Abstract. 1 Introduction

Size: px
Start display at page:

Download "Abstract. 1 Introduction"

Transcription

1 Simulation of nocturnal drainage flows and dispersion of pollutants in a complex valley D. Boucoulava, M. Tombrou, C. Helmis, D. Asimakopoulos Department ofapplied Physics, University ofathens, 33 Ippokratous, GR Athens, Greece Abstract Nocturnal drainage flows in Megalopolis valley are simulated by a two dimensional vertically averaged dynamic model. The calculated wind field is compared with hourly observations taken at four stations situated in the central part of the valley. Ground level concentrations of SC>2 which is emitted from the stacks of a Power Plant are also estimated. 1 Introduction Nocturnal drainage flows are a very common feature of mountainous regions. Cooling by nocturnal radiation causes the layer of the air adjacent to the slope to be cooled by conduction and turbulence. The temperature difference between this layer and the ambient air at the same altitude over the centre of the valley causes buoyant forces generating a complex circulation which can be modified or even eliminated when synoptic winds are strong. The purpose of this study is the simulation of the wind field of the Megalopolis Valley during some nights favourable for drainage flows. The ground level concentrations of SC>2 which is emitted from a Power Plant situated on the valley floor is also calculated. Details on the stacks characteristics can be found in Lalas et al. [1]. The Megalopolis valley is situated in the central part of Peloponnisos (Greece). Its length is 20km and its width 18km. It is surrounded by hills about m higher than its floor whose elevation reaches 400m above sea-level. Three openings are present, at its SW,SE and NW corners, (see figures (1,2) )The vegetation of the valley is relatively low and dispersed. In the time period , an experiment is conducted Hourly data of wind speed and direction at the height of 4m, from 4 meteorological masts are available at four different locations :

2 224 Air Pollution Theory and Simulation Power Plant (PP), Voutsaras (V), Tripotamo (T), Karvounari (K). Figure (2). At the Power Plant location an acoustic sounder is in operation, and a few tethersonde ascents are also taken. In addition, measurements of hourly concentrations of SC>2 in Megalopolis town are available. In this study, the two dimensional vertically averaged hydrostatic dynamic drainage flow model 2DFLOW developed by the Savannah River Laboratory Garrett & Smith[2,3] is used. The model is based on conservation equations of momentum and mass in a terrain following coordinate system. The required input data are local topography, ambient temperature, an initial constant ambient and geostrophic wind. The drainage velocity is assumed uniform over the drainage depth which varies in space and time. The buoyancy force is driven by a temperature deficit (0^) which can roughly be assumed to be constant in space and time as drainage flows reach a quasi steady state during the night. Dispersion calculations are also performed by a simple Monte Carlo model described by Hanna et al.[4]. 2 Methodology The model has been adjusted to accept spatial variation of the ambient wind, which is provided by the mass-consistent model AIOLOS [5] in order that our study should take into account the modification of the wind field due to the local topography. The Monte Carlo model which is two dimensional, assumes that the material is instantly diluted in the drainage layer As a result of this, it calculates pollutant concentrations counting the number of particles in a volume dx*dx*h where dx is the horizontal grid mesh and h the drainage depth. In our study, we are counting the particles that reach 10m above the ground, assuming that each particle has a vertical velocity, which equals the sum of the mean plus the turbulent component w/, in order to count ground level concentrations for comparison with measured values. The mean vertical velocity, which is not provided by the model, is set equal to zero. This assumption is valid since the vertical velocities in nocturnal flows are usually small except in regions of strong subsidence (Luhar & Rao [6]) The vertical velocity variance is calculated according to Hanna et al.[4] o^=1.3u*(l-z/h) (1) where u* is the friction velocity and h the top of the drainage layer. The assumption that the vertical velocity fluctuation w/ can be described by a white noise process is valid, when the vertical lagrangian time scale is small [6] In nocturnal flows it is typically of the order losec so w/ can be given by: w/=cyr (2) where R is a random number with mean zero and unit variance. The contribution of each stack is taken into account only when its effective height becomes lower than the drainage depth which increases with time reaching a quasi-steady state. The initial particle positions are assumed equal to the effective height. The effective height for each stack is estimated according

3 Air Pollution Theory and Simulation 225 Figure 1: Relief Map of Megalopolis Valley r 17000^ isooo^ IJOOOH -I3OOO-I o o o o o o Figure 2: Contour map of the Megalopolis Valley The locations of the measuring wind stations and Megalopolis Town are also indicated.

4 226 Air Pollution Theory and Simulation to Briggs [7] for stable conditions and found to range from 150 to 450m. Finally, particles are assumed to reflect at the ground and the top of the drainage layer. Only few rawinsonde ascents are available during the experimental time period. Because of the relatively strong winds associated with these particular nights, they prove to be unfavourable for drainage flows. In most of the nights of the year the general meteorology acts so as to eliminate the locally driven drainage winds. The selection of the nights presented here is based on examination of synoptic charts and rawinsonde ascents from Helliniko airport. Nights with low wind speeds (< 5 m/sec) and fair weather conditions have been selected. Also, during these particular nights, according to the acoustic sounder measurements, a surface inversion is present. The winds of Helliniko at the geostrophic level are found to approximate the geostrophic winds above Megalopolis, after a close examination of synoptic charts and comparison of some upper level wind measurements of the rawinsonde ascents taken in Megalopolis with those from Helliniko airport. 3 Discussion of the results The selected nights presented in this study are 18/3/84 and 11/4/84. The simulations are performed in a horizontal grid of 34x35 km with a grid mesh of 500m which is selected in order to cover most of the part of the valley. On 18/3/84 the model runs with an imposed geostrophic wind of 5 m/sec from the NNW. where AIOLOS produces an ambient wind of NW direction. The model simulation begins at local sunset and reaches a quasi-steady state after 3 hours of simulation slower than in [3] because of the more complex initial wind field. After 8 hours, (figure 3), the drainage flows on the slopes converge towards the center of the valley producing an along valley circulation. The ambient wind interacts with the locally driven winds resulting in a complex flow depending on the valley's complicated topography. The tendency of the flow to escape from the valley's openings is apparent and affected by the ambient wind field. This particular wind direction enhances the flow exit from the SE side while it tends to eliminate or even reverse the flow on the SW side which has a NE direction when the model runs with zero ambient winds. The results of the model are compared to average nighttime values measured during the above mentioned night, (table 1). There is generally quite good agreement between modelled and observed values. However, discrepancies are expected because the model is vertically averaged and the wind vertical structure is eliminated. In addition, the model is hydrostatic and performs better in less complex terrain. The measured wind speeds are generally very low, resulting in a certain ambiguity of their values as, apart from instrument errors, they can be affected from trees and local topography. At the power plant location the near zero values are accurately simulated.

5 Air Pollution Theory and Simulation 227 Table 1 : Comparison between measured and observed winds on 18/3/84 at the four locations. The wind speeds (WS) are given in m/sec and the wind directions (\VD) in degrees TIME Simulated WS WD WS WD WS WD WS WD WS WD VOUTSARAS TRIPOTAMO P. PLANT KARVOUNARJ The constant wind direction at Voutsaras location reflects the well organized flow shown in figure 3 while in Tripotamo the directions are more variable. The general structure of the wind in the vicinity of each station must be considered more representative of its wind field instead of one particular grid value. The modelled drainage depths vary from 10m over the mountains to 400m at the Power Plant location The measured temperature inversion depth at the Power Plant is lower (250m). An oveprediction appears as the drainage depth is not always confined to the surface inversion depth as it can also embody an isothermal layer [8]. The second night presented in this study is the 11/4/84. According to Helliniko rawinsonde ascents, the geostrophic wind is 3m/sec from NW direction. The windfield,after 8 h of simulation is represented infigure4 while comparison between predicted and observed values is shown in table 2. The slope winds are more pronounced than the previous day due to the lower ambient winds The agreement with the observed values at Tripotamo are not as good as in thefirstnight Table 2: As in Table 1 but for 11/4/84 TIME Simulated WS WD WS WD WS WD WS WD WS WD VOUTSARAS TRIPOTAMO P.PLANT 1, KARVOUNARI The results of the dispersion calculations for the above mentioned nights after 8h are shown in figures 5,6. On 18/3/84 the apparent NW flow tends to transport the material towards this direction. The maximum ground level concentrations reach 300pg/m^ at a distance of 10km SE of the Power Plant. The Megalopolis town which is situated SE of the Power Plant is apparently unaffected. This is consistent with the measured nighttime values which are

6 228 Air Pollution Theory and Simulation Figure 3: 18/5/84. Wind field after 8 hours of simulation 1 m/sec Figure 4: As in figure 3 but for 11/4/84

7 Air Pollution Theory and Simulation 229 Figure 5: 18/3/84 Calculated hourly ground level concentrations in jjg/r 8 hours of simulation. Contours are given at 50 ug/m^ intervals after Figure 6: As in figure 4 but for 1 1/4/84.Contours at 10 intervals

8 230 Air Pollution Theory and Simulation practically zero. The results are in accordance with the calculated values from the VALLEY model [9] during some particular nights of the experimental time period.on 11/4/84 the picture is quite different. Because of the absence of an organized flow and the relatively light wind speeds which cause calculated velocity variances to remain at low levels, the concentrations reach a maximum value of 70ug/m^ S of the Power Plant The measured values in Megalopolis town are also nearly zero apart from some traces during midnight. The predicted value of 10pg/m^ is considered as a good approximation 4 Conclusions In spite of the model's simplicity the predicted wind fields are in accordance with the measured values. A nested grid and a variable temperature deficit would probably improve the results. The measured SC>2 concentrations are very limited, but the general picture of the predicted concentrations is satisfactory. References 1. Lalas, DP, Asimakopoulos, D, Petrakis & Helmis, K, M, Air Pollution impact Assessment in Megalopolis Valley, Athens, Garrett, A,& Smith, F, Two Dimensional Simulations of drainage winds and diffusion compared to observations, J, Climate Appl. Meteor.,1984,23, Garrett, A. & Smith, F. A., Two-dimensional dynamical drainage flow model with Monte Carlo transport and diffusion calculations DP-1639, Hanna, G.A., Briggs, & R. P., Hosker, Handbook on atmospheric diffusion. DOE/TIC-11223, Lalas, DP,Wind energy estimation and siting in complex terrain/w/. J. Solar Energy,1985,3, Luhar, A.K., Rao,K S, Lagrangian Stochastic dispersion model simulations of tracer data in nocturnal flows over complex terrain, Atmospheric Environment,1994,28, Briggs, G.A., Plume Rise USAEC Critical Review Series, NTIS, Springfield Va., S.Barr, S.,& Orgill, M, Influence of external meteorology on nocturnal valley drainage winds, J.Appl. Meteor.., 1989,31, Burt, E.W., VALLEY model user's guide Report EPA-450/ Environmental Protection Agency, 1977.

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995

350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 350 Int. J. Environment and Pollution Vol. 5, Nos. 3 6, 1995 A puff-particle dispersion model P. de Haan and M. W. Rotach Swiss Federal Institute of Technology, GGIETH, Winterthurerstrasse 190, 8057 Zürich,

More information

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE

P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE P1.1 THE QUALITY OF HORIZONTAL ADVECTIVE TENDENCIES IN ATMOSPHERIC MODELS FOR THE 3 RD GABLS SCM INTERCOMPARISON CASE Fred C. Bosveld 1*, Erik van Meijgaard 1, Evert I. F. de Bruijn 1 and Gert-Jan Steeneveld

More information

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR

INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS, NW GREECE), ON PRECIPITATION, DURING THE WARM PERIOD OF THE YEAR Proceedings of the 13 th International Conference of Environmental Science and Technology Athens, Greece, 5-7 September 2013 INVESTIGATION FOR A POSSIBLE INFLUENCE OF IOANNINA AND METSOVO LAKES (EPIRUS,

More information

LECTURE 28. The Planetary Boundary Layer

LECTURE 28. The Planetary Boundary Layer LECTURE 28 The Planetary Boundary Layer The planetary boundary layer (PBL) [also known as atmospheric boundary layer (ABL)] is the lower part of the atmosphere in which the flow is strongly influenced

More information

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By:

AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution. Paper No Prepared By: AERMOD Sensitivity to AERSURFACE Moisture Conditions and Temporal Resolution Paper No. 33252 Prepared By: Anthony J Schroeder, CCM Managing Consultant TRINITY CONSULTANTS 7330 Woodland Drive Suite 225

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Application of transilient turbulence theory to a mesoscale dispersion model M. Coutinho,* C. Bon-ego,* A.I. Miranda* "IDAD - Institute of Environment and Development, 3810 Aveiro, Portugal ^Department

More information

Air Pollution Meteorology

Air Pollution Meteorology Air Pollution Meteorology Government Pilots Utilities Public Farmers Severe Weather Storm / Hurricane Frost / Freeze Significant Weather Fog / Haze / Cloud Precipitation High Resolution Weather & Dispersion

More information

A B C D PROBLEMS Dilution of power plant plumes. z z z z

A B C D PROBLEMS Dilution of power plant plumes. z z z z 69 PROBLEMS 4. Dilution of power plant plumes Match each power plant plume (-4) to the corresponding atmospheric lapse rate (A-D, solid lines; the dashed line is the adiabatic lapse rate Γ). Briefly comment

More information

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk 1. Introduction Lenskaya Olga Yu.*, Sanjar M. Abdullaev* *South Ural State University Urbanization

More information

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN

1.18 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN .8 EVALUATION OF THE CALINE4 AND CAR-FMI MODELS AGAINST THE DATA FROM A ROADSIDE MEASUREMENT CAMPAIGN Joseph Levitin, Jari Härkönen, Jaakko Kukkonen and Juha Nikmo Israel Meteorological Service (IMS),

More information

Numerical Simulations of Airflows and Tracer Transport in the Southwestern United States

Numerical Simulations of Airflows and Tracer Transport in the Southwestern United States 399 Numerical Simulations of Airflows and Tracer Transport in the Southwestern United States TETSUJI YAMADA Yamada Science and Art Corporation, Santa Fe, New Mexico (Manuscript received 18 May 1998, in

More information

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert

Sound Propagation in the Nocturnal Boundary Layer. Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert Sound Propagation in the Nocturnal Boundary Layer Roger Waxler Carrick Talmadge Xiao Di Kenneth Gilbert The Propagation of Sound Outdoors (over flat ground) The atmosphere is a gas under the influence

More information

PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY

PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY P2.17 PERFORMANCE OF THE WRF-ARW IN THE COMPLEX TERRAIN OF SALT LAKE CITY Jeffrey E. Passner U.S. Army Research Laboratory White Sands Missile Range, New Mexico 1. INTRODUCTION The Army Research Laboratory

More information

IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority

IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority IMPACT OF WEATHER CHANGES ON TVA NUCLEAR PLANT CHI/Q (χ/q) Kenneth G. Wastrack Doyle E. Pittman Jennifer M. Call Tennessee Valley Authority The TVA nuclear plants, like most others in the United States,

More information

Meteorological and Dispersion Modelling Using TAPM for Wagerup

Meteorological and Dispersion Modelling Using TAPM for Wagerup Meteorological and Dispersion Modelling Using TAPM for Wagerup Phase 1: Meteorology Appendix A: Additional modelling details Prepared for: Alcoa World Alumina Australia, P. O. Box 252, Applecross, Western

More information

POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS

POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS POLLUTION DISPERSION MODELING AT CHANIA, GREECE, UNDER VARIOUS METEOROLOGICAL CONDITIONS K. PHILIPPOPOULOS 1, D. DELIGIORGI 1, G. KARVOUNIS 1 and M. TZANAKOU 2 1 Department of Physics National and Kapodistrian

More information

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2

Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1. Cambridge TRC Environmental Corporation 1. Lowell, Massachusetts USA 2 Application of MM5 and CALPUFF to a Complex Terrain Environment in Eastern Iceland Joseph S. Scire 1, Christelle Escoffier-Czaja 2 and Mahesh J. Phadnis 1 TRC Environmental Corporation 1 Lowell, Massachusetts

More information

REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE

REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE REGIONAL AIR QUALITY FORECASTING OVER GREECE WITHIN PROMOTE Poupkou A. (1), D. Melas (1), I. Kioutsioukis (2), I. Lisaridis (1), P. Symeonidis (1), D. Balis (1), S. Karathanasis (3) and S. Kazadzis (1)

More information

TAPM Modelling for Wagerup: Phase 1 CSIRO 2004 Page 41

TAPM Modelling for Wagerup: Phase 1 CSIRO 2004 Page 41 We now examine the probability (or frequency) distribution of meteorological predictions and the measurements. Figure 12 presents the observed and model probability (expressed as probability density function

More information

Air Quality Simulation of Traffic Related Emissions: Application of Fine-Scaled Dispersion Modelling

Air Quality Simulation of Traffic Related Emissions: Application of Fine-Scaled Dispersion Modelling Air Quality Simulation of Traffic Related Emissions: Application of Fine-Scaled Dispersion Modelling M. Shekarrizfard, M. Hatzopoulou Dep. of Civil Engineering and Applied Mechanics, McGill University

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

Naka-Gun, Ibaraki, , Japan

Naka-Gun, Ibaraki, , Japan Examination of Atmospheric Dispersion Model s Performance - Comparison with the Monitoring Data under the Normal Operation of the Tokai Reprocessing Plant - M. Takeyasu 1, M. Nakano 1, N. Miyagawa 1, M.

More information

Natural Event Documentation

Natural Event Documentation ADDENDUM Natural Event Documentation Corcoran, Oildale and Bakersfield, California September 22, 2006 San Joaquin Valley Unified Air Pollution Control District May 23, 2007 Natural Event Documentation

More information

Sensitivity of cold air pool evolution in hilly terrain regions

Sensitivity of cold air pool evolution in hilly terrain regions Sensitivity of cold air pool evolution in hilly terrain regions BRADLEY JEMMETT-SMITH 1, ANDREW ROSS 1, PETER SHERIDAN 2, JOHN HUGHES 1 21 st Symposium on Boundary Layers and Turbulence Leeds, UK 9 June

More information

The Stable Boundary layer

The Stable Boundary layer The Stable Boundary layer the statistically stable or stratified regime occurs when surface is cooler than the air The stable BL forms at night over land (Nocturnal Boundary Layer) or when warm air travels

More information

Vertical structure of the thermal belt in the western slope of Mt. Tsukuba: an observational study on December, 2004

Vertical structure of the thermal belt in the western slope of Mt. Tsukuba: an observational study on December, 2004 Tsukuba Geoenvironmental Sciences, Vol. 1, pp. 11-17, Dec. 26, 2005. Vertical structure of the thermal belt in the western slope of Mt. Tsukuba: an observational study on 10 11 December, 2004 Yasushi WATARAI

More information

CFD calculations of the test 2-4 experiments. Author: G. de With

CFD calculations of the test 2-4 experiments. Author: G. de With CFD calculations of the test 2-4 experiments Author: G. de With 34. Model setup and boundary conditions Dimensions CFD model: x=1000m / y=100m / z=2000m. CFD Model: Transient simulation, with steady-state

More information

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3.

J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA 3. J4.2 ASSESSMENT OF PM TRANSPORT PATTERNS USING ADVANCED CLUSTERING METHODS AND SIMULATIONS AROUND THE SAN FRANCISCO BAY AREA, CA Scott Beaver 1*, Ahmet Palazoglu 2, Angadh Singh 2, and Saffet Tanrikulu

More information

Meteorological Data Collection, X/Q and D/Q, Critical Receptors

Meteorological Data Collection, X/Q and D/Q, Critical Receptors Meteorological Data Collection, X/Q and D/Q, Critical Receptors Ken Sejkora Entergy Nuclear Northeast Pilgrim Station Presented at the 23rd Annual RETS-REMP Workshop Training Session Westminster, CO /

More information

Christophe DUCHENNE 1, Patrick ARMAND 1, Maxime NIBART 2, Virginie HERGAULT 3. Harmo 17 Budapest (Hungary) 9-12 May 2016

Christophe DUCHENNE 1, Patrick ARMAND 1, Maxime NIBART 2, Virginie HERGAULT 3. Harmo 17 Budapest (Hungary) 9-12 May 2016 Validation of a LPDM against the CUTE experiments of the COST ES1006 Action Comparison of the results obtained with the diagnostic and RANS versions of the flow model Christophe DUCHENNE 1, Patrick ARMAND

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Application of a non-hydrostatic mesoscale meteorological model to the Aveiro Region, Portugal M. Coutinho," T. Flassak,* C. Borrego" ^Department of Environmental and Planning, University of Aveiro, 3800

More information

P1.15 DECADAL WIND TRENDS AT THE SAVANNAH RIVER SITE

P1.15 DECADAL WIND TRENDS AT THE SAVANNAH RIVER SITE 1. INTRODUCTION P1.15 DECADAL WIND TRENDS AT THE SAVANNAH RIVER SITE Allen H. Weber, Robert L. Buckley, and Matthew J. Parker Savannah River National Laboratory, Aiken, South Carolina One possible consequence

More information

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama

Department of Meteorology University of Nairobi. Laboratory Manual. Micrometeorology and Air pollution SMR 407. Prof. Nzioka John Muthama Department of Meteorology University of Nairobi Laboratory Manual Micrometeorology and Air pollution SMR 407 Prof. Nioka John Muthama Signature Date December 04 Version Lab : Introduction to the operations

More information

Planned Burn (PB)-Piedmont online version user guide. Climate, Ecosystem and Fire Applications (CEFA) Desert Research Institute (DRI) June 2017

Planned Burn (PB)-Piedmont online version user guide. Climate, Ecosystem and Fire Applications (CEFA) Desert Research Institute (DRI) June 2017 Planned Burn (PB)-Piedmont online version user guide Climate, Ecosystem and Fire Applications (CEFA) Desert Research Institute (DRI) June 2017 The Planned Burn (PB)-Piedmont model (Achtemeier 2005) is

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Nested dispersion simulation over the Lisbon region R. Kunz,* M. Coutinho,^ C. Borrego^ N. Moussiopoulos' "Institute for Technical Thermodynamics, University of Karlsruhe, 76128 Karlsruhe, Germany ^Department

More information

DIAGNOSTIC WIND FIELD

DIAGNOSTIC WIND FIELD seminar DIAGNOSTIC WIND FIELD author: Matic Ivančič mentor: prof. dr. Jože Rakovec May 23, 2010 Abstract Diagnostic wind field procedure is calculation of wind on small scale and in complex terrain. Diagnostic

More information

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece

INTER-COMPARISON AND VALIDATION OF RANS AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE. Resources, Kozani, Greece INTER-COMPARISON AND VALIDATION OF AND LES COMPUTATIONAL APPROACHES FOR ATMOSPHERIC DISPERSION AROUND A CUBIC OBSTACLE S. Andronopoulos 1, D.G.E. Grigoriadis 1, I. Mavroidis 2, R.F. Griffiths 3 and J.G.

More information

Abstract. 1 Estimation of wind fields

Abstract. 1 Estimation of wind fields Fall-out estimation by lagrangian random walk model J. L. Polo, J. Barquin Universidad Pontificia Camillas, Alberto Aguilera, 23, 28015 Madrid (Spain) Email: barquin@iit.upco.es Abstract The purpose of

More information

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires

Cambridge Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Using Plume Rise Schemes To Model Highly Buoyant Plumes From Large Fires Helen Webster, Robert Beare, Benjamin Devenish, James Haywood, Adrian Lock and David Thomson Crown copyright 2007 Page 1 Outline

More information

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul

J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul J17.3 Impact Assessment on Local Meteorology due to the Land Use Changes During Urban Development in Seoul Hae-Jung Koo *, Kyu Rang Kim, Young-Jean Choi, Tae Heon Kwon, Yeon-Hee Kim, and Chee-Young Choi

More information

Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain

Departmento de Impacto Ambiental de la Energía, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain MAY 2001 MARTÍN ET AL. 905 Simulations of Mesoscale Circulations in the Center of the Iberian Peninsula for Thermal Low Pressure Conditions. Part II: Air-Parcel Transport Patterns FERNANDO MARTÍN, MAGDALENA

More information

H ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS. G. Pession 1, T. Magri 1, G. Tinarelli 2

H ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS. G. Pession 1, T. Magri 1, G. Tinarelli 2 H14-146 ATMOSPHERIC DISPERSION OF ASBESTOS PARTICLES FROM RURAL BUILDING ROOFS G. Pession 1, T. Magri 1, G. Tinarelli 2 1 ARPA Valle d Aosta, Loc. Grande Charrière 44, 11020 Saint-Christophe (Aosta), ITALIA

More information

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9

The atmosphere in motion: forces and wind. AT350 Ahrens Chapter 9 The atmosphere in motion: forces and wind AT350 Ahrens Chapter 9 Recall that Pressure is force per unit area Air pressure is determined by the weight of air above A change in pressure over some distance

More information

USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS

USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS JP3.3 USE OF A STATEWIDE MESOSCALE AUTOMATED WEATHER STATION NETWORK FOR REAL-TIME OPERATIONAL ASSESSMENT OF NEAR-SURFACE DISPERSION CONDITIONS J. D. Carlson * Oklahoma State University, Stillwater, Oklahoma

More information

Chapter 3. Materials and Methods

Chapter 3. Materials and Methods Chapter 3 Materials and Methods CHAPTER3 MATERIALS AND METHODS The present study aims to identify the role of climatic factors in the dispersal of air pollutants released into the atmosphere at some important

More information

WaTV. ^mo JP, 2P700? zaczmza,

WaTV. ^mo JP, 2P700? zaczmza, Model simulations of industrial plumes mesoscale interactions in complex coastal area G. Tinarelli,* P. Faggian,* S. Finardi,* G. Brusasca,* G. Carboni', E-Mail: tinarelli@cram.enel.it, brusasca@cram.enel.it

More information

Fronts in November 1998 Storm

Fronts in November 1998 Storm Fronts in November 1998 Storm Much of the significant weather observed in association with extratropical storms tends to be concentrated within narrow bands called frontal zones. Fronts in November 1998

More information

Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4)

Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4) Towards the Fourth GEWEX Atmospheric Boundary Layer Model Inter-Comparison Study (GABLS4) Timo Vihma 1, Tiina Nygård 1, Albert A.M. Holtslag 2, Laura Rontu 1, Phil Anderson 3, Klara Finkele 4, and Gunilla

More information

Applications. Remote Weather Station with Telephone Communications. Tripod Tower Weather Station with 4-20 ma Outputs

Applications. Remote Weather Station with Telephone Communications. Tripod Tower Weather Station with 4-20 ma Outputs Tripod Tower Weather Station with 4-20 ma Outputs Remote Weather Station with Telephone Communications NEMA-4X Enclosure with Two Translator Boards and Analog Barometer Typical Analog Output Evaporation

More information

5S: Atmospheric Diffusion Model

5S: Atmospheric Diffusion Model 1. Physical model experiment (wind tunnel experiment case) Wind tunnel experiment is one of the proven methods for the estimation of atmospheric diffusion. The topography/ buildings models are set up into

More information

RELATION BETWEEN AIR POLLUTION EPISODES AND DISCOMFORT INDEX IN THE GREATER ATHENS AREA, GREECE

RELATION BETWEEN AIR POLLUTION EPISODES AND DISCOMFORT INDEX IN THE GREATER ATHENS AREA, GREECE 91 Global Nest: the Int. J. Vol 1, No 2, pp 91-97, 1999 Copyright 1998 GLOBAL NEST Printed in Greece. All rights reserved RELATION BETWEEN AIR POLLUTION EPISODES AND DISCOMFORT INDEX IN THE GREATER ATHENS

More information

Using Temperature and Dew Point to Aid Forecasting Springtime Radiational Frost and/or Freezing Temperatures in the NWS La Crosse Service Area

Using Temperature and Dew Point to Aid Forecasting Springtime Radiational Frost and/or Freezing Temperatures in the NWS La Crosse Service Area Using Temperature and Dew Point to Aid Forecasting Springtime Radiational Frost and/or Freezing Temperatures in the NWS La Crosse Service Area WFO La Crosse Climatology Series #21 The formation of radiational

More information

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 1.393, ISSN: , Volume 2, Issue 4, May 2014 Impact Factor 1.393, ISSN: 3583, Volume, Issue 4, May 14 A STUDY OF INVERSIONS AND ISOTHERMALS OF AIR POLLUTION DISPERSION DR.V.LAKSHMANARAO DR. K. SAI LAKSHMI P. SATISH Assistant Professor(c), Dept. of

More information

THE INFLUENCE OF SYNOPTIC CONDITIONS ON FLOW BETWEEN MOUNTAIN BASINS. Keeley R. Costigan*

THE INFLUENCE OF SYNOPTIC CONDITIONS ON FLOW BETWEEN MOUNTAIN BASINS. Keeley R. Costigan* 8.4 THE IFLUECE OF SYOPTIC CODITIOS O FLOW BETWEE MOUTAI BASIS Keeley R. Costigan* Atmospheric, Climate, and Environmental Dynamics Group Los Alamos ational Laboratory Los Alamos, ew Mexico 874 1. ITRODUCTIO

More information

A Numerical Simulation of the Influences of Local Circulation over Complex Terrain on Gas Dispersion on the Tibetan Plateau

A Numerical Simulation of the Influences of Local Circulation over Complex Terrain on Gas Dispersion on the Tibetan Plateau A Numerical Simulation of the Influences of Local Circulation over Complex Terrain on Gas Dispersion on the Tibetan Plateau MINGYUAN DU 1, SEIICHIRO YONEMURA 1, TETSUJI YAMADA 2, XIANZOU ZHANG 3, YINGNIAN

More information

8.3 NOCTURNAL BOUNDARY LAYER COOLING RATES IN VALLEYS, BASINS, AND OVER PLAINS

8.3 NOCTURNAL BOUNDARY LAYER COOLING RATES IN VALLEYS, BASINS, AND OVER PLAINS 8.3 NOCTURNAL BOUNDARY LAYER COOLING RATES IN VALLEYS, BASINS, AND OVER PLAINS Stephan F. J. De Wekker* and C. David Whiteman Pacific Northwest National Laboratory, Richland, Washington 1. INTRODUCTION

More information

RIME: IMPROVING MULTISCALE FORECASTING OF ANTARCTIC METEOROLOGY

RIME: IMPROVING MULTISCALE FORECASTING OF ANTARCTIC METEOROLOGY RIME: IMPROVING MULTISCALE FORECASTING OF ANTARCTIC METEOROLOGY David P. Bacon*, Thomas R. Parish 1, Kenneth T. Waight III 2 Center for Atmospheric Physics, Science Applications International Corporation,

More information

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk

Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk Modeling Study of Atmospheric Boundary Layer Characteristics in Industrial City by the Example of Chelyabinsk Lenskaya Olga Yu.*, Sanjar M. Abdullaev South Ural State University, Chelyabinsk, *ecolcsu@gmail.com

More information

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017

4. Atmospheric transport. Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 4. Atmospheric transport Daniel J. Jacob, Atmospheric Chemistry, Harvard University, Spring 2017 Forces in the atmosphere: Gravity g Pressure-gradient ap = ( 1/ ρ ) dp / dx for x-direction (also y, z directions)

More information

Urban heat island in the metropolitan area of São Paulo and the influence of warm and dry air masses during summer

Urban heat island in the metropolitan area of São Paulo and the influence of warm and dry air masses during summer Urban heat island in the metropolitan area of São Paulo and the influence of warm and dry air masses during summer Flavia N. D. Ribeiro1, Arissa S. umezaki1, Jhonathan F. T. de Souza1, Jacyra Soares2,

More information

An integrated methodology to select the optimum site of an airport on an island using limited meteorological information

An integrated methodology to select the optimum site of an airport on an island using limited meteorological information Meteorol. Appl. 12, 231 240 (2005) doi:10.1017/s1350482705001702 An integrated methodology to select the optimum site of an airport on an island using limited meteorological information Pavlos A. Kassomenos

More information

Physical mechanisms of the thermally driven cross-basin circulation

Physical mechanisms of the thermally driven cross-basin circulation Quarterly Journalof the Royal Meteorological Society Q. J. R. Meteorol. Soc. 4: 895 97, April 24 DOI:.2/qj.295 Physical mechanisms of the thermally driven cross-basin circulation Manuela Lehner* and C.

More information

The effect of urban environment on the cooling degree hours and its effect on the C.O.P. of air-conditioning unit

The effect of urban environment on the cooling degree hours and its effect on the C.O.P. of air-conditioning unit International Workshop on Energy Performance and Environmental The effect of urban environment on the cooling degree hours and its effect on the C.O.P. of air-conditioning unit N.M. Papanikolaou, M. Santamouris

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT.

MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT. MODELLING THE METEOROLOGY AND TRAFFIC POLLUTANT DISPERSION IN HIGHLY COMPLEX TERRAIN: THE ALPNAP ALPINE SPACE PROJECT. S. Trini Castelli 1, G. Belfiore 1, D. Anfossi 1 and E. Elampe 2 1 Institute of Atmospheric

More information

Elevations are in meters above mean sea level. Scale 1:2000

Elevations are in meters above mean sea level. Scale 1:2000 12.001 LAB 7: TOPOGRAPHIC MAPS Due: Monday, April 11 PART I: CONTOURING AND PROFILES (20 PTS) 1. Contour this area map using a 5 meter contour interval. Remember some fundamental rules of contour lines,

More information

Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013

Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 PERFORMANCE AND VERIFICATION OF A DOWNSCALING APPROACH FOR METEOROLOGY AND LAND

More information

On plume rise matching Daysmoke with Briggs Equations for industrial stacks

On plume rise matching Daysmoke with Briggs Equations for industrial stacks On plume rise matching Daysmoke with Briggs Equations for industrial stacks Gary L. Achtemeier USDA Forest Service/Forest Sciences Laboratory 30 Green St., Athens, GA, 3060 USA gachtemeier@fs.fed.us The

More information

A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part II: Velocity Field

A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part II: Velocity Field 1392 JOURNAL OF APPLIED METEOROLOGY A Laboratory Study of the Urban Heat Island in a Calm and Stably Stratified Environment. Part II: Velocity Field JIE LU ANDS. PAL ARYA Department of Marine, Earth and

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

DOPPLER SODAR MEASUREMENTS OF VERTICAL WIND VELOCITY

DOPPLER SODAR MEASUREMENTS OF VERTICAL WIND VELOCITY Russian Meteorology and Hydrology No. 7, pp. 28-36, 2003 Meleorologiya i Gidrologiya UDC 551.558:551.501.796 DOPPLER SODAR MEASUREMENTS OF VERTICAL WIND VELOCITY M. A. Lokoshchenko*, V. G. Perepyolkin**,

More information

VERIFICATION OF HIGH-RESOLUTION MESOSCALE SIMULATIONS USING LAND-SURFACE TEMPERATURE FIELDS DERIVED FROM SATELLITES

VERIFICATION OF HIGH-RESOLUTION MESOSCALE SIMULATIONS USING LAND-SURFACE TEMPERATURE FIELDS DERIVED FROM SATELLITES VERIFICATION OF HIGH-RESOLUTION MESOSCALE SIMULATIONS USING LAND-SURFACE TEMPERATURE FIELDS DERIVED FROM SATELLITES M.A. Jiménez and J.Cuxart Universitat de les Illes Balears Palma de Mallorca, Spain ü

More information

Predicting concentration fluctuations with a puffparticle

Predicting concentration fluctuations with a puffparticle Int. J. Environment and Pollution, Vol. 16, Nos. 1 6, 2001 49 Predicting concentration fluctuations with a puffparticle model P. de Haan INFRAS, Muehlemattstr. 45, 3007 Bern, Switzerland e-mail: peter.dehaan@infras.ch

More information

2. REGIONAL DISPERSION

2. REGIONAL DISPERSION Real-time Transport and Dispersion from Illinois Nuclear Power Plants Thomas E. Bellinger, CCM Illinois Emergency Management Agency Springfield, Illinois 1. INTRODUCTION Meteorological data routinely used

More information

URBAN HEAT ISLAND IN SEOUL

URBAN HEAT ISLAND IN SEOUL URBAN HEAT ISLAND IN SEOUL Jong-Jin Baik *, Yeon-Hee Kim ** *Seoul National University; ** Meteorological Research Institute/KMA, Korea Abstract The spatial and temporal structure of the urban heat island

More information

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary

17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary 17th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes 9-12 May 2016, Budapest, Hungary SIMULATIONS OF TRAFFIC RELATED POLLUTANTS IN A MAIN STREET

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

Study of wind variability over Moscow city by sodar

Study of wind variability over Moscow city by sodar IOP Conference Series: Earth and Environmental Science Study of wind variability over Moscow city by sodar To cite this article: V P Yushkov 2008 IOP Conf. Ser.: Earth Environ. Sci. 1 012046 View the article

More information

Common Elements: Nitrogen, 78%

Common Elements: Nitrogen, 78% Chapter 23 Notes Name: Period: 23.1 CHARACTERISTICS OF THE ATMOSPHERE The atmosphere is a layer of that surrounds the earth and influences all living things. Meteorology is the study of the. WHAT S IN

More information

5B.1 DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE

5B.1 DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE DEVELOPING A REFERENCE CROP EVAPOTRANSPIRATION CLIMATOLOGY FOR THE SOUTHEASTERN UNITED STATES USING THE FAO PENMAN-MONTEITH ESTIMATION TECHNIQUE Heather A. Dinon*, Ryan P. Boyles, and Gail G. Wilkerson

More information

Radiative effects of desert dust on weather and climate

Radiative effects of desert dust on weather and climate UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP Radiative effects of desert dust on weather and climate Christos Spyrou,

More information

Numerical Simulations of High Resolution Urban Flow Using the RAMS Model

Numerical Simulations of High Resolution Urban Flow Using the RAMS Model Numerical Simulations of High Resolution Urban Flow Using the RAMS Model Tamir Reisin, Soreq NRC, Israel Orita Altaratz-Stollar, Department of Environmental Sciences, Weizmann Institute, Israel Silvia

More information

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan

A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation by Sullivan 耶鲁 - 南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment A Discussion on The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation

More information

Water Stratification under Wave Influence in the Gulf of Thailand

Water Stratification under Wave Influence in the Gulf of Thailand Water Stratification under Wave Influence in the Gulf of Thailand Pongdanai Pithayamaythakul and Pramot Sojisuporn Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand

More information

Module 01 Lecture - 06 Pollution modeling I

Module 01 Lecture - 06 Pollution modeling I Health, Safety and Environmental Management in Offshore and Petroleum Engineering Prof. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institution of Technology, Madras Module 01 Lecture

More information

Final Examination. Part A Answer ONLY TWELVE QUESTIONS in Part A. (Each question is 3 points)

Final Examination. Part A Answer ONLY TWELVE QUESTIONS in Part A. (Each question is 3 points) ATS 210 Spring Term 2001 NAME: Final Examination This is a 2 hour, closed-book examination. Calculators may be used. All answers should be written on the examination paper. Use the final sheet for any

More information

DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM

DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM DISPERSION MODELLING OF PM 10 FOR CHRISTCHURCH, NEW ZEALAND: AN INTERCOMPARISON BETWEEN MM5 AND TAPM Peyman Zawar-Reza, Mikhail Titov and Andrew Sturman Centre for Atmospheric Research, Department of Geography,

More information

GEWEX Atmospheric Boundary Layer Model

GEWEX Atmospheric Boundary Layer Model GEWEX Atmospheric Boundary Layer Model Inter-comparison Studies Timo Vihma 1, Tiina Kilpeläinen 1, Albert A.M. Holtslag 2, Laura Rontu 1, Phil Anderson 3, Klara Finkele 4, and Gunilla Svensson 5 1 Finnish

More information

APPENDIX G-7 METEROLOGICAL DATA

APPENDIX G-7 METEROLOGICAL DATA APPENDIX G-7 METEROLOGICAL DATA METEOROLOGICAL DATA FOR AIR AND NOISE SAMPLING DAYS AT MMR Monthly Normals and Extremes for Honolulu International Airport Table G7-1 MMR RAWS Station Hourly Data Tables

More information

p = ρrt p = ρr d = T( q v ) dp dz = ρg

p = ρrt p = ρr d = T( q v ) dp dz = ρg Chapter 1: Properties of the Atmosphere What are the major chemical components of the atmosphere? Atmospheric Layers and their major characteristics: Troposphere, Stratosphere Mesosphere, Thermosphere

More information

PLUME RISE MODEL SPECIFICATION

PLUME RISE MODEL SPECIFICATION August 2017 P11/02Q/17 PLUME RISE MODEL SPECIFICATION University of Surrey (A G Robins), National Power (D D Apsley) and CERC In this document ADMS refers to ADMS 5.2, ADMS-Roads 4.1, ADMS-Urban 4.1 and

More information

Transactions on Ecology and the Environment vol 13, 1997 WIT Press, ISSN

Transactions on Ecology and the Environment vol 13, 1997 WIT Press,   ISSN A Study of the Evolution of the Nocturnal Boundary-Layer Height at the Central Nuclear de Almaraz (Spain): Diagnostic Relationships Jose A Garcia*, M L Cancillo', J L Cano\ G Maqueda^, L Cana^, C Yagiie^

More information

LOCAL TEMPERATURE DIFFERENCES IN RELATION TO WEATHER PARAMETERS

LOCAL TEMPERATURE DIFFERENCES IN RELATION TO WEATHER PARAMETERS INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 20: 151 170 (2000) LOCAL TEMPERATURE DIFFERENCES IN RELATION TO WEATHER PARAMETERS J. BOGREN*, T. GUSTAVSSON and U. POSTGA RD Road Climate Centre,

More information

The following files are available for the EPRI Kincaid Run Data Set:

The following files are available for the EPRI Kincaid Run Data Set: November 4, 2011 The following files are available for the EPRI Kincaid Run Data Set: Informational Files KincaidDiscussion.pdf: This file [42KB] Logic Behind Kincaid SF6-Arcs.pdf: This file describes

More information

THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS

THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS P2.18 THE INFLUENCE OF THE GREAT LAKES ON NORTHWEST SNOWFALL IN THE SOUTHERN APPALACHIANS Robbie Munroe* and Doug K. Miller University of North Carolina at Asheville, Asheville, North Carolina B. Holloway

More information

A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model

A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model DECEMBER 2011 H O C H E T A L. 2473 A Systematic Study of Longwave Radiative Heating and Cooling within Valleys and Basins Using a Three-Dimensional Radiative Transfer Model SEBASTIAN W. HOCH AND C. DAVID

More information

EFFECTS OF TOPOGRAPHY ON URBAN HEAT ISLAND. University of Zagreb, Croatia

EFFECTS OF TOPOGRAPHY ON URBAN HEAT ISLAND. University of Zagreb, Croatia EFFECTS OF TOPOGRAPHY ON URBAN HEAT ISLAND Theodoros Nitis 1,2, Zvjezdana B. laić 3 and Nicolas Moussiopoulos 1 1 Laboratory of Heat Transfer and Environmental Engineering, Aristotle University, Greece

More information

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu

Logistics. Goof up P? R? Can you log in? Requests for: Teragrid yes? NCSA no? Anders Colberg Syrowski Curtis Rastogi Yang Chiu Logistics Goof up P? R? Can you log in? Teragrid yes? NCSA no? Requests for: Anders Colberg Syrowski Curtis Rastogi Yang Chiu Introduction to Numerical Weather Prediction Thanks: Tom Warner, NCAR A bit

More information

Footprints: outline Üllar Rannik University of Helsinki

Footprints: outline Üllar Rannik University of Helsinki Footprints: outline Üllar Rannik University of Helsinki -Concept of footprint and definitions -Analytical footprint models -Model by Korman and Meixner -Footprints for fluxes vs. concentrations -Footprints

More information

Application of a Three-Dimensional Prognostic Model During the ETEX Real-Time Modeling Exercise: Evaluatin of Results (u)

Application of a Three-Dimensional Prognostic Model During the ETEX Real-Time Modeling Exercise: Evaluatin of Results (u) WSRC-MS-96-0766 COdF- 9 7 0 9 1 9 m - 9 Application of a Three-Dimensional Prognostic Model During the ETEX Real-Time Modeling Exercise: Evaluatin of Results (u) by D. P. Griggs Westinghouse Savannah River

More information