WaTV. ^mo JP, 2P700? zaczmza,

Size: px
Start display at page:

Download "WaTV. ^mo JP, 2P700? zaczmza,"

Transcription

1 Model simulations of industrial plumes mesoscale interactions in complex coastal area G. Tinarelli,* P. Faggian,* S. Finardi,* G. Brusasca,* G. Carboni', *CISE Divisione Ambiente, via Reggio Emilia 39, Segrate WaTV. ^mo JP, 2P700? zaczmza, Abstract The interaction and possible overlap between the pollution effects generated by different industrial sources influenced by the mesoscale circulation is studied by means of model simulations. A mesoscale, hydrostatic circulation model is used to reproduce the complex structure of both the atmospheric mean flow and turbulence in a region of Central Italy. The pollutant dispersion of two thermal power plants located along the Thyrrenian coast is described by a model integrating the advection-diffusion equation for passive scalars onto an Eulerian grid. A three days simulation has been performed in order to describe a complete diurnal/nocturnal cycle in a situation representing the typical sea/breeze scenario. An intensive measurement program gave the data set used to define both initial and boundary conditions and to validate model results. The model capabilities to reproduce the main features of the atmospheric flow are analysed and results are compared with field measurements not used by the

2 386 Air Pollution Modelling, Monitoring and Management model The simulations have been performed in real meteorological conditions with an hypothetical emission scenario. Results from the dispersion model are also discussed in order to assess the possible interactions of the different sources in the area of interest. 1 Introduction The behaviour of pollutant dispersion emitted by large thermal power plants is a problem of particular interest both at local and regional scales. In this last case the flow complexities induced by mesoscale structures, such as topography irregularities or sea/land discontinuities, generate diffusion patterns with peculiar characteristics, often very difficult to simulate. The emitted plume can actually be trapped into these structures superposed to the synoptic flow, sometimes generating important impact episodes. The situation could become particularly critical when more than one single emission is present on the same area. In this case, different plumes can interact even if they are emitted at considerable distance between them and their overlap should be strongly influenced by local circulations and located in hardly predictable regions. Such complexities can be satisfactorily simulated using a meso scale prognostic model, which integrates the equations needed to correctly describe the air motion at mesoscale (Pielke [1]) over a limited area. Mean flow and turbulence fields generated by these models can be used to produce dispersion simulations, using either Eulerian or Lagrangian approaches (Calbo et al. [2], Anfossi et al. [3]). In this paper, the pollution effect generated by the separated sources in a typical sea/breeze scenario is investigated by means of model simulations. The region of interest is located in Central Italy, along the Thyrrenian coast, where two large thermal power plants are sited at Montalto di Castro and Torvaldaliga, as shown in figure 1. Model results of simulated flow are compared with the available experimental data not used by the simulation itself, to check the representativeness of the reproduced scenario with respect to the typical breeze conditions at the site. Dispersion simulations have been performed in order to reproduce a possible SOz emission configuration. Results have been analysed in order to verify both the behaviour of patterns induced by mesoscale structures and the interactions between the different plumes, identifying possible critical regions into the area. 2 Description of the area The flow simulation area is a 160 x 160 knf square whose topography structure is represented in figure 1. About one half of the area is occupied by the Thyrrenian Sea with the coast line oriented in north-west/south-east direction. The whole domain is located between the Toscana and the Lazio regions of Central Italy. The coastline extends southward from about 30 km north of the Argentario hill to the so called 'Roman shore'.

3 Air Pollution Modelling, Monitoring and Management E x 100 < 150 LEGEND: Mo= MONTALTO (SODAR profiles + ground station) Ca= CANINO (SODAR profiles) To= TORVALDALIGA (SODAR profiles^ s = synop data * = ECMWF data Figure 1: Plant view of the 160x160 Knf indicated. interested area. Emission and measuring points are The topography is quite flat along the coast, except for the Angentario hill site and the Torvaldaliga region, besides which the Tolfa mountains are present. Moving towards the northern and eastern boundaries the Appennini mountains are encountered, reaching maximum heights of about 1400m a.s.l. The two simulated power plants, located at Montalto di Castro and Torvaldaliga, are spaced by a distance of 30 km The dispersion simulation region is a 120 x 120 krrf square nested inside the flow simulation area leaving out a 20 km wide border. 3 Description of the data An intensive measurement program has recently been performed in order to recognize and catalog different flow regimes potentially critical for the dispersion due to the power plant emissions. Data were carried out at the positions indicated in figure 1. Three Doppler Sodars, installed at Montalto di Castro, Torvaldaliga and Canino sites, supplied about one year of hourly wind vertical profiles, starting from April 1995.

4 388 Air Pollution Modelling, Monitoring and Management About 50 percent of the profiles reaches 500 m a.g.l. with a vertical resolution of 25 m allowing a good description of the vertical structures induced by the mesoscale circulation. Ground level wind, temperature, humidity and precipitation were available at Montalto di Castro for the same period and with the same frequency. The total solar radiation, net radiation and sensible heat flux were also measured allowing to check both the radiation and ground interface parametrization schemes inside the flow model. Different flow regimes were identified and cataloged through the analysis of the whole available data set and a three day period of May 1995 was selected for the simulation. During this period a very significant sea/breeze regime characterized by weak low level synoptic driving flow was present, possibly generating recirculations and overlaps of the emitted plumes due to the diurnal/nocturnal cycles. Local measurements have been integrated by wind and temperature vertical profiles from the ECMWF 0.5 grid analysis and synop observations, located as in figure 1. These last data, available every six hours starting from 00:00 UTC, describe the synoptic driving forcing into the area, used to build initial and boundary conditions for the circulation model. 4 Simulations 4.1 Hermes model The model used is the hydrostatic mesoscale HERMES code, developed by Electricite de France (Perdriel [4]). It resolves the set of conservation equations for momentum, energy and mass in a flux form using a finite-difference approximation over a staggered grid with a vertical reduced-pressure coordinate a. The closure is obtained using a first order scheme and the k diffusion coefficients are determined by the Louis parametrization (Louis [5]). A forcerestore two-level prognostic model, balancing all the ground heat fluxes is coupled to the atmospheric code for the determination of the ground temperature. Hermes model also permits the integration of the advectiondiffusion equation for passive scalars, so the simulation of the pollutant dispersion from different sources is possible. In our flow simulation, the 160 x 160 knr computational domain was horizontally discretized into 40 x 40 square cells whereas 25 unevenly spaced a levels were adopted in the vertical, with the top level at about 500 hpa and the minimum grid spacing of about 20m close to the ground. The time step used was 5 s. The model was initialized using the wind and temperature fields generated by the mass-consistent model Minerve (Geai [6]). This last takes as input the vertical wind and temperature profiles from ECMWF analysis and ground level synop observations, producing interpolated fields of wind and temperature over a terrain-following grid firstly. Then a mass-conservation adjustment is applied for the wind field producing the input data for Hermes initialisation. The same procedure is repeated every 6 hours to produce the driving boundary conditions. The 120 x 120 knr nested

5 Air Pollution Modelling, Monitoring and Management 389 computational domain for dispersion simulations was horizontally discretized into 60 x 60 2 km size grid cells with a vertical extension up to 850 hpa and 25 non-equidistant vertical levels, with the first layer about 20 m high. 4.2 Simulated period The simulation started at 19:00 h 7 May 1995 (local solar time) and lasted for three days, ending at 19:00 h 10 May As aforementioned, this period has been chosen as representative of the typical sea/breeze conditions into the selected area. Upper level winds persisted with a direction towards north-east and velocities around m/s. At lower levels the presence of diurnalnocturnal cycles becomes evident. The time history of ground level wind velocity and direction collected at the Montalto station is shown in figure 2. A cycle is repeated three times with diurnal wind directions from the sea orthogonal to the shoreline and higher velocities (up to 5 m/s). During the night the wind blows almost parallel to the shoreline, from south-east to north-west, with a lower velocity (about 2.5 m/s). Surface wind speed and obs wind speed sim wind speed obs wind direction sim wind.direction direction at Montalto : 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: May 1995 Figure 2: Time series of the observed and simulated wind variables at the Montalto site. The situation at the Torvaldaliga site is slightly different. Here the presence of the To If a mountains just behind the coast tend to cover the low level sea/breeze cycle determining more persistent winds. A low level cycle is anyhow present as demonstrated by the 50 m a.g.l. wind measured by the Sodar and shown in figure 3. This cycle tends rapidly to disappear at higher levels and it is almost absent at 500 m. 4.3 Emission scenario The two thermal power stations considered are located about in the middle of the computational domain. The Montalto power station has two separate

6 390 Air Pollution Modelling, Monitoring and Management sections: the first one is a standard oil fired thermal power unit, while the second is made of gas turbines that could be coupled with the previous one in a repowered configuration. Torvaldaliqa height: 50. m obs wind speed stm wind speed obs wind direction sim wind direction : 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: May 1995 Torvaldaliqa height: 350. m obs wind speed 400 sim wind speed obs wind direction sim wind direc" 200 "O CD 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: May 1995 Torvaldaliqa height: 500. m obs wind speed 400, sim wind speed obs wind direction sim wind *** direction ^ : 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: 6: 12: 18: 0: May 1995 Figure 3: Time series of the observed and simulated wind variables at the Torvaldaliga site. The three panels refer to different vertical levels as indicated in the graph titles. Actually, this power plant is only partially operational The Torvaldaliga power station is composed of several standard thermal oil fired thermal power units. Several operational combinations of the different sections are therefore possible and have been foreseen. In order to simulate the future operational configuration and to study the interaction between the two emissions, an hypothetical scenario has been considered emission is present. In this scenario all the sections producing significant SOz were taken into account. The following table summarizes the main characteristics of both the stacks and emissions:

7 Air Pollution Modelling, Monitoring and Management 391 section power (MW) stack height (m) stack diameter (m) emiss. temp. C emiss. vertical speed (m/s) SOz emission (S/s) TORVALDALIGA x x x x4 MONT ALTO x Simulation results Flow simulation As mentioned earlier, the Hermes model was initialized and driven at boundaries using only the ECMWF profiles and ground level synop data. This means that all the mesoscale structures in the domain interior had to be reconstructed directly by the model itself. In this respect we expected a realistic reconstruction of a sea/breeze cycle without the exact reproduction of all the details. 800 F~ 600 ~- 400 ~- 200 r o ~ E Net radiation and! obs net radiation _ sim net radiation... sim senbible hea sensible heat flux at Montalto 18: 0: 6: 12: 18: 6: 12: 18: 6: 12: 18: 0: 6: 12: 18: May 1995 Figure 4: time series of the observed and simulated net radiation and the simulated sensible heat flux at the Montalto site. This can be verified both examining the global structure of the simulated flow fields and comparing the time histories of some of the measurements not used by the model (i.e. Sodar profiles and Montalto ground level data) with simulation results at corresponding points. The comparison between computed an measured net radiation at Montalto is shown in figure 4, together with simulated sensible heat flux. The agreement between observed and simulated data is quite good suggesting that the correct amount of energy is supplied to the system To have an overall view of the flow structure generated by the model, the low level diurnal and nocturnal wind fields close to the ground are

8 392 Air Pollution Modelling, Monitoring and Management shown infigures5a and 5b. These figures refers to 2:00 of May 9* and 16:00 of May 10*. In thefirstone the typical nocturnal structure is represented, with the wind blowing along the coast on the shoreline whereas in the second one a sea breeze situation is well developed (a) X? 4750-bt ^ ' 1700 ' 1750 x (km) f 10 m/s *(km) Figures 5a and 5b: Wind fields near the ground at 02:00 (a) and 16:00 (b) of May 10" 1800 The comparison between the ground level wind velocity and direction measured at Montalto and simulated by Hermes model is shown in figure 2. Here some discrepancies are evident, in particular the model tends to underestimate the maximum velocity peaks in the afternoon and to rotate more clockwise, but the breeze cycles are satisfactorily reproduced. The flow of the second simulated day, during which the synoptic driving circulation was weaker and a stronger breeze is present, seems to be better reproduced with respect to the other two days. The comparison between some of the Torvaldaliga Sodar time series and the corresponding model simulations is shown in figure 3. Here wind velocities and directions at 50 m, 200 m, and 500 m a.g.l. are shown. The model tends to reproduce quite well the situation at 50 m. The weakening of the sea breeze signal with respect to that of Montalto is satisfactorily reconstructed and the vertical extension of the simulated and measured signals seems to be similar, even if a general tendency to an underestimation of the wind module is present Concentration simulation The dispersion simulation started at the same initial time of the flow simulation, i.e. 19:00 of May 7*, and lasted for three complete days, until 19:00 of May 10*. During this period, stationary emissions with the characteristics described in the previous table have been considered with plume rises described by a Briggs's formulation. As a general comment, the pollution level is quite low, with SOz maximum ground level concentration below 100 ig/m\ although some interesting recalculation and overlapping episodes happen. During the night, the lower part of the emitted plumes, particularly those coming from the lower stacks of the Torvaldaliga power plant, tends to be transported along the

9 Air Pollution Modelling, Monitoring and Management 393 coast and, when the nocturnal breeze is stronger such as in May Thyrrenian Sea. 9*\ towards the g (a) x(km) (b) %(km) g Figures 6a,b,c,d: Ground level concentration fields at different times and for different contributions, as indicated in the text. The scale represented is M-g/m^ In this way the effects of the two power plants can overlap along the coast or on the open sea, with low concentration levels. The upper plumes are instead transported north-eastward by the synoptic flow. The case of May 9* night and morning is particularly interesting. As mentioned before, during this period the nocturnal breeze is well developed and the lower plumes are transported towards the Thyrrenian Sea. In the morning, these plumes tend to come back to the coast, determining a situation in which three different glc maxima are present. The first two, located in the north-eastern part of the domain, are the direct effect of the higher plumes generated by the two power stations and the third one is due to the return of the nocturnal lower emissions, now transported

10 394 Air Pollution Modelling, Monitoring and Management northward. This situation is illustrated in figure 6a,b,c. In particular, figure 6a shows the ground level concentration field at 7:00 May 9^ due to the Torvaldaliga sources, giving evidence of the two separated plume transported by the low level and high level winds. Figure 6b shows the contribution of the Montalto power plant only, whereas figure 6c illustrates the total contribution. The three concentration maxima are clearly evident, having almost the same values. This particular aspect of the dispersion patterns is presumably hard to reproduce using simpler models like Gaussians, unable to take into account most of the needed details. In the afternoon, when the diurnal breeze and the turbulent PEL are well developed, all the plumes are transported towards northeast, the maximum glc are higher, but the impacts of the two power plants are clearly separated, as indicated in figure 6d. 5 Conclusions A three days simulation in a typical sea/land breeze condition has been performed by the Hermes atmospheric circulation model over a North Thyrrenian area. The mean flow has been reproduced and used to simulate the dispersion of pollutant due to separated large thermal power plants located on the shoreline in an hypothetical emission scenario. The output flow fields have been compared with experimental data showing reasonable agreement; ground level concentration patterns have been also analyzed in order to verify the overlap conditions of the different emitted plumes, pointing out some interesting episodes. The obtained results show the potential offered by the used tools. Other different weather conditions and emission scenarios are going to be simulated in the next future. Some useful advices are expected to be obtained to modulate and balance the emission amounts between the two power plants, in order to avoid critical environmental conditions due to the overlapping or reciculation of the plumes. Keywords: mesoscale modeling, Eulerian models, pollutant dispersion. References 1. Pielke R. A. Mesoscale Meteorological Modeling, p.612, Academic Press, New (1984) York, 2. Calbd J, Baldasano J.M., Costa M. Modelling the dispersion of CO over Barcelona area with the the mesoscale model PROMETEO, Air Pollution III, Vol. 3 (ed C.A. Brebbia, N. Moussiopoulos, H. Power), pp 25-32, Wessex Publishing, Anfossi D., Desiato F, Tinarelli G., Brusasca G., Ferrero E., Sacchetti D. TRANS ALP 1989 Experimental Campaign - part II: Simulation of a tracer experiment with Lagrangian particle models, Atmospheric Environment (in press) 4. Perdriel S.. Note de principe du code Hermes, EDF/DER Report HE-33/90.04, 1990 (available from E.D.F., 6 Quai Waitier, 78400, Chatou, France). 5. Louis J.F. A parametric model of vertical eddy fluxes in the atmosphere, Boundary Layer Meteorology, 1979, 17, Geai P. Methode d'interpolation and reconstitution tridimensionelle d'un champ de vent: le code d'analyse objective MINERVE, EDF/DER report HE-34/87.03, 1987

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Application of a non-hydrostatic mesoscale meteorological model to the Aveiro Region, Portugal M. Coutinho," T. Flassak,* C. Borrego" ^Department of Environmental and Planning, University of Aveiro, 3800

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Application of transilient turbulence theory to a mesoscale dispersion model M. Coutinho,* C. Bon-ego,* A.I. Miranda* "IDAD - Institute of Environment and Development, 3810 Aveiro, Portugal ^Department

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Nested dispersion simulation over the Lisbon region R. Kunz,* M. Coutinho,^ C. Borrego^ N. Moussiopoulos' "Institute for Technical Thermodynamics, University of Karlsruhe, 76128 Karlsruhe, Germany ^Department

More information

MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT.

MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT. MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT. S. Trini Castelli 1, G. Belfiore 1, D. Anfossi 1 and E. Elampe 2 1 Institute of Atmospheric

More information

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels

Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Influence of 3D Model Grid Resolution on Tropospheric Ozone Levels Pedro Jiménez nez, Oriol Jorba and José M. Baldasano Laboratory of Environmental Modeling Technical University of Catalonia-UPC (Barcelona,

More information

A Subgrid Surface Scheme for the Analysis of the Urban Heat Island of Rome

A Subgrid Surface Scheme for the Analysis of the Urban Heat Island of Rome A Subgrid Surface Scheme for the Analysis of the Urban Heat Island of Rome Antonio Cantelli, Paolo Monti, Giovanni Leuzzi Dipartimento di Idraulica, Trasporti e Strade Summary Analysis of the atmospheric

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Plume dispersion modelling during a sea-breeze event R. Salvador, E. Mantilla, M.J. Salazar, M. Millan CEAM, Palau de Pineda, Plaza del Carmen 4, E-46003, Valencia, Spain Abstract The Lagrangian Adaptative

More information

Supplement to the. Final Report on the Project TRACHT-MODEL. Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model

Supplement to the. Final Report on the Project TRACHT-MODEL. Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model Anhang 2 Supplement to the Final Report on the Project TRACHT-MODEL Transport, Chemistry and Distribution of Trace Gases in the Tropopause Region: Model H. Feldmann, A. Ebel, Rheinisches Institut für Umweltforschung

More information

Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain MAY 2001 MARTÍN ET AL. 905 Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions. Part II: Air-Parcel Transport Patterns FERNANDO MARTÍN, MAGDALENA

More information

PROCEEDINGS 18 TH INTERNATIONAL CONFERENCE October 2017 ON HARMONISATION WITHIN ATMOSPHERIC DISPERSION MODELLING FOR REGULATORY PURPOSES

PROCEEDINGS 18 TH INTERNATIONAL CONFERENCE October 2017 ON HARMONISATION WITHIN ATMOSPHERIC DISPERSION MODELLING FOR REGULATORY PURPOSES 18 TH INTERNATIONAL CONFERENCE ON HARMONISATION WITHIN ATMOSPHERIC DISPERSION MODELLING FOR REGULATORY PURPOSES PROCEEDINGS 9-12 October 2017 CNR Research Area Bologna Italy 18th International Conference

More information

Development and preliminary results of a limited area Atmosphere-Chemistry model: BOLCHEM.

Development and preliminary results of a limited area Atmosphere-Chemistry model: BOLCHEM. Development and preliminary results of a limited area Atmosphere-Chemistry model: BOLCHEM. Massimo D'Isidoro (1,3), Sandro Fuzzi (1), Alberto Maurizi (1), Mihaela Mircea (1), Fabio Monforti (2), Francesco

More information

H ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS. G. Pession 1, T. Magri 1, G. Tinarelli 2

H ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS. G. Pession 1, T. Magri 1, G. Tinarelli 2 H14-146 ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS G. Pession 1, T. Magri 1, G. Tinarelli 2 1 ARPA Valle d Aosta, Loc. Grande Charrière 44, 11020 Saint-Christophe (Aosta), ITALIA

More information

from airborne and surface measurements

from airborne and surface measurements Analysis of the thermal structure of the Ora del Garda wind from airborne and surface measurements Lavinia Laiti, Dino Zardi and Massimiliano de Franceschi Atmospheric Physics Group Department of Civil

More information

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT

1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT 1.21 SENSITIVITY OF LONG-TERM CTM SIMULATIONS TO METEOROLOGICAL INPUT Enrico Minguzzi 1 Marco Bedogni 2, Claudio Carnevale 3, and Guido Pirovano 4 1 Hydrometeorological Service of Emilia Romagna (SIM),

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Tropospheric ozone in a mountain forest area: spatial distribution and its relation with meteorology and emission sources A. Ballerin Denti*, R. Dell'Era*, G. Gerosa% G. Pirovano\ P. Simoni^ *Dept. ofplant

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Simulation of nocturnal drainage flows and dispersion of pollutants in a complex valley D. Boucoulava, M. Tombrou, C. Helmis, D. Asimakopoulos Department ofapplied Physics, University ofathens, 33 Ippokratous,

More information

ABSTRACT 1.-INTRODUCTION

ABSTRACT 1.-INTRODUCTION Characterization of wind fields at a regional scale calculated by means of a diagnostic model using multivariate techniques M.L. Sanchez, M.A. Garcia, A. Calle Laboratory of Atmospheric Pollution, Dpto

More information

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS,

More information

1.07 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS

1.07 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS 1.7 A FOUR MODEL INTERCOMPARISON CONCERNING CHEMICAL MECHANISMS AND NUMERICAL INTEGRATION METHODS Bedogni M. 1, Carnevale C. 2, Pertot C. 3, Volta M. 2 1 Mobility and Environmental Ag. of Milan, Milan,

More information

Lecture 12. The diurnal cycle and the nocturnal BL

Lecture 12. The diurnal cycle and the nocturnal BL Lecture 12. The diurnal cycle and the nocturnal BL Over flat land, under clear skies and with weak thermal advection, the atmospheric boundary layer undergoes a pronounced diurnal cycle. A schematic and

More information

La circulation atmosphérique dans le sud du Portugal et l'effet du réservoir d'alqueva. Cas d étude ALEX 2014

La circulation atmosphérique dans le sud du Portugal et l'effet du réservoir d'alqueva. Cas d étude ALEX 2014 8th Meso-NH user's meeting La circulation atmosphérique dans le sud du Portugal et l'effet du réservoir d'alqueva. Cas d étude ALEX 2014, Carlos Policarpo et Miguel Potes Instituto de Ciências da Terra

More information

MODELING AND MEASUREMENTS OF THE ABL IN SOFIA, BULGARIA

MODELING AND MEASUREMENTS OF THE ABL IN SOFIA, BULGARIA MODELING AND MEASUREMENTS OF THE ABL IN SOFIA, BULGARIA P58 Ekaterina Batchvarova*, **, Enrico Pisoni***, Giovanna Finzi***, Sven-Erik Gryning** *National Institute of Meteorology and Hydrology, Sofia,

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

TAPM Modelling for Wagerup: Phase 1 CSIRO 2004 Page 41

TAPM Modelling for Wagerup: Phase 1 CSIRO 2004 Page 41 We now examine the probability (or frequency) distribution of meteorological predictions and the measurements. Figure 12 presents the observed and model probability (expressed as probability density function

More information

Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra Seibert 3

Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra Seibert 3 COMPARISON OF THE DISPERSION MODEL IN RODOS-LX AND MM5-V3.7-FLEXPART(V6.2). A CASE STUDY FOR THE NUCLEAR POWER PLANT OF ALMARAZ Delia Arnold 1, Arturo Vargas 1,Milagros Montero 2, Alla Dvorzhak 2 and Petra

More information

Development of a computer system for control and prevention of air pollution in the Valencia Port (Spain)

Development of a computer system for control and prevention of air pollution in the Valencia Port (Spain) Development of a computer system for control and prevention of air pollution in the Valencia Port (Spain) S.N. Crespí,, I. Palomino, B. Aceña,, F. Martín, Atmospheric Pollution Modelling Group, Department

More information

**PMP - USL35 Environ. Phys. Laboratory, Via Alberoni 17, Ravenna, Italy

**PMP - USL35 Environ. Phys. Laboratory, Via Alberoni 17, Ravenna, Italy Air pollution in a coastal area: transport and deposition of photochemical oxidants T. Georgiadis^, A. Baroncelli", P. Bonasoni^, G. Giovanelli^, F. Ravegnani^, F. Fortezza\ L. Alberti\ V. Strocchi^ 7m

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Kalimantan realistically (Figs. 8.23a-d). Also, the wind speeds of the westerly

Kalimantan realistically (Figs. 8.23a-d). Also, the wind speeds of the westerly suppressed rainfall rate (maximum vertical velocity) around 17 LST (Figs. 8.21a-b). These results are in agreement with previous studies (e. g., Emanuel and Raymond 1994). The diurnal variation of maximum

More information

Fronts in November 1998 Storm

Fronts in November 1998 Storm Fronts in November 1998 Storm Much of the significant weather observed in association with extratropical storms tends to be concentrated within narrow bands called frontal zones. Fronts in November 1998

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting

Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Wind Flow Modeling The Basis for Resource Assessment and Wind Power Forecasting Detlev Heinemann ForWind Center for Wind Energy Research Energy Meteorology Unit, Oldenburg University Contents Model Physics

More information

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2 Application of MM5 and CALPUFF to a Complex Terrain Environment in Eastern Iceland Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1 TRC Environmental Corporation 1 Lowell, Massachusetts

More information

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST

THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST THE INFLUENCE OF HIGHLY RESOLVED SEA SURFACE TEMPERATURES ON METEOROLOGICAL SIMULATIONS OFF THE SOUTHEAST US COAST Peter Childs, Sethu Raman, and Ryan Boyles State Climate Office of North Carolina and

More information

ALARO experience in Romania

ALARO experience in Romania ALARO experience in Romania S. Briceag, M. Pietrisi, S. Tascu, A. Craciun, R. Iordache National Meteorological Administration, Romania Operational model setup ALARO cy36t1: 1 January 2014 31 March 2016

More information

PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY

PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY P2.17 PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY Jeffrey E. Passner U.S. Army Research Laboratory White Sands Missile Range, New Mexico 1. INTRODUCTION The Army Research Laboratory

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM

DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM Peyman Zawar-Reza, Mikhail Titov and Andrew Sturman Centre for Atmospheric Research, Department of Geography,

More information

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3.

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3. J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA Scott Beaver 1*, Ahmet Palazoglu 2, Angadh Singh 2, and Saffet Tanrikulu

More information

PM10 SOURCE APPORTIONMENTS WITHIN THE CITY OF KLAGENFURT, AUSTRIA

PM10 SOURCE APPORTIONMENTS WITHIN THE CITY OF KLAGENFURT, AUSTRIA PM10 SOURCE APPORTIONMENTS WITHIN THE CITY OF KLAGENFURT, AUSTRIA Dietmar Oettl 1, Christian Kurz 1, Wolfgang Hafner 2 and Peter Sturm 1 1 Institute for Internal Combustion Engines and Thermodynamics,

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

The influence of scale on modelled ground level O3 concentrations

The influence of scale on modelled ground level O3 concentrations EMEP /MSC-W Note 2/01 Date July 2001 DET NORSKE METEOROLOGISKE INSTITUTT Norwegian Meteorological Institute Research Report no. 57 The influence of scale on modelled ground level O3 concentrations Philippe

More information

Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region

Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region Use and impact of satellite data in the NZLAM mesoscale model for the New Zealand region V. Sherlock, P. Andrews, H. Oliver, A. Korpela and M. Uddstrom National Institute of Water and Atmospheric Research,

More information

Ocean-Atmosphere Fluxes & Marine Meteorology

Ocean-Atmosphere Fluxes & Marine Meteorology Ocean-Atmosphere Fluxes & Marine Meteorology Breakout Group Questions How can the CND be enhanced to better address this science theme? What other approaches could be combined with the observatory elements

More information

Evaluation of Onshore Pollutant Recirculation Over the Mediterranean Coastal Area of Central Israel

Evaluation of Onshore Pollutant Recirculation Over the Mediterranean Coastal Area of Central Israel ISRAEL JOURNAL OF EARTH-SCIENCES Vol. 31 1982 pp. 39-46 Evaluation of Onshore Pollutant Recirculation Over the Mediterranean Coastal Area of Central Israel Mordecay Segal,l Roger A. Pielkel and Ytzhaq

More information

Cold air outbreak over the Kuroshio Extension Region

Cold air outbreak over the Kuroshio Extension Region Cold air outbreak over the Kuroshio Extension Region Jensen, T. G. 1, T. Campbell 1, T. A. Smith 1, R. J. Small 2 and R. Allard 1 1 Naval Research Laboratory, 2 Jacobs Engineering NRL, Code 7320, Stennis

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Nesting simulations at two regions on the Iberian Peninsula Carvalho, A.C.% Souto, M.J/, Tchepel, O/ and Borrego, C/ * Department of Environment and Planning, University of Aveiro, 3810 Aveiro, Portugal

More information

The project that I originally selected to research for the OC 3570 course was based on

The project that I originally selected to research for the OC 3570 course was based on Introduction The project that I originally selected to research for the OC 3570 course was based on remote sensing applications of the marine boundary layer and their verification with actual observed

More information

ima Richter & Röckle, Hauptstraße 54, D Gerlingen, Germany KTT-iMA, 20, Impasse de Fauvettes, F Behren lés Forebach, France

ima Richter & Röckle, Hauptstraße 54, D Gerlingen, Germany KTT-iMA, 20, Impasse de Fauvettes, F Behren lés Forebach, France 6.20 DISPERSION MODELLING IN ALPINE VALLEYS NECESSITY AND IMPLEMENTATION OF NON-HYDROSTATIC PROGNOSTIC FLOW SIMULATION WITH FITNAH FOR A PLANT IN GRENOBLE Jost Nielinger 1, Werner-Jürgen Kost 1 and Wolfgang

More information

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE Fred C. Bosveld 1*, Erik van Meijgaard 1, Evert I. F. de Bruijn 1 and Gert-Jan Steeneveld

More information

P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain

P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain P1.17 Super-high-resolution Numerical Simulation of Atmospheric Turbulence in an Area of Complex Terrain P.W. Chan * Hong Kong Observatory, Hong Kong, China 1. INTRODUCTION Turbulent airflow occurs at

More information

Precipitation processes in the Middle East

Precipitation processes in the Middle East Precipitation processes in the Middle East J. Evans a, R. Smith a and R.Oglesby b a Dept. Geology & Geophysics, Yale University, Connecticut, USA. b Global Hydrology and Climate Center, NASA, Alabama,

More information

Meteorological and Dispersion Modelling Using TAPM for Wagerup

Meteorological and Dispersion Modelling Using TAPM for Wagerup Meteorological and Dispersion Modelling Using TAPM for Wagerup Phase 1: Meteorology Appendix A: Additional modelling details Prepared for: Alcoa World Alumina Australia, P. O. Box 252, Applecross, Western

More information

Radon 222 as a Tracer of Atmospheric Motions: Research in Lombardy. A contribution to subproject LOOP

Radon 222 as a Tracer of Atmospheric Motions: Research in Lombardy. A contribution to subproject LOOP Radon 222 as a Tracer of Atmospheric Motions: Research in Lombardy A contribution to subproject LOOP L Sesana*, L Barbieri*, U. Facchini* and G. LanzanP ^Istituto difisica Generate Applicata, Via G. Celoria

More information

Topic 1 The Atmosphere and Atmospheric Variables

Topic 1 The Atmosphere and Atmospheric Variables Name Notes: Topic 1 The Atmosphere Regents Earth Science Topic 1 The Atmosphere and Atmospheric Variables What is the atmosphere? Meteorology is the study of A. Structure of the Atmosphere: What two gases

More information

Impacts of Climate Change on Autumn North Atlantic Wave Climate

Impacts of Climate Change on Autumn North Atlantic Wave Climate Impacts of Climate Change on Autumn North Atlantic Wave Climate Will Perrie, Lanli Guo, Zhenxia Long, Bash Toulany Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS Abstract

More information

The Extremely Low Temperature in Hokkaido, Japan during Winter and its Numerical Simulation. By Chikara Nakamura* and Choji Magono**

The Extremely Low Temperature in Hokkaido, Japan during Winter and its Numerical Simulation. By Chikara Nakamura* and Choji Magono** 956 Journal of the Meteorological Society of Japan Vol. 60, No. 4 The Extremely Low Temperature in Hokkaido, Japan during 1976-77 Winter and its Numerical Simulation By Chikara Nakamura* and Choji Magono**

More information

Application of TAPM to predict photochemical air pollution over Portugal

Application of TAPM to predict photochemical air pollution over Portugal Air Pollution XV 25 Application of TAPM to predict photochemical air pollution over Portugal C. Ribeiro 1, C. Borrego 1,2 & M. Coutinho 1 1 IDAD - Institute of Environment and Development, Aveiro, Portugal

More information

Wind Assessment & Forecasting

Wind Assessment & Forecasting Wind Assessment & Forecasting GCEP Energy Workshop Stanford University April 26, 2004 Mark Ahlstrom CEO, WindLogics Inc. mark@windlogics.com WindLogics Background Founders from supercomputing industry

More information

Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations

Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations Convection-Resolving Model Simulations: Process-Based Comparison of LM Results with Observations Jörg Trentmann, Britta Wecker, Marcus Paulat, Heini Wernli, Ulrich Corsmeier, Jan Handwerker Goal Improve

More information

USE OF LOKAL MODELL FOR THE METEOROLOGICAL INPUT OF CHIMERE

USE OF LOKAL MODELL FOR THE METEOROLOGICAL INPUT OF CHIMERE 1 st Chimere workshop USE OF LOKAL MODELL FOR THE METEOROLOGICAL INPUT OF CHIMERE Palaiseau, France March 21-22, 2005 Enrico Minguzzi, Giovanni Bonafè, Marco Deserti, Suzanne Jongen, Michele Stortini HydroMeteorological

More information

M. Mielke et al. C5816

M. Mielke et al. C5816 Atmos. Chem. Phys. Discuss., 14, C5816 C5827, 2014 www.atmos-chem-phys-discuss.net/14/c5816/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

Nerushev A.F., Barkhatov A.E. Research and Production Association "Typhoon" 4 Pobedy Street, , Obninsk, Kaluga Region, Russia.

Nerushev A.F., Barkhatov A.E. Research and Production Association Typhoon 4 Pobedy Street, , Obninsk, Kaluga Region, Russia. DETERMINATION OF ATMOSPHERIC CHARACTERISTICS IN THE ZONE OF ACTION OF EXTRA-TROPICAL CYCLONE XYNTHIA (FEBRUARY 2010) INFERRED FROM SATELLITE MEASUREMENT DATA Nerushev A.F., Barkhatov A.E. Research and

More information

The influence of surface-atmosphere exchange processes on ozone levels

The influence of surface-atmosphere exchange processes on ozone levels The influence of surface-atmosphere exchange processes on ozone levels A. D Allura 1,3, R. De Maria 2, M. Clemente 2, F. Lollobrigida 2, S. Finardi 3, C. Silibello 3 & G. Brusasca 3 1 Dipartimento di Scienze

More information

An integrated methodology to select the optimum site of an airport on an island using limited meteorological information

An integrated methodology to select the optimum site of an airport on an island using limited meteorological information Meteorol. Appl. 12, 231 240 (2005) doi:10.1017/s1350482705001702 An integrated methodology to select the optimum site of an airport on an island using limited meteorological information Pavlos A. Kassomenos

More information

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 A puff-particle dispersion model P. de Haan and M. W. Rotach Swiss Federal Institute of Technology, GGIETH, Winterthurerstrasse 190, 8057 Zürich,

More information

Enabling Multi-Scale Simulations in WRF Through Vertical Grid Nesting

Enabling Multi-Scale Simulations in WRF Through Vertical Grid Nesting 2 1 S T S Y M P O S I U M O N B O U N D A R Y L A Y E R S A N D T U R B U L E N C E Enabling Multi-Scale Simulations in WRF Through Vertical Grid Nesting DAVID J. WIERSEMA University of California, Berkeley

More information

Simulations with different convection parameterizations in the LM

Simulations with different convection parameterizations in the LM Simulations with different convection parameterizations in the LM Linda Smoydzin Almut Gassmann Andreas Bott Marco Arpagaus (Meteo Swiss) Meteorological Institute of the University of Bonn, Germany Aims

More information

NWP Equations (Adapted from UCAR/COMET Online Modules)

NWP Equations (Adapted from UCAR/COMET Online Modules) NWP Equations (Adapted from UCAR/COMET Online Modules) Certain physical laws of motion and conservation of energy (for example, Newton's Second Law of Motion and the First Law of Thermodynamics) govern

More information

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu Logistics Goof up P? R? Can you log in? Teragrid yes? NCSA no? Requests for: Anders Colberg Syrowski Curtis Rastogi Yang Chiu Introduction to Numerical Weather Prediction Thanks: Tom Warner, NCAR A bit

More information

Application and verification of ECMWF products 2015

Application and verification of ECMWF products 2015 Application and verification of ECMWF products 2015 METEO- J. Stein, L. Aouf, N. Girardot, S. Guidotti, O. Mestre, M. Plu, F. Pouponneau and I. Sanchez 1. Summary of major highlights The major event is

More information

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul Hae-Jung Koo *, Kyu Rang Kim, Young-Jean Choi, Tae Heon Kwon, Yeon-Hee Kim, and Chee-Young Choi

More information

For the operational forecaster one important precondition for the diagnosis and prediction of

For the operational forecaster one important precondition for the diagnosis and prediction of Initiation of Deep Moist Convection at WV-Boundaries Vienna, Austria For the operational forecaster one important precondition for the diagnosis and prediction of convective activity is the availability

More information

L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study

L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study from Newsletter Number 148 Summer 2016 METEOROLOGY L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study Image from Mallivan/iStock/Thinkstock doi:10.21957/ nyvwteoz This article appeared

More information

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model

Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model 251 Numerical simulation of relationship between climatic factors and ground ozone concentration over Kanto area using the MM5/CMAQ Model Mai Van KHIEM, Ryozo OOKA, Hong HUANG and Hiroshi HAYAMI In recent

More information

Creating Meteorology for CMAQ

Creating Meteorology for CMAQ Creating Meteorology for CMAQ Tanya L. Otte* Atmospheric Sciences Modeling Division NOAA Air Resources Laboratory Research Triangle Park, NC * On assignment to the National Exposure Research Laboratory,

More information

Application and verification of ECMWF products 2014

Application and verification of ECMWF products 2014 Application and verification of ECMWF products 2014 Israel Meteorological Service (IMS), 1. Summary of major highlights ECMWF deterministic runs are used to issue most of the operational forecasts at IMS.

More information

Regional methane emissions estimates in northern Pennsylvania gas fields using a mesoscale atmospheric inversion system

Regional methane emissions estimates in northern Pennsylvania gas fields using a mesoscale atmospheric inversion system Regional methane emissions estimates in northern Pennsylvania gas fields using a mesoscale atmospheric inversion system Thomas Lauvaux1, A. Deng1, B. Gaudet1, S. J. Richardson1, N. L. Miles1, J. N. Ciccarelli1,2,

More information

ROLE OF CLOUD RADIATION INTERACTION IN THE DIURNAL VARIATION OF PRECIPITATION

ROLE OF CLOUD RADIATION INTERACTION IN THE DIURNAL VARIATION OF PRECIPITATION ROLE OF CLOUD RADIATION INTERACTION IN THE DIURNAL VARIATION OF PRECIPITATION SETHU RAMAN AND ADRIENNE WOOTTEN DEPARTMENT OF MARINE, EARTH AND ATMOSPHERIC SCIENCES NORTH CAROLINA STATE UNIVERSITY, RALEIGH,

More information

3D-Transport of Precipitation

3D-Transport of Precipitation 3D-Transport of Precipitation Almut Gassmann DWD/FE 13 October 17, 2000 1 Current diagnostic scheme for gridscale precipitation The current scheme for gridscale precipitation assumes column equilibrium

More information

Inflow and Outflow through the Sea-to-Sky Corridor in February 2010: Lessons Learned from SNOW-V10 *

Inflow and Outflow through the Sea-to-Sky Corridor in February 2010: Lessons Learned from SNOW-V10 * Inflow and Outflow through the Sea-to-Sky Corridor in February 2010: Lessons Learned from SNOW-V10 * Ruping Mo National Laboratory for Coastal and Mountain Meteorology, Environment Canada, Vancouver, BC,

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

Severe Freezing Rain in Slovenia

Severe Freezing Rain in Slovenia Severe Freezing Rain in Slovenia Janez Markosek, Environmental Agency, Slovenia Introduction At the end of January and at the beginning of February 2014, severe and long-lasting freezing rain affected

More information

An index to indicate precipitation probability and to investigate effects of sub-grid-scale surface parameterizations on model performance

An index to indicate precipitation probability and to investigate effects of sub-grid-scale surface parameterizations on model performance An index to indicate precipitation probability and to investigate effects of sub-grid-scale surface parameteriations on model performance Sylvia Bohnenstengel (1,2), K. Heinke Schlünen (2) (1) Max-Planck

More information

Preliminary results with very high resolution COSMO model for the forecast of convective events. Antonella Morgillo. Arpa-Simc.

Preliminary results with very high resolution COSMO model for the forecast of convective events. Antonella Morgillo. Arpa-Simc. 2 Working Group on Physical Aspects 52 Preliminary results with very high resolution COSMO model for the forecast of convective events. Antonella Morgillo Arpa-Simc amorgillo@arpa.emr.it 1 Introduction

More information

18B.2 Mesoscale Modelling for Radar Propagation Prediction during the Wallops-2000 Experiment

18B.2 Mesoscale Modelling for Radar Propagation Prediction during the Wallops-2000 Experiment 18B.2 Mesoscale Modelling for Radar Propagation Prediction during the Wallops-2000 Experiment Changgui Wang * (1), Peter A Clark (1), Tracy Haack (2), Sarah Millington (1) (1) Met Office, Exeter, United

More information

High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets

High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets JANUARY 2006 W E I G E L E T A L. 87 High-Resolution Large-Eddy Simulations of Flow in a Steep Alpine Valley. Part II: Flow Structure and Heat Budgets ANDREAS P. WEIGEL Institute for Atmospheric and Climate

More information

Channelling effect of the coastline and radar observed insect migration

Channelling effect of the coastline and radar observed insect migration Channelling effect of the coastline and radar observed insect migration Matti Leskinen 1, Hannu Savijärvi 2, Susanna Lautaportti 2, Kauri Mikkola 3 1 Department of Physics University of Helsinki, P.O.Box

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

A numerical model of the circulation in the NW Mediterranean

A numerical model of the circulation in the NW Mediterranean A numerical model of the circulation in the NW Mediterranean A.M.Doglioli A.A.Petrenko, Z.Hu, M.Kersalé, F.Nencioli, I.Dekeyser, C.Estournel, P.Marsaleix Workshop MEUST Marseille, 8-9 November 2010 Marsaleix

More information

J2.20 URBAN AND REGIONAL AIR QUALITY MODELLING IN THE PACIFIC NORTHWEST

J2.20 URBAN AND REGIONAL AIR QUALITY MODELLING IN THE PACIFIC NORTHWEST J2.20 URBAN AND REGIONAL AIR QUALITY MODELLING IN THE PACIFIC NORTHWEST Xin Qiu*, Mike Lepage, J. Wayne Boulton, and Martin Gauthier RWDI West Inc. 650 Woodlawn Rd. West Guelph, Ontario, Canada, N1K 1B8

More information

AFFORESTATION FOR IMPROVING VALLEY URBAN AIR-QUALITY

AFFORESTATION FOR IMPROVING VALLEY URBAN AIR-QUALITY AFFORESTATION FOR IMPROVING VALLEY URBAN AIR-QUALITY Peter C Chu, Yuchun Chen*, and Shihua Lu* Naval Ocean- Atmospheric Prediction Laboratory, Oceanography Department Naval Postgraduate School, Monterey,

More information

SENSITIVITY OF THE SURFEX LAND SURFACE MODEL TO FORCING SETTINGS IN URBAN CLIMATE MODELLING

SENSITIVITY OF THE SURFEX LAND SURFACE MODEL TO FORCING SETTINGS IN URBAN CLIMATE MODELLING SENSITIVITY OF THE SURFEX LAND SURFACE MODEL TO FORCING SETTINGS IN URBAN CLIMATE MODELLING Gabriella Zsebeházi PhD supervisor: Gabriella Szépszó Regional Climate Modelling Group, Hungarian Meteorological

More information

Analysis of PM10 measurements and comparison with model results during 2007 wildfire season

Analysis of PM10 measurements and comparison with model results during 2007 wildfire season Analysis of PM10 measurements and comparison with model results during 2007 wildfire season Autori S. Finardi, M. Mircea*, G.Righini* * ENEA/UTVALAMB-AIR Riferimento imento ARIANET R2011.16 May 2011 ARIANET

More information

The performance of the operational 4km resolution HIRLAM and UM runs at met.no. met.no R&D Dept.

The performance of the operational 4km resolution HIRLAM and UM runs at met.no. met.no R&D Dept. The performance of the operational 4km resolution HIRLAM and UM runs at met.no Thor Erik Nordeng met.no R&D Dept. Outline - Hirlam and UM set-up - Long term performance verification of surface temp, wind

More information

A simple operative formula for ground level concentration from a point source

A simple operative formula for ground level concentration from a point source Air Pollution XX 3 A simple operative formula for ground level concentration from a point source T. Tirabassi, M. T. Vilhena & D. Buske 3 Institute of Atmospheric cience and Climate (IAC-CNR), Bologna,

More information

Coastal Ocean Modeling & Dynamics - ESS

Coastal Ocean Modeling & Dynamics - ESS DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Coastal Ocean Modeling & Dynamics - ESS Roger M. Samelson College of Earth, Ocean, and Atmospheric Sciences Oregon State

More information