A + fπ 2 m u(m d + m s)

37 Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 30 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

38 Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 30 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] calculated fitted q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

39 Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 60 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] calculated fitted q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

40 Kaon propagator m u = m d = 30 MeV inverse K propagator for m s = 120 MeV 1000 comparison with a free boson propagator with chemical potential µ K and mass m K t K - -1 [MeV 2 ] calculated fitted q 0 [MeV] t 1 K = (q0 + µ K )2 m 2 K g 2 µ K = m2 s m 2 u 2µ r afit m K = m d (m u + m s) 2

41 Meson propagators inverse π propagators inverse K propagators t π - -1 [MeV 2 ] m s =30 MeV m s =60 MeV m s =120 MeV q 0 t K - -1 [MeV 2 ] m s =30 MeV m s =60 MeV m s =120 MeV q 0

42 Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p)

43 Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p) for µ = 500 MeV, T = 0, and m u = m d = m s = 30 MeV we find f π 95.1 MeV comparison with effective theory: 21 8 ln 2 µ f π = MeV 36 π

44 Pion decay constant A µ π A 0 π = i ( ) + 2 τ1 iτ 2 γ0 γ τ 1 + iτ 2 calculate loop at q 0 = q 0 (pole) d 4 p 1 [ ] f π q 0 = (2π) 4 2 Tr A 0 π S(p + q)(g + 1 Γ ll 75 + g 2 Γ ur 57)S(p) for µ = 500 MeV, T = 0, and m u = m d = m s = 30 MeV we find f π 95.1 MeV 9 % smaller than in EFT comparison with effective theory: 21 8 ln 2 µ f π = MeV 36 π

45 Dependence on the coupling comparison with EFT f π [MeV] [MeV] for weaker interaction f π approaches the EFT result

46 Summary & Outlook Summary description of mesons with diquark loops good agreement with low-energy effective theory

47 Summary & Outlook Summary description of mesons with diquark loops good agreement with low-energy effective theory Outlook wider range of chemical potentials finite temperature include additional interactions quark-antiquark interactions mesons in the new CFL+meson groundstate

The phase diagram of neutral quark matter

The phase diagram of neutral quark matter The phase diagram of neutral quark matter Verena Werth 1 Stefan B. Rüster 2 Michael Buballa 1 Igor A. Shovkovy 3 Dirk H. Rischke 2 1 Institut für Kernphysik, Technische Universität Darmstadt 2 Institut

More information

Pions in the quark matter phase diagram

Pions in the quark matter phase diagram Pions in the quark matter phase diagram Daniel Zabłocki Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski, Poland Institut für Physik, Universität Rostock, Germany Bogoliubov Laboratory of Theoretical

More information

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model TIT/HEP-38/NP INS-Rep.-3 η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model arxiv:hep-ph/96053v 8 Feb 996 Y.Nemoto, M.Oka Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 5,

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach KFU Graz, January 3, 213 January 3, 213 TU Darmstadt 1 Outline Introduction: QCD phase diagram Dyson-Schwinger

More information

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti

SUNY Stony Brook August 16, Wolfram Weise. with. Thomas Hell Simon Rössner Claudia Ratti SUNY Stony Brook August 16, 27 PHASES of QCD POLYAKOV LOOP and QUASIPARTICLES Wolfram Weise with Thomas Hell Simon Rössner Claudia Ratti C. Ratti, M. Thaler, W. Weise: Phys. Rev. D 73 (26) 1419 C. Ratti,

More information

arxiv:hep-ph/ v3 14 Sep 2005

arxiv:hep-ph/ v3 14 Sep 2005 HU-EP-05/9 Mesons and diquarks in the color neutral SC phase of dense cold quark matter D. Ebert Institut für Physik, Humboldt-Universität zu Berlin, 489 Berlin, Germany K. G. Klimenko Institute of High

More information

QCD at finite density with Dyson-Schwinger equations

QCD at finite density with Dyson-Schwinger equations QCD at finite density with Dyson-Schwinger equations Daniel Müller, Michael Buballa, Jochen Wambach Quark Gluon Plasma meets Cold Atoms Episode III August 3, 212 TU Darmstadt 1 Outline Motivation Dyson-Schwinger

More information

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model

Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model FAIRNESS 2013, 15-21 September 1 Nonequilibrium dynamics and transport near the chiral phase transition of a quark-meson model A Meistrenko 1, C Wesp 1, H van Hees 1,2 and C Greiner 1 1 Institut für Theoretische

More information

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13

FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 FINAL EXAM PHYS 625 (Fall 2013), 12/10/13 Name: Signature: Duration: 120 minutes Show all your work for full/partial credit Quote your answers in units of MeV (or GeV) and fm, or combinations thereof No.

More information

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick

2 Interacting Fermion Systems: Hubbard-Stratonovich Trick 2 Interacting Fermion Systems: Hubbard-Stratonovich Trick So far we have dealt with free quantum fields in the absence of interactions and have obtained nice closed expressions for the thermodynamic potential,

More information

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis

Quark matter and the high-density frontier. Mark Alford Washington University in St. Louis Quark matter and the high-density frontier Mark Alford Washington University in St. Louis Outline I Quarks at high density Confined, quark-gluon plasma, color superconducting II Color superconducting phases

More information

t Hooft Determinant at Finite Temperature with Fluctuations

t Hooft Determinant at Finite Temperature with Fluctuations t Hooft Determinant at Finite Temperature with Fluctuations Mario Mitter In collaboration with: Bernd-Jochen Schaefer, Nils Strodthoff, Lorenz von Smekal (former) PhD Advisers: Reinhard Alkofer, Bernd-Jochen

More information

QCD Phase Transitions and Quark Quasi-particle Picture

QCD Phase Transitions and Quark Quasi-particle Picture QCD Phase Transitions and Quark Quasi-particle Picture Teiji Kunihiro (YITP, Kyoto) YITP workshop New Developments on Nuclear Self-consistent Mean-field Theories May 30 June 1, 2005 YITP, Kyoto 1.Introduction

More information

Transport theory and low energy properties of colour superconductors

Transport theory and low energy properties of colour superconductors 1 Transport theory and low energy properties of colour superconductors Daniel F. Litim Theory Group, CERN, CH 1211 Geneva 23, Switzerland. CERN-TH-2001-315 The one-loop polarisation tensor and the propagation

More information

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa

Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1 - Francesco Giacosa Mesons beyond the quark-antiquark picture: glueballs, hybrids, tetraquarks - part 1-55 Cracow School of Theoretical Physics 20 28/6/2015, Zakopane, Poland Outline The Lagrangian of QCD and its symmetries

More information

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon

Melting and freeze-out conditions of hadrons in a thermal medium. Juan M. Torres-Rincon Melting and freeze-out conditions of hadrons in a thermal medium Juan M. Torres-Rincon Frankfurt Institute for Advanced Studies Frankfurt am Main, Germany in collaboration with J. Aichelin, H. Petersen,

More information

Hot and Magnetized Pions

Hot and Magnetized Pions .. Hot and Magnetized Pions Neda Sadooghi Department of Physics, Sharif University of Technology Tehran - Iran 3rd IPM School and Workshop on Applied AdS/CFT February 2014 Neda Sadooghi (Dept. of Physics,

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model

Scalar-pseudoscalar meson spectrum in SU(3) PNJL model Scalar-pseudoscalar meson spectrum in SU(3) model E.S.T.G., Instituto Politécnico de Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal E-mail: pcosta@teor.fis.uc.pt M. C. Ruivo E-mail: maria@teor.fis.uc.pt

More information

Can we locate the QCD critical endpoint with a Taylor expansion?

Can we locate the QCD critical endpoint with a Taylor expansion? Can we locate the QCD critical endpoint with a Taylor expansion? Bernd-Jochen Schaefer Karl-Franzens-Universität Graz, Austria 7 th February - 6 th March, 1 48. Internationale Universitätswochen für Theoretische

More information

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature.

Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. Gell-Mann - Oakes - Renner relation in a magnetic field at finite temperature. N.O. Agasian and I.A. Shushpanov Institute of Theoretical and Experimental Physics 117218 Moscow, Russia Abstract In the first

More information

Critical lines and points. in the. QCD phase diagram

Critical lines and points. in the. QCD phase diagram Critical lines and points in the QCD phase diagram Understanding the phase diagram Phase diagram for m s > m u,d quark-gluon plasma deconfinement quark matter : superfluid B spontaneously broken nuclear

More information

The heavy mesons in Nambu Jona-Lasinio model

The heavy mesons in Nambu Jona-Lasinio model The heavy mesons in Nambu Jona-Lasinio model Xiao-Yu Guo, Xiao-Lin Chen, and Wei-Zhen Deng School of physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871,

More information

Quarksonic matter at high isospin density

Quarksonic matter at high isospin density 第十二届 QCD 相变与相对论重离子碰撞 Quarksonic matter at high isospin density Gaoqing Cao Collaborators:L. He & X.-G. Huang First page article in Chin.Phys. C41, 051001 (2017) @ Xi an 1 Outline QCD phase diagrams at

More information

The Meson Loop Effect on the Chiral Phase Transition

The Meson Loop Effect on the Chiral Phase Transition 1 The Meson Loop Effect on the Chiral Phase Transition Tomohiko Sakaguchi, Koji Kashiwa, Masatoshi Hamada, Masanobu Yahiro (Kyushu Univ.) Masayuki Matsuzaki (Fukuoka Univ. of Education, Kyushu Univ.) Hiroaki

More information

Hadron Phenomenology and QCDs DSEs

Hadron Phenomenology and QCDs DSEs Hadron Phenomenology and QCDs DSEs Lecture 3: Relativistic Scattering and Bound State Equations Ian Cloët University of Adelaide & Argonne National Laboratory Collaborators Wolfgang Bentz Tokai University

More information

QCD Symmetries in eta and etaprime mesic nuclei

QCD Symmetries in eta and etaprime mesic nuclei QCD Symmetries in eta and etaprime mesic nuclei Steven Bass Chiral symmetry, eta and eta physics: the masses of these mesons are 300-400 MeV too big for them to be pure Goldstone bosons Famous axial U(1)

More information

Phases and facets of 2-colour matter

Phases and facets of 2-colour matter Phases and facets of 2-colour matter Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands Maynooth University New Directions in Subatomic Physics, CSSM, 10 March

More information

The interplay of flavour- and Polyakov-loop- degrees of freedom

The interplay of flavour- and Polyakov-loop- degrees of freedom The interplay of flavour- and Polyakov-loopdegrees of freedom A PNJL model analysis Simon Rößner, Nino Bratović, Thomas Hell and Wolfram Weise Physik Department Technische Universität München Thursday,

More information

arxiv:hep-ph/ v1 7 Sep 2004

arxiv:hep-ph/ v1 7 Sep 2004 Two flavor color superconductivity in nonlocal chiral quark models R. S. Duhau a, A. G. Grunfeld a and N.N. Scoccola a,b,c a Physics Department, Comisión Nacional de Energía Atómica, Av.Libertador 825,

More information

Superconducting phases of quark matter

Superconducting phases of quark matter Superconducting phases of quark matter Igor A. Shovkovy Frankfurt Institute for Advanced Studies Johann W. Goethe-Universität Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany Outline I. Introduction

More information

Jochen Wambach. to Gerry Brown

Jochen Wambach. to Gerry Brown Real-Time Spectral Functions from the Functional Renormalization Group Jochen Wambach TU-Darmstadt and GSI Germany to Gerry Brown an inspring physicist and a great human being November 24, 203 TU Darmstadt

More information

arxiv: v2 [hep-ph] 8 May 2009

arxiv: v2 [hep-ph] 8 May 2009 Pion Superfluidity beyond Mean Field Approximation In Nambu Jona-Lasinio Model Chengfu Mu, Pengfei Zhuang Physics Department, Tsinghua University, Beijing 184, China (Dated: May 11, 29) We investigate

More information

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State

QCD and Instantons: 12 Years Later. Thomas Schaefer North Carolina State QCD and Instantons: 12 Years Later Thomas Schaefer North Carolina State 1 ESQGP: A man ahead of his time 2 Instanton Liquid: Pre-History 1975 (Polyakov): The instanton solution r 2 2 E + B A a µ(x) = 2

More information

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase

Latest results. Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase Latest results Pairing fermions with different momenta Neutrality and beta equilibrium Chromomagnetic instability Three flavors and the LOFF phase 1 1 What do we know about the ground state of the color

More information

Ginzburg-Landau approach to the three flavor LOFF phase of QCD

Ginzburg-Landau approach to the three flavor LOFF phase of QCD Ginzburg-Landau approach to the three flavor LOFF phase of QCD R. Casalbuoni Dipartimento di Fisica, Università di Firenze, I-50019 Firenze, Italia and I.N.F.N., Sezione di Firenze, I-50019 Firenze, Italia

More information

Phenomenology of a pseudoscalar glueball and charmed mesons

Phenomenology of a pseudoscalar glueball and charmed mesons JUSTUS-LIEBßIG Universität Giessen T Phenomenology of a pseudoscalar glueball and charmed mesons Walaa I. Eshraim Yukawa Institute for Theoretical Physics, Kyoto University, Japan, June 15th, 2018 Introduction

More information

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter

The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter The Chiral and Deconfinement Phase Transitions in Strongly-Interacting Matter in collaboration with: B-J. Schaefer & J. Wambach Schaefer, MW: PRD 79 (1418) arxiv: 812.2855 [hep-ph] 9.3.29 Mathias Wagner

More information

Thermodynamics of the Polyakov-Quark-Meson Model

Thermodynamics of the Polyakov-Quark-Meson Model Thermodynamics of the Polyakov-Quark-Meson Model Bernd-Jochen Schaefer 1, Jan Pawlowski and Jochen Wambach 3 1 KFU Graz, Austria U Heidelberg, Germany 3 TU and GSI Darmstadt, Germany Virtual Institute

More information

QCD-like theories at finite density

QCD-like theories at finite density QCD-like theories at finite density 34 th International School of Nuclear Physics Probing the Extremes of Matter with Heavy Ions Erice, Sicily, 23 September 212 Lorenz von Smekal 23. September 212 Fachbereich

More information

QCD Phases with Functional Methods

QCD Phases with Functional Methods QCD Phases with Mario PhD-Advisors: Bernd-Jochen Schaefer Reinhard Alkofer Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Rab, September 2010 QCD Phases with Table of

More information

Cold and dense QCD matter

Cold and dense QCD matter Cold and dense QCD matter GCOE sympodium Feb. 15, 2010 Yoshimasa Hidaka Quantum ChromoDynamics Atom Electron 10-10 m Quantum ChromoDynamics Atom Nucleon Electron 10-10 m 10-15 m Quantum ElectroDynamics

More information

arxiv: v1 [hep-ph] 21 May 2008

arxiv: v1 [hep-ph] 21 May 2008 1 Chromomagnetic Instability and Gluonic Phase in Dense Neutral Quark Matter Osamu Kiriyama arxiv:85.334v1 [hep-ph] 21 May 28 Institut für Theoretische Physik, J.W. Goethe-Universität, D-6438 Frankfurt

More information

Are there plasminos in superconductors?

Are there plasminos in superconductors? Are there plasminos in superconductors? Barbara Betz and Dirk-H. Rischke Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main VI Workshop Rathen 2006 nucl-th/0609019 Are

More information

Electric Dipole Moments and the strong CP problem

Electric Dipole Moments and the strong CP problem Electric Dipole Moments and the strong CP problem We finally understand CP viola3on.. QCD theta term Jordy de Vries, Nikhef, Amsterdam Topical Lectures on electric dipole moments, Dec. 14-16 Introductory

More information

Magnetized QCD phase diagram

Magnetized QCD phase diagram Magnetized QCD phase diagram Márcio Ferreira, Pedro Costa, and Constança Providência CFisUC, University of Coimbra, Portugal New Frontiers in QCD 2018 May 30 - June 29 Yukawa Institute for Theoretical

More information

Neutral color superconductivity including inhomogeneous phases at finite temperature

Neutral color superconductivity including inhomogeneous phases at finite temperature PHYSICAL REVIEW D 75, 363 (27) Neutral color superconductivity including inhomogeneous phases at finite temperature Lianyi He, 1, * Meng Jin, 1,2, and Pengfei Zhuang 1, 1 Physics Department, Tsinghua University,

More information

arxiv: v1 [hep-ph] 11 Dec 2009

arxiv: v1 [hep-ph] 11 Dec 2009 Compact stars in the QCD phase diagram II (CSQCD II) May 0-4, 009, KIAA at Peking University, Beijing - P. R. China http://vega.bac.pku.edu.cn/rxxu/csqcd.htm Cold and Dense Matter in a Magnetic Field arxiv:091.375v1

More information

Tetraquarks and Goldstone boson physics

Tetraquarks and Goldstone boson physics Tetraquarks and Goldstone boson physics Christian S. Fischer Justus Liebig Universität Gießen February 2017 Eichmann, CF, Heupel, PLB 753 (2016) 282-287 Review: Eichmann, Sanchis-Alepuz, Williams, Alkofer,

More information

Photons in the Chiral Magnetic Effect

Photons in the Chiral Magnetic Effect Photons in the Chiral Magnetic Effect Kenji Fukushima Department of Physics, Keio University June 25, 2012 @ CPODD 1 Current from the Quantum Anomaly Anomaly Relation j = N c i=flavor Q i 2 e 2 μ 5 2π

More information

Distribution Amplitudes of the Nucleon and its resonances

Distribution Amplitudes of the Nucleon and its resonances Distribution Amplitudes of the Nucleon and its resonances C. Mezrag Argonne National Laboratory November 16 th, 2016 In collaboration with: C.D. Roberts and J. Segovia C. Mezrag (ANL) Nucleon DA November

More information

Color-Neutral Superconducting Quark Matter. Abstract

Color-Neutral Superconducting Quark Matter. Abstract SUNY-NTG-02-05-25, MIT-CTP-3269 Color-Neutral Superconducting Quark Matter Andrew W. Steiner 1, Sanjay Reddy 2, and Madappa Prakash 1 1 Department of Physics and Astronomy, State University of Stony Brook,

More information

The Quest for Light Scalar Quarkonia from elsm

The Quest for Light Scalar Quarkonia from elsm Institut für Theoretische Physik Goethe-Universität Frankfurt am Main The Quest for Light calar Quarkonia from elm Denis Parganlija [Based on arxiv: 5.3647] In collaboration with Francesco Giacosa and

More information

Two lectures on color superconductivity

Two lectures on color superconductivity Two lectures on color superconductivity arxiv:nucl-th/0410091v2 8 Nov 2004 Igor A. Shovkovy Frankfurt Institute for Advanced Studies and Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität,

More information

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt

Michael Buballa. Theoriezentrum, Institut für Kernphysik, TU Darmstadt Vacuum-fluctuation effects on inhomogeneous chiral condensates Michael Buballa Theoriezentrum, Institut für Kernphysik, TU Darmstadt International School of Nuclear Physics 38 th Course Nuclear matter

More information

arxiv: v1 [hep-ph] 13 Nov 2013

arxiv: v1 [hep-ph] 13 Nov 2013 euniversityofmanchester November 14, 2013 arxiv:1311.3203v1 [hep-ph] 13 Nov 2013 Odd- and even-parity charmed mesons revisited in heavy hadron chiral perturbation theory Mohammad Alhakami 1 School of Physics

More information

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation.

Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. Quark-Gluon Vertex Dressing And Meson Masses Beyond Ladder-Rainbow Truncation. nucl-th/0605057 H.H. Matevosyan 1,2, A.W. Thomas 2, P.C. Tandy 3 1 Department of Physics & Astronomy, Louisiana State University

More information

A study of π and ρ mesons with a nonperturbative

A study of π and ρ mesons with a nonperturbative Journal of Physics: Conference Series PAPER OPEN ACCESS A study of π and ρ mesons with a nonperturbative approach To cite this article: Rocio Bermudez et al 2015 J. Phys.: Conf. Ser. 651 012002 Related

More information

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

Chiral expansion of the π 0 γγ decay width

Chiral expansion of the π 0 γγ decay width arxiv:1109.1467v1 [hep-ph] 7 Sep 2011 Chiral expansion of the π 0 γγ decay width Bing An Li Department of Physics and Astronomy, University of Kentucky Lexington, KY 40506, USA Abstract A chiral field

More information

Sgoldstino rate estimates in the SHiP experiment

Sgoldstino rate estimates in the SHiP experiment Sgoldstino rate estimates in the SHiP experiment Konstantin Astapov and Dmitry Gorbunov INR & MSU EMFCSC 2016, ERICE June 17, 2016 Konstantin Astapov and Dmitry Gorbunov Sgoldstino (INR rate & MSU) estimates

More information

Spectrum of Octet & Decuplet Baryons

Spectrum of Octet & Decuplet Baryons Spectrum of Octet & Decuplet Baryons CHEN CHEN The Institute for Theoretical Physics (IFT) Universidade Estadual Paulista (UNESP) Universal Truths & DSEs Spectrum of hadrons (ground, excited and exotic

More information

HLbl from a Dyson Schwinger Approach

HLbl from a Dyson Schwinger Approach HLbl from a Dyson Schwinger Approach Richard Williams KFUni Graz Tobias Göcke TU Darmstadt Christian Fischer Uni Gießen INT Workshop on Hadronic Light-by-Light contribution to the Muon Anomaly February

More information

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA

Michael CREUTZ Physics Department 510A, Brookhaven National Laboratory, Upton, NY 11973, USA with η condensation Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 66-85, Japan E-mail: saoki@yukawa.kyoto-u.ac.jp Michael CREUTZ Physics Department

More information

On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov

On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov On equations for the multi-quark bound states in Nambu Jona-Lasinio model R.G. Jafarov Institute for Physical Problems Baku tate University Baku, Azerbaijan INTRODUCTION Multi-particle equations are a

More information

OPEN CHARM and CHARMONIUM STATES

OPEN CHARM and CHARMONIUM STATES 1 OPEN CHARM and CHARMONIUM STATES from EFFECTIVE FIELD THEORIES Ulf-G. Meißner, Univ. Bonn & FZ Jülich Supported by DFG, SFB/TR-16 and by EU, QCDnet and by BMBF 06BN9006 and by HGF VIQCD VH-VI-231 2 CONTENTS

More information

Nature of the sigma meson as revealed by its softening process

Nature of the sigma meson as revealed by its softening process Nature of the sigma meson as revealed by its softening process Tetsuo Hyodo a, Daisuke Jido b, and Teiji Kunihiro c Tokyo Institute of Technology a YITP, Kyoto b Kyoto Univ. c supported by Global Center

More information

The heavy-light sector of N f = twisted mass lattice QCD

The heavy-light sector of N f = twisted mass lattice QCD The heavy-light sector of N f = 2 + 1 + 1 twisted mass lattice QCD Marc Wagner Humboldt-Universität zu Berlin, Institut für Physik mcwagner@physik.hu-berlin.de http://people.physik.hu-berlin.de/ mcwagner/

More information

Bethe Salpeter studies of mesons beyond rainbow-ladder

Bethe Salpeter studies of mesons beyond rainbow-ladder Bethe Salpeter studies of mesons beyond rainbow-ladder Richard Williams 1 st June 2010 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon College of William and Mary,

More information

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV) 1 m N m ρ Λ QCD 0 m π m u,d In a generic physical system, there are often many scales involved. However, for a specific

More information

arxiv:hep-ph/ v2 25 Mar 1995

arxiv:hep-ph/ v2 25 Mar 1995 Proton Spin in Chiral Quark Models H. J. Weber, X. Song Institute of Nuclear and Particle Physics, University of Virginia, Charlottesville, VA 901, USA arxiv:hep-ph/970166v 5 Mar 1995 and M. Kirchbach

More information

Axial anomaly s role on conventional mesons, baryons, and pseudoscalar glueball. Theory seminar at the ITP, Uni Giessen 20/12/2017, Giessen, Germany

Axial anomaly s role on conventional mesons, baryons, and pseudoscalar glueball. Theory seminar at the ITP, Uni Giessen 20/12/2017, Giessen, Germany Axial anomaly s role on conventional mesons, baryons, and pseudoscalar glueball Theory seminar at the ITP, Uni Giessen 20/12/2017, Giessen, Germany J. Kochanowski U Kielce (Poland) & J.W. Goethe U Frankfurt

More information

Quark Model of Hadrons

Quark Model of Hadrons Quark Model of Hadrons mesons baryons symmetric antisymmetric mixed symmetry Quark Model of Hadrons 2 Why do quarks have color? ground state baryons orbital wave function = symmetic with L=0 SU(3) f x

More information

Non-perturbative Study of Chiral Phase Transition

Non-perturbative Study of Chiral Phase Transition Non-perturbative Study of Chiral Phase Transition Ana Juričić Advisor: Bernd-Jochen Schaefer University of Graz Graz, January 9, 2013 Table of Contents Chiral Phase Transition in Low Energy QCD Renormalization

More information

Faddeev equations: a view of baryon properties

Faddeev equations: a view of baryon properties E-mail: diana.nicmorus@uni-graz.at G. Eichmann E-mail: ge.eichmann@uni-graz.at A. Krassnigg E-mail: andreas.krassnigg@uni-graz.at R. Alkofer E-mail: reinhard.alkofer@uni-graz.at We present a calculation

More information

Large-N c universality of phases in QCD and QCD-like theories

Large-N c universality of phases in QCD and QCD-like theories Large-N c universality of phases in QCD and QCD-like theories Masanori Hanada Department of Physics University of Washington Seattle, WA 98195-1560, USA 1 Introduction QCD with a finite baryon chemical

More information

Development of a hadronic model: general considerations. Francesco Giacosa

Development of a hadronic model: general considerations. Francesco Giacosa Development of a hadronic model: general considerations Objectives Development of a chirallysymmetric model for mesons and baryons including (axial-)vector d.o.f. Extended Linear Sigma Model (elsm) Study

More information

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract

Possible Color Octet Quark-Anti-Quark Condensate in the. Instanton Model. Abstract SUNY-NTG-01-03 Possible Color Octet Quark-Anti-Quark Condensate in the Instanton Model Thomas Schäfer Department of Physics, SUNY Stony Brook, Stony Brook, NY 11794 and Riken-BNL Research Center, Brookhaven

More information

Aspects of Two- and Three-Flavor Chiral Phase Transitions

Aspects of Two- and Three-Flavor Chiral Phase Transitions Aspects of Two- and Three-Flavor Chiral Phase Transitions Mario Karl-Franzens-Universität Graz Institut für Physik Fachbereich Theoretische Physik Kyoto, September 6, 211 Table of Contents 1 Motivation

More information

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV

Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Prediction for several narrow N* and Λ* * resonances with hidden charm around 4 GeV Jiajun Wu R. Molina E. Oset B. S. Zou Outline Introduction Theory for the new bound states Width and Coupling constant

More information

PNJL Model and QCD Phase Transitions

PNJL Model and QCD Phase Transitions PNJL Model and QCD Phase Transitions Hiromichi Nishimura Washington University in St. Louis INT Workshop, Feb. 25, 2010 Phase Transitions in Quantum Chromodynamics This Talk Low Temperature Lattice and

More information

Chiral Symmetry in the String Representation of the Large N QCD

Chiral Symmetry in the String Representation of the Large N QCD Chiral Symmetry in the String Representation of the Large N QCD Vikram Vyas Scientific Resource Centre The Ajit Foundation, Jaipur, India Email: visquare@satyam.net.in Abstract We use the worldline representation

More information

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons

arxiv:nucl-th/ v1 23 Feb 2007 Pion-nucleon scattering within a gauged linear sigma model with parity-doubled nucleons February 5, 28 13:17 WSPC/INSTRUCTION FILE International Journal of Modern Physics E c World Scientific Publishing Company arxiv:nucl-th/7276v1 23 Feb 27 Pion-nucleon scattering within a gauged linear

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

The scalar meson puzzle from a linear sigma model perspective

The scalar meson puzzle from a linear sigma model perspective Montpellier, December 009 The scalar meson puzzle from a linear sigma model perspective Renata Jora (Grup de Fisica Teorica and IFAE, Universitat Autonoma de Barcelona) Collaborators: Amir Fariborz(SUNY

More information

The instanton and the phases of QCD

The instanton and the phases of QCD The instanton and the phases of QCD Naoki Yamamoto (University of Tokyo) Introduction contents QCD phase structure from QCD symmetries (1) QCD phase structure from instantons (2) Summary & Outlook (1)

More information

Equation of state for hybrid stars with strangeness

Equation of state for hybrid stars with strangeness Equation of state for hybrid stars with strangeness Tsuyoshi Miyatsu, Takahide Kambe, and Koichi Saito Department of Physics, Faculty of Science and Technology, Tokyo University of Science The 26th International

More information

The chiral anomaly and the eta-prime in vacuum and at low temperatures

The chiral anomaly and the eta-prime in vacuum and at low temperatures The chiral anomaly and the eta-prime in vacuum and at low temperatures Stefan Leupold, Carl Niblaeus, Bruno Strandberg Department of Physics and Astronomy Uppsala University St. Goar, March 2013 1 Table

More information

arxiv: v2 [hep-ph] 18 Nov 2008

arxiv: v2 [hep-ph] 18 Nov 2008 The three-flavor chiral phase structure in hot and dense QCD matter B.-J. Schaefer, and M. Wagner, Institut für Physik, Karl-Franzens-Universität, A-8 Graz, Austria Institut für Kernphysik, TU Darmstadt,

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

arxiv:hep-ph/ v1 1 Feb 2005

arxiv:hep-ph/ v1 1 Feb 2005 Vector Goldstone Boson and Lorentz Invariance arxiv:hep-ph/050011v1 1 Feb 005 Ling-Fong Li Department of Physics, Carnegie Mellon University, Pittsburgh, PA 1513 January 5, 018 Abstract Spontanous symmetry

More information

The Quark-Gluon Plasma in Equilibrium

The Quark-Gluon Plasma in Equilibrium The Quark-Gluon Plasma in Equilibrium Dirk H. Rischke arxiv:nucl-th/0305030v2 13 Aug 2003 Institut für Theoretische Physik Johann Wolfgang Goethe-Universität Frankfurt am Main Germany February 4, 2008

More information

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872)

The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) The Heavy Quark Spin Symmetry and SU(3)-Flavour Partners of the X(3872) Carlos Hidalgo, J. Nieves and M. Pavón-Valderrama Hypernuclear and Strange Particle Physics 2012 IFIC (CSIC - Universitat de València)

More information

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira

Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry and Its Breaking Parity and Handedness Parity Doubling Explicit Chira Lecture 5 QCD Symmetries & Their Breaking From Quarks to Hadrons Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora Λ QCD and Light Quarks Contents Symmetries of the QCD Lagrangian Chiral Symmetry

More information

Renormalization Group Study of the Chiral Phase Transition

Renormalization Group Study of the Chiral Phase Transition Renormalization Group Study of the Chiral Phase Transition Ana Juričić, Bernd-Jochen Schaefer University of Graz Graz, May 23, 2013 Table of Contents 1 Proper Time Renormalization Group 2 Quark-Meson Model

More information

Pion-nucleon scattering around the delta-isobar resonance

Pion-nucleon scattering around the delta-isobar resonance Pion-nucleon scattering around the delta-isobar resonance Bingwei Long (ECT*) In collaboration with U. van Kolck (U. Arizona) What do we really do Fettes & Meissner 2001... Standard ChPT Isospin 3/2 What

More information

Multiple Critical Points in the QCD Phase Diagram

Multiple Critical Points in the QCD Phase Diagram in the QCD Phase Diagram and E. S. Bowman School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA E-mail: kapusta@physics.umn.edu We use the linear σ model with two flavors

More information

Lecture 9 Valence Quark Model of Hadrons

Lecture 9 Valence Quark Model of Hadrons Lecture 9 Valence Quark Model of Hadrons Isospin symmetry SU(3) flavour symmetry Meson & Baryon states Hadronic wavefunctions Masses and magnetic moments Heavy quark states 1 Isospin Symmetry Strong interactions

More information

arxiv: v1 [hep-ph] 25 Apr 2010

arxiv: v1 [hep-ph] 25 Apr 2010 Accessibility of color superconducting quark matter phases in heavy-ion collisions arxiv:1004.4375v1 [hep-ph] 5 Apr 010 D. B. Blaschke Institute for Theoretical Physics, University of Wroc law, 50-04 Wroc

More information