Seasonal Variations of the Urban Heat Island Effect:

Size: px
Start display at page:

Download "Seasonal Variations of the Urban Heat Island Effect:"

Transcription

1 Seasonal Variations of the Urban Heat Island Effect: Examining the Differences in Temperature Between the City of Philadelphia and its Outlying Suburbs By: Frank Vecchio 1 P a g e

2 We re calling for a high of 85 in the city and highs in the upper 70 s to lower 80 s in the suburbs. Temperatures should dip down to around 53 tonight in the city and into the 40 s in the suburbs. This may sound familiar. This phenomenon is known as the Urban Heat Island Effect. The purpose of this study is to determine how the Urban Heat Island Effect in the City of Philadelphia has changed seasonally over the last decade, as well as if the increasingly higher population of the suburbs has created a lessening of the contrast between urban temperatures and nearby rural temperatures. Image analyses using Infrared Satellite images which detect how much outgoing longwave radiation is present in a given area via the Global Visualization Tool from the United States Geological Survey, as well as a statistical analysis using temperature validations from the Pennsylvania State Climatologist website were used to determine this. After thoughtful analyzing and investigation of the entirety of the data collected, I came to the conclusion that the urban heat island effect is more governing during the warmer months of the year compared to the cooler months. In addition, I determined that there is a good possibility that the escalating population of the surrounding suburbs has created a lessening of the Urban Heat Island Effect (the distinction of temperatures between Philadelphia and its suburbs may be decreasing). In rural areas, during the day, the solar energy absorbed near the ground evaporates water from the vegetation and soil. Therefore, while there is a net solar energy gain, this is reimbursed to some degree by evaporative cooling. However, in cities, where there is much less vegetation, the buildings, streets and sidewalks absorb the majority of solar energy input. After this occurs, the heat gained at the surface will be radiated back into space in the form of longwave radiation and also as sensible heat, rather than latent heat. 2 P a g e

3 This paper will examine the differences by season and by year in how the temperature of the City of Philadelphia and its outlying suburbs have changed (increased, decreased, etc.) over the past 10 years. I believe this is relevant because the urban heat island effect may be a contributor to the upward trend in global temperatures of the last 10 years. However, some data sets already control for the urban heat island effect and thereby take it into account when computing the average global temperature. I will use images from the Global Visualization Tool (GLOVIS) via the United States Geological Survey (USGS) site to determine how much absorption from solar radiation is taking place in the city. After the images are collected, a statistical verification will be completed by retrieving average monthly low temperature data from within the months in which the satellite images are representing. The reasoning for the low temperature data is due to the fact that the urban heat island effect is more prevalent at night compared to during the day (Ball, 2008). It is very common for the television meteorologist on the various news stations in the Philadelphia area to first mention the high and low temperature for the city and then subsequently tell the viewer the high and low temperatures for the outlying suburbs. A large majority of the time, the high and low temperature of Philadelphia will be significantly warmer than the suburbs by at least a few degrees Fahrenheit. For Philadelphia, is the Urban Heat Island Effect more dominant during the warmer months or is it more dominant in the cooler months? Also, how has the urban heat island effect changed within these months in the last 10 years? Could the population increase of the city s suburbs decrease the consequence of the urban heat island effect? 3 P a g e

4 According to the paper, An Analytic Framework for Estimating the Urban Effect on Climate, The urban effect becomes more important as the fraction of urban land cover to the total increases. Urbanization in Chester County and surrounding areas increased from 11% in 1987 to 19% in In 1996, urban land cover produced the largest proportionate sensible (21.4 W/m 2 ) and latent (14.2 W/m 2 ) heat fluxes during winter. During the 1996 summer, urban and vegetation land cover produced the largest proportionate sensible heat (59.2 W/m 2 ) while urban land cover produced the second largest proportionate latent heat flux (39.5 W/m 2 ). (Lamptey, 2010). Chester County is where I have resided my entire life. I can say first hand that the population of my county and the other outlying suburbs has increased substantially in the last couple decades. However, the population of these same areas has increased even more abruptly in the past 10 years. This will consequently result in an increase in homes, buildings, parking lots, pavements, asphalt, etc (Espy, 2005). The outcome of this will be displayed on the following images. It will be determined if the evening out of the populations between Philadelphia and its suburbs will have an effect on the appearance of the outgoing longwave radiation on the images taken from GLOVIS. It will also be determined if this has also created a more noticeable variation in seasonal data. My first assumption is that the effect of urban heat will be more visible in the warmer months compared to the cooler months. My second assumption is that the evidence of the urban heat island effect between Philadelphia and its outlying suburbs has decreased in the past 10 years, given the rapid increase in the population of the suburbs. 4 P a g e

5 Using the GLOVIS tool from the USGS site, I acquired numerous images from southeast Pennsylvania to southern New Jersey, which included the city of Philadelphia. The differences in longwave radiation between the city and the surrounding, outlying suburbs should determine how much of an urban heat island effect is actually present. I will analyze these images from the cooler months and the warmer months over the span of the last 10 years to determine if the urban heat island effect is more prevalent in the warmer months than in the cooler months. The analyzing of these images will also determine if the effect of urban heat has decreased in the last 10 years. I examined satellite detected/infrared detected temperature readings of buildings, streets, asphalt, etc. in the city of Philadelphia, which would directly relate the differences in the temperature of the city and the surrounding suburbs to the urban heat island effect. The data will be collected for days in which there were clear skies and light winds. I do not want any cloud interference, as that will lower the amount of infrared radiation being emitted back into space. By having clear skies and light winds, I can see the full effect of the comparison between urban heat and suburban heat. As mentioned above, the data analysis used will be the GLOVIS tool from The USGS site at The specific data collection used was the ASTER Level-1B U.S. Day. This data collection uses Advanced Spaceborne Thermal Emission and Reflection 5 P a g e

6 Radiometer to represent daily Visible and Near Infrared (VNIR), Thermal Infrared (TIR), and Shortwave Infrared (SWIR) bands in the United States from the year 2000 to the present. However, there are some data limitations. When acquiring this data, there was unfortunately not an available image for every specific month of a specific year for this area. This made the analysis not as consistent as I would like. For instance, an image for December, 2003 was not available, so I had to settle for November, Figure 1: A six image seasonal analysis from August, 2002 to March, 2008 which displays the effect of urban heat shown on a satellite image. Each image is either from a warmer month or a cooler month. 6 P a g e

7 Month, Year Location Average Low Temperature Month, Year Location Average Low Temperature August, 2002 Philadelphia, PA 70.4ºF October, 2005 Philadelphia, PA 54.0ºF Allentown, PA 62.4ºF Allentown, PA 50.9ºF Reading, PA 65.4ºF Reading, PA 51.6ºF Wilmington, DE 67.6ºF Wilmington, DE 52.4ºF November, 2003 Philadelphia, PA 42.3ºF September, 2007 Philadelphia, PA 63.7ºF Allentown, PA 37.3ºF Allentown, PA 58.6ºF Reading, PA 37.7ºF Reading, PA 60.8ºF Wilmington, DE 40.4ºF Wilmington, DE 61.1ºF May, 2004 Philadelphia, PA 59.9ºF March, 2008 Philadelphia, PA 37.0ºF Allentown, PA 55.2ºF Allentown, PA 34.2ºF Reading, PA 57.0ºF Reading, PA 34.5ºF Wilmington, DE 59.2ºF Wilmington, DE 35.8ºF Figure 2: Monthly average low temperature retrieval of four locations that correspond to the six specific (months, years) that the satellite data refers to. Months coded in orange are the warmer months. Months coded in light blue are the cooler months. After the satellite images were collected, an average monthly temperature verification for the six corresponding months from the satellite images were collected from four different locations (see Figure 2 above). Those four locations were: the City of Philadelphia, and three outlying suburb locations: Allentown, PA, Reading, PA, and Wilmington, DE. This temperature verification will be used to determine if the satellite images do indeed validate with average monthly temperatures. The temperature verification came from the Pennsylvania State Climatologist website at The validation of the temperatures with the satellite images is what is known as Ground Truth. 7 P a g e

8 After carefully observing all six of the satellite images, I have noticed that the most contrast between the urban area of Philadelphia and its outlying suburbs lies with August, 2002, May, 2004, and September, 2007 images. All three of these images occur in the warmer months of the year. The least amount of contrast occurred in the November, 2003, October, 2005, and March, 2008 images. All three of these images occur in the cooler months of the year. The bluish color in these images represents the actual city of Philadelphia. It is warmer here because of higher amount of longwave radiation being emitted back into space. The reddish color surrounding the blue color represents the cooler areas (the suburbs) surrounding Philadelphia. Less outgoing longwave radiation is being emitted in these areas. Regardless of what satellite image is obtained in any given month, a mild to major urban heat island effect will be evident for this area. The temperature verification in Figure 2 corresponded fairly well with the satellite images. It is quite noticeable that the temperature gradient is larger between Philadelphia and the other three locations during the warmer months compared to the cooler months. Therefore, the satellite imagery and the temperature verification go hand in hand with one another. My first hypothesis stated that I believe that the effect of urban heat will be more visible in the warmer months compared to the cooler months. According to my satellite imagery analysis and my temperature verification, the urban heat island effect is more evident in the warmer months compared to the cooler months which goes along with my hypothesis. This can be advantageous for some cities during the winter as warmer temperatures can reduce heating energy needs and lend a hand in melting ice and snow on the roads. Alternatively, these cities in summer will experience increased air pollution, greenhouse gas emissions, and heat-related illness (Ball, 2008). 8 P a g e

9 The existence of vegetation in rural areas assists in evaporating water following any absorption of solar energy. However, the solar energy input in cities is absorbed by the buildings, streets, tar, asphalt, etc. As the pavements in cities are largely nonporous, evaporative cooling is less. This contributes to raising the air temperatures. Heat generated by cars and trains eventually makes its way into the atmosphere. This heat is often as much as onethird of that received from solar energy. (Ball, 2008). My second hypothesis states that I think that the evidence of the urban heat island effect between Philadelphia and its outlying suburbs has decreased in the past 10 years, given the rapid increase in the population of the suburbs. As mentioned, I unfortunately was not able to acquire images in that area for all given, specific dates in the calendar year. As a result, the time frames are between 2002 and As shown in Figure 3 below, I calculated the average temperature gradient between the three suburbs and Philadelphia for each of the six time periods. Month, Year Average Temperature Gradient Between Suburbs and Philadelphia August, November, May, October, September, March, Figure 3: Table showing the average temperature gradient between the three suburbs and the City of Philadelphia. According to this analysis, the temperature gradient has decreased overall as time increased towards the present day. 9 P a g e

10 Temperature Gradient (ºF) According to the table above and the graph below, the average temperature gradient of the warmer months are higher overall than the average temperature gradients of the cooler months. Furthermore, the average temperature gradient between the three selected suburb locations and Philadelphia has decreased overall as time increased towards the present. This goes hand in hand with my second hypothesis. This is by no means stating that the decrease in temperature gradient is completely caused by the increase in population, buildings, homes, parking lots, etc in the suburbs. However, it could certainly be a contributing factor. 6 Average Temperature Gradient Between Suburbs and Philadelphia Average Gradient Between Suburbs and Philadelphia 0 August, 2002 November, 2003 May, 2004 October, 2005 September, 2007 March, 2008 Corresponding Time Periods to Satellite Images Figure 4: A line graph depicting the change in the average temperature gradient between Philadelphia and its outlying suburbs from August, 2002 to March, P a g e

11 Both of my assumptions prior to conducting this project ended up being correct. The first assumption was that the urban heat island effect is more dominant during the warmer months in the calendar year compared to the cooler months. This is validated according to the Outgoing Longwave Radiation measurements observed on the GLOVIS tool s six satellite images retrieved and the corresponding temperature data for those same time periods. The second assumption was that the effect of urban heat would be less obvious as time increased towards the present. My theory was that this is due to the increase in citizens moving to the suburbs. This would cause an increase in the amount of homes, buildings, blacktop, parking lots, and other structures being built. Consequently, I believe that this has at least partially contributed to the evening out of the average temperature gradients between the city and the suburbs as time has increased towards the present. Overall, I believe that this project is certainly beneficial to future study. The urban heat island effect is a well known phenomenon that has been present for decades. Cities are known to have a higher population than its surrounding areas. However, now that there is an increase in population of the area surrounding Philadelphia (the suburbs), this may have caused a lessening of the urban heat island effect. In other words, the amount of outgoing longwave radiation measured is becoming more evenly distributed between Philadelphia and its suburbs. This will most likely leave an effect on future satellite images for this area, meaning that the urban heat island effect will increasingly become less noticeable on these types of satellite images. In addition, the daily climate reports of various locations within the suburbs will probably begin to more closely resemble that of the city. 11 P a g e

12 References 1. Ball, Tim, 2008, Urban Heat Island Effect. < 2. Espy J, 2005, Pennsylvania Suburbs Population Projection and Forecast, < dley_walden.pdf >. 3. Lamptey B, 2010, An Analytical Framework for Estimating the Urban Effect on Climate, v. 30, p Pennsylvania State Climatologist Office. FAA Hourly Data. < 5. United States Geological Survey, Global Visualization Tool. < 12 P a g e

AT350 EXAM #1 September 23, 2003

AT350 EXAM #1 September 23, 2003 AT350 EXAM #1 September 23, 2003 Name and ID: Enter your name and student ID number on the answer sheet and on this exam. Record your answers to the questions by using a No. 2 pencil to completely fill

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

Chapter 3: Temperature

Chapter 3: Temperature Chapter 3: Temperature Elements of WAC (Basic Measurable Properties) 1. Temperature of Air 2. Humidity of Air 3. Cloud Cover (type and amount) 4. Precipitation (type and amount) 5. Air Pressure 6. Wind

More information

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy

The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Flux Tower Data Quality Analysis in the North American Monsoon Region

Flux Tower Data Quality Analysis in the North American Monsoon Region Flux Tower Data Quality Analysis in the North American Monsoon Region 1. Motivation The area of focus in this study is mainly Arizona, due to data richness and availability. Monsoon rains in Arizona usually

More information

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red

3. Which color of the visible light has the shortest wavelength? A) violet B) green C) yellow D) red Name: Topic 6 Test 1. Which process is responsible for the greatest loss of energy from Earth's surface into space on a clear night? A) condensation B) conduction C) radiation D) convection 2. Base your

More information

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3.

Energy: Warming the earth and Atmosphere. air temperature. Overview of the Earth s Atmosphere 9/10/2012. Composition. Chapter 3. Overview of the Earth s Atmosphere Composition 99% of the atmosphere is within 30km of the Earth s surface. N 2 78% and O 2 21% The percentages represent a constant amount of gas but cycles of destruction

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun

Electromagnetic Radiation. Radiation and the Planetary Energy Balance. Electromagnetic Spectrum of the Sun Radiation and the Planetary Energy Balance Electromagnetic Radiation Solar radiation warms the planet Conversion of solar energy at the surface Absorption and emission by the atmosphere The greenhouse

More information

Earth is tilted (oblique) on its Axis!

Earth is tilted (oblique) on its Axis! MONDAY AM Radiation, Atmospheric Greenhouse Effect Earth's orbit around the Sun is slightly elliptical (not circular) Seasons & Days Why do we have seasons? Why aren't seasonal temperatures highest at

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

Lab Activity: Climate Variables

Lab Activity: Climate Variables Name: Date: Period: Water and Climate The Physical Setting: Earth Science Lab Activity: Climate Variables INTRODUCTION:! The state of the atmosphere continually changes over time in response to the uneven

More information

Meteorology. Circle the letter that corresponds to the correct answer

Meteorology. Circle the letter that corresponds to the correct answer Chapter 3 Worksheet 1 Meteorology Name: Circle the letter that corresponds to the correct answer 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, the daily

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

- continental vs. marine regimes

- continental vs. marine regimes (1 of 14) Further Reading: Chapter 05 of the text book Outline - continental vs. marine regimes - temperature structure of the atmosphere - seasonal variations - urban heat island (2 of 14) Introduction

More information

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D)

Which graph best shows the relationship between intensity of insolation and position on the Earth's surface? A) B) C) D) 1. The hottest climates on Earth are located near the Equator because this region A) is usually closest to the Sun B) reflects the greatest amount of insolation C) receives the most hours of daylight D)

More information

SEASONAL AND DAILY TEMPERATURES

SEASONAL AND DAILY TEMPERATURES 1 2 3 4 5 6 7 8 9 10 11 12 SEASONAL AND DAILY TEMPERATURES Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest

More information

Over the course of this unit, you have learned about different

Over the course of this unit, you have learned about different 70 People and Weather TA L K I N G I T O V E R Over the course of this unit, you have learned about different aspects of earth s weather and atmosphere. Atmospheric scientists, climatologists, hydrologists,

More information

ATMOSPHERIC CIRCULATION AND WIND

ATMOSPHERIC CIRCULATION AND WIND ATMOSPHERIC CIRCULATION AND WIND The source of water for precipitation is the moisture laden air masses that circulate through the atmosphere. Atmospheric circulation is affected by the location on the

More information

Exemplar for Internal Achievement Standard. Mathematics and Statistics Level 3

Exemplar for Internal Achievement Standard. Mathematics and Statistics Level 3 Exemplar for internal assessment resource Mathematics and Statistics for Achievement Standard 91580 Exemplar for Internal Achievement Standard Mathematics and Statistics Level 3 This exemplar supports

More information

Why the Earth has seasons. Why the Earth has seasons 1/20/11

Why the Earth has seasons. Why the Earth has seasons 1/20/11 Chapter 3 Earth revolves in elliptical path around sun every 365 days. Earth rotates counterclockwise or eastward every 24 hours. Earth closest to Sun (147 million km) in January, farthest from Sun (152

More information

The Atmosphere and Atmospheric Energy Chapter 3 and 4

The Atmosphere and Atmospheric Energy Chapter 3 and 4 The Atmosphere and Atmospheric Energy Chapter 3 and 4 Size of the Earth s Atmosphere Atmosphere produced over 4.6 billion years of development Protects us from radiation Completely surrounds the earth

More information

Climates of NYS. Definitions. Climate Regions of NYS. Storm Tracks. Climate Controls 10/13/2011. Characteristics of NYS s Climates

Climates of NYS. Definitions. Climate Regions of NYS. Storm Tracks. Climate Controls 10/13/2011. Characteristics of NYS s Climates Definitions Climates of NYS Prof. Anthony Grande 2011 Weather and Climate Weather the state of the atmosphere at one point in time. The elements of weather are temperature, air pressure, wind and moisture.

More information

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared

Learning Objectives. Thermal Remote Sensing. Thermal = Emitted Infrared November 2014 lava flow on Kilauea (USGS Volcano Observatory) (http://hvo.wr.usgs.gov) Landsat-based thermal change of Nisyros Island (volcanic) Thermal Remote Sensing Distinguishing materials on the ground

More information

- global radiative energy balance

- global radiative energy balance (1 of 14) Further Reading: Chapter 04 of the text book Outline - global radiative energy balance - insolation and climatic regimes - composition of the atmosphere (2 of 14) Introduction Last time we discussed

More information

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface

A) usually less B) dark colored and rough D) light colored with a smooth surface A) transparency of the atmosphere D) rough, black surface 1. Base your answer to the following question on the diagram below which shows two identical houses, A and B, in a city in North Carolina. One house was built on the east side of a factory, and the other

More information

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015

Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 Solar Radiation and Environmental Biophysics Geo 827, MSU Jiquan Chen Oct. 6, 2015 1) Solar radiation basics 2) Energy balance 3) Other relevant biophysics 4) A few selected applications of RS in ecosystem

More information

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology.

What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. What is Climate? Understanding and predicting climatic changes are the basic goals of climatology. Climatology is the study of Earth s climate and the factors that affect past, present, and future climatic

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles

Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Warming Earth and its Atmosphere The Diurnal and Seasonal Cycles Or, what happens to the energy received from the sun? First We Need to Understand The Ways in Which Heat Can be Transferred in the Atmosphere

More information

Chapter 3. Multiple Choice Questions

Chapter 3. Multiple Choice Questions Chapter 3 Multiple Choice Questions 1. In the case of electromagnetic energy, an object that is hot: a. radiates much more energy than a cool object b. radiates much less energy than a cool object c. radiates

More information

Definitions Weather and Climate Climates of NYS Weather Climate 2012 Characteristics of Climate Regions of NYS NYS s Climates 1.

Definitions Weather and Climate Climates of NYS Weather Climate 2012 Characteristics of Climate Regions of NYS NYS s Climates 1. Definitions Climates of NYS Prof. Anthony Grande 2012 Weather and Climate Weather the state of the atmosphere at one point in time. The elements of weather are temperature, t air pressure, wind and moisture.

More information

The Pennsylvania Observer

The Pennsylvania Observer The Pennsylvania Observer January 5, 2009 December 2008 Pennsylvania Weather Recap The final month of 2008 was much wetter than average and a bit colder than normal. In spite of this combination, most

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

1. GLACIER METEOROLOGY - ENERGY BALANCE

1. GLACIER METEOROLOGY - ENERGY BALANCE Summer School in Glaciology McCarthy, Alaska, 5-15 June 2018 Regine Hock Geophysical Institute, University of Alaska, Fairbanks 1. GLACIER METEOROLOGY - ENERGY BALANCE Ice and snow melt at 0 C, but this

More information

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B)

5. In which diagram is the observer experiencing the greatest intensity of insolation? A) B) 1. Which factor has the greatest influence on the number of daylight hours that a particular Earth surface location receives? A) longitude B) latitude C) diameter of Earth D) distance from the Sun 2. In

More information

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes

Topic # 11 HOW CLIMATE WORKS continued (Part II) pp in Class Notes Topic # 11 HOW CLIMATE WORKS continued (Part II) pp 61-67 in Class Notes To drive the circulation, the initial source of energy is from the Sun: Not to scale! EARTH- SUN Relationships 4 Things to Know

More information

Investigating the urban climate characteristics of two Hungarian cities with SURFEX/TEB land surface model

Investigating the urban climate characteristics of two Hungarian cities with SURFEX/TEB land surface model Investigating the urban climate characteristics of two Hungarian cities with SURFEX/TEB land surface model Gabriella Zsebeházi Gabriella Zsebeházi and Gabriella Szépszó Hungarian Meteorological Service,

More information

Mario Flores, Graduate Student Department of Applied Mathematics, UTSA. EES 5053: Remote Sensing

Mario Flores, Graduate Student Department of Applied Mathematics, UTSA. EES 5053: Remote Sensing Mario Flores, Graduate Student Department of Applied Mathematics, UTSA Miguel Balderas, E.I.T., Graduate Student Department of Civil/Environmental Engineering, UTSA EES 5053: Remote Sensing REMOTE SENSING

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION

HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION CHAPTER 4 HEAT, TEMPERATURE, AND ATMOSPHERIC CIRCULATION MULTIPLE CHOICE QUESTIONS 1. Heat is *a. the name given to the energy transferred between objects at different temperatures. b. the equivalent of

More information

Global Climate Change

Global Climate Change Global Climate Change Definition of Climate According to Webster dictionary Climate: the average condition of the weather at a place over a period of years exhibited by temperature, wind velocity, and

More information

IMPACTS OF A WARMING ARCTIC

IMPACTS OF A WARMING ARCTIC The Earth s Greenhouse Effect Most of the heat energy emitted from the surface is absorbed by greenhouse gases which radiate heat back down to warm the lower atmosphere and the surface. Increasing the

More information

Probabilistic Decision-Making and Weather Assessment

Probabilistic Decision-Making and Weather Assessment 5 Student Packet Probabilistic Decision-Making and Weather Assessment Use contents of this packet as you feel appropriate. You are free to copy and use any of the material in this lesson plan. Packet Contents

More information

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach

Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Estimation of Wavelet Based Spatially Enhanced Evapotranspiration Using Energy Balance Approach Dr.Gowri 1 Dr.Thirumalaivasan 2 1 Associate Professor, Jerusalem College of Engineering, Department of Civil

More information

Clouds and Rain Unit (3 pts)

Clouds and Rain Unit (3 pts) Name: Section: Clouds and Rain Unit (Topic 8A-2) page 1 Clouds and Rain Unit (3 pts) As air rises, it cools due to the reduction in atmospheric pressure Air mainly consists of oxygen molecules and nitrogen

More information

Applications of GIS and Remote Sensing for Analysis of Urban Heat Island

Applications of GIS and Remote Sensing for Analysis of Urban Heat Island Chuanxin Zhu Professor Peter V. August Professor Yeqiao Wang NRS 509 December 15, 2016 Applications of GIS and Remote Sensing for Analysis of Urban Heat Island Since the last century, the global mean surface

More information

Understanding the Greenhouse Effect

Understanding the Greenhouse Effect EESC V2100 The Climate System spring 200 Understanding the Greenhouse Effect Yochanan Kushnir Lamont Doherty Earth Observatory of Columbia University Palisades, NY 1096, USA kushnir@ldeo.columbia.edu Equilibrium

More information

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown

G109 Alternate Midterm Exam October, 2004 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Answer ALL questions Total possible points;50 Number of pages:8 Part A: Multiple Choice (1 point each) [total 24] Answer all Questions by marking the corresponding number on the

More information

Page 1. Name:

Page 1. Name: Name: 1) What is the primary reason New York State is warmer in July than in February? A) The altitude of the noon Sun is greater in February. B) The insolation in New York is greater in July. C) The Earth

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide

Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide Third Grade Math and Science DBQ Weather and Climate/Representing and Interpreting Charts and Data - Teacher s Guide A document based question (DBQ) is an authentic assessment where students interact with

More information

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N

Which Earth latitude receives the greatest intensity of insolation when Earth is at the position shown in the diagram? A) 0 B) 23 N C) 55 N D) 90 N 1. In which list are the forms of electromagnetic energy arranged in order from longest to shortest wavelengths? A) gamma rays, x-rays, ultraviolet rays, visible light B) radio waves, infrared rays, visible

More information

FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM

FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM Investigation 1B FOLLOW THE ENERGY! EARTH S DYNAMIC CLIMATE SYSTEM Driving Question How does energy enter, flow through, and exit Earth s climate system? Educational Outcomes To consider Earth s climate

More information

17 March Good luck!

17 March Good luck! ! Midterm Exam 17 March 2005 Name:! SID:!! The mid-term has a maximum of 120 points: 60 points for a section with short essays, and 60 points for a section with qualitative/quantitative problems. Remember

More information

Lab Exploration #5: The Weather Complicates Things Further. Learning Objectives. After completing this activity, you should be able to:

Lab Exploration #5: The Weather Complicates Things Further. Learning Objectives. After completing this activity, you should be able to: METR 104: Our Dynamic Weather (w/lab) Lab Exploration #5: The Weather Complicates Things Further Dr. Dave Dempsey, Department of Earth & Climate Sciences, SFSU, Spring 2014 (5 points) (Thursday, April

More information

Climate Change or Climate Variability?

Climate Change or Climate Variability? Climate Change or Climate Variability? Key Concepts: Greenhouse Gas Climate Climate change Climate variability Climate zones Precipitation Temperature Water cycle Weather WHAT YOU WILL LEARN 1. You will

More information

Sunlight and Temperature

Sunlight and Temperature Sunlight and Temperature Name Purpose: Study microclimate differences due to sunlight exposure, location, and surface; practice environmental measurements; study natural energy flows; compare measurements;

More information

INSURANCE CLAIMS PAST WEATHER INVESTIGATION

INSURANCE CLAIMS PAST WEATHER INVESTIGATION INSURANCE CLAIMS PAST WEATHER INVESTIGATION Prepared For: John Smith ABC Insurance Company RE: Claim No.: 123456 Bryn Mawr, PA Prepared By: Your Weather Experts (800) 427-3456 PO Box 7100 Hackettstown,

More information

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance

- matter-energy interactions. - global radiation balance. Further Reading: Chapter 04 of the text book. Outline. - shortwave radiation balance (1 of 12) Further Reading: Chapter 04 of the text book Outline - matter-energy interactions - shortwave radiation balance - longwave radiation balance - global radiation balance (2 of 12) Previously, we

More information

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation

C) wavelength C) eastern horizon B) the angle of insolation is high B) increases, only D) thermosphere D) receive low-angle insolation 1. What is the basic difference between ultraviolet, visible, and infrared radiation? A) half-life B) temperature C) wavelength D) wave velocity 2. In New York State, the risk of sunburn is greatest between

More information

Glaciology HEAT BUDGET AND RADIATION

Glaciology HEAT BUDGET AND RADIATION HEAT BUDGET AND RADIATION A Heat Budget 1 Black body radiation Definition. A perfect black body is defined as a body that absorbs all radiation that falls on it. The intensity of radiation emitted by a

More information

Topic # 12 How Climate Works

Topic # 12 How Climate Works Topic # 12 How Climate Works A Primer on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes pp 63-68 in Class Notes How do we get energy from this........ to drive

More information

A summary of the weather year based on data from the Zumwalt weather station

A summary of the weather year based on data from the Zumwalt weather station ZUMWALT PRAIRIE WEATHER 2016 A summary of the weather year based on data from the Zumwalt weather station Figure 1. An unusual summer storm on July 10, 2016 brought the second-largest precipitation day

More information

Temperature Scales

Temperature Scales TEMPERATURE is a measure of the internal heat energy of a substance. The molecules that make up all matter are in constant motion. By internal heat energy, we really mean this random molecular motion.

More information

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski #

P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES. Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # P1.34 MULTISEASONALVALIDATION OF GOES-BASED INSOLATION ESTIMATES Jason A. Otkin*, Martha C. Anderson*, and John R. Mecikalski # *Cooperative Institute for Meteorological Satellite Studies, University of

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget

All objects emit radiation. Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object. Earth s energy budget Radiation Energy that travels in the form of waves Waves release energy when absorbed by an object Example: Sunlight warms your face without necessarily heating the air Shorter waves carry more energy

More information

Torben Königk Rossby Centre/ SMHI

Torben Königk Rossby Centre/ SMHI Fundamentals of Climate Modelling Torben Königk Rossby Centre/ SMHI Outline Introduction Why do we need models? Basic processes Radiation Atmospheric/Oceanic circulation Model basics Resolution Parameterizations

More information

Meteorology Practice Test

Meteorology Practice Test Meteorology Practice Test 1. Transition zones between two air masses of different densities are called what? 2. A front occurs when a cold air mass replaces a warmer one. 3. A front occurs when a warm

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Chapter 3- Energy Balance and Temperature

Chapter 3- Energy Balance and Temperature Chapter 3- Energy Balance and Temperature Understanding Weather and Climate Aguado and Burt Influences on Insolation Absorption Reflection/Scattering Transmission 1 Absorption An absorber gains energy

More information

Climate Change Impact on Air Temperature, Daily Temperature Range, Growing Degree Days, and Spring and Fall Frost Dates In Nebraska

Climate Change Impact on Air Temperature, Daily Temperature Range, Growing Degree Days, and Spring and Fall Frost Dates In Nebraska EXTENSION Know how. Know now. Climate Change Impact on Air Temperature, Daily Temperature Range, Growing Degree Days, and Spring and Fall Frost Dates In Nebraska EC715 Kari E. Skaggs, Research Associate

More information

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C

Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C 1 2 3 4 Temperature (T) degrees Celsius ( o C) arbitrary scale from 0 o C at melting point of ice to 100 o C at boiling point of water Also (Kelvin, K) = o C plus 273.15 0 K is absolute zero, the minimum

More information

NIDIS Intermountain West Drought Early Warning System November 21, 2017

NIDIS Intermountain West Drought Early Warning System November 21, 2017 NIDIS Drought and Water Assessment NIDIS Intermountain West Drought Early Warning System November 21, 2017 Precipitation The images above use daily precipitation statistics from NWS COOP, CoCoRaHS, and

More information

Climate Change Lecture Notes

Climate Change Lecture Notes Climate Change Lecture Notes (Topic 12A) page 1 Climate Change Lecture Notes Learning Outcomes for the Climate Change Unit 1. Students can list observations which suggest that the world is warming, and

More information

2. What does a mercury barometer measure? Describe this device and explain how it physically works.

2. What does a mercury barometer measure? Describe this device and explain how it physically works. Written Homework #1 Key NATS 101, Sec. 13 Fall 2010 40 Points total 10 points per graded question 10 points for attempting all questions. 1. What is the difference between mass and weight? Mass is an intrinsic

More information

New Opportunities in Urban Remote Sensing. Philip Christensen Arizona State University

New Opportunities in Urban Remote Sensing. Philip Christensen Arizona State University New Opportunities in Urban Remote Sensing Philip Christensen Arizona State University Advantages: Uniform, global data Role of Remote Sensing Repeatable at regular intervals over long periods of time Broad

More information

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012

Lecture 4 Air Temperature. Measuring Temperature. Measuring Temperature. Surface & Air Temperature. Environmental Contrasts 3/27/2012 Lecture 4 Air Temperature Geo210 An Introduction to Physical Geography Temperature Concepts and Measurement Temperature the average kinetic energy (motion) of molecules of matter Temperature Scales Fahrenheit

More information

LAB MODULE 5: GLOBAL TEMPERATURE PATTERNS

LAB MODULE 5: GLOBAL TEMPERATURE PATTERNS LAB MODULE 5: GLOBAL TEMPERATURE PATTERNS Note: Please refer to the GETTING STARTED lab module to learn how to maneuver through and answer the lab questions using the Google Earth ( KEY TERMS You should

More information

Name Per Date Earth Science Climate & Insolation Test

Name Per Date Earth Science Climate & Insolation Test Name Per Date Earth Science Climate & Insolation Test 1) Which graph best represents the general relationship between latitude and average surface temperature? 2) The diagram below shows the apparent path

More information

Urban heat island effects over Torino

Urban heat island effects over Torino 3 Working Group on Physical Aspects: Soil and Surface 3 Urban heat island effects over Torino M. Milelli 1 1 ARPA Piemonte 1 Introduction Figure 1: Urban heat island generalized scheme (source: EPA). The

More information

Lecture 4: Heat, and Radiation

Lecture 4: Heat, and Radiation Lecture 4: Heat, and Radiation Heat Heat is a transfer of energy from one object to another. Heat makes things warmer. Heat is measured in units called calories. A calorie is the heat (energy) required

More information

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures?

1 What Is Climate? TAKE A LOOK 2. Explain Why do areas near the equator tend to have high temperatures? CHAPTER 17 1 What Is Climate? SECTION Climate BEFORE YOU READ After you read this section, you should be able to answer these questions: What is climate? What factors affect climate? How do climates differ

More information

Key Feedbacks in the Climate System

Key Feedbacks in the Climate System Key Feedbacks in the Climate System With a Focus on Climate Sensitivity SOLAS Summer School 12 th of August 2009 Thomas Schneider von Deimling, Potsdam Institute for Climate Impact Research Why do Climate

More information

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto:

2018 Science Olympiad: Badger Invitational Meteorology Exam. Team Name: Team Motto: 2018 Science Olympiad: Badger Invitational Meteorology Exam Team Name: Team Motto: This exam has 50 questions of various formats, plus 3 tie-breakers. Good luck! 1. On a globally-averaged basis, which

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

Evaluation of a New Land Surface Model for JMA-GSM

Evaluation of a New Land Surface Model for JMA-GSM Evaluation of a New Land Surface Model for JMA-GSM using CEOP EOP-3 reference site dataset Masayuki Hirai Takuya Sakashita Takayuki Matsumura (Numerical Prediction Division, Japan Meteorological Agency)

More information

Atmospheric Composition and Structure

Atmospheric Composition and Structure Atmospheric Composition and Structure Weather and Climate What is weather? The state of the atmosphere at a specific time and place. Defined by: Humidity, temperature, wind speed, clouds, precipitation,

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Climate modeling: 1) Why? 2) How? 3) What?

Climate modeling: 1) Why? 2) How? 3) What? Climate modeling: 1) Why? 2) How? 3) What? Matthew Widlansky mwidlans@hawaii.edu 1) Why model the climate? Hawaii Fiji Sachs and Myhrvold: A Shifting Band of Rain 1 Evidence of Past Climate Change? Mean

More information

Climate Change: Global Warming Claims

Climate Change: Global Warming Claims Climate Change: Global Warming Claims Background information (from Intergovernmental Panel on Climate Change): The climate system is a complex, interactive system consisting of the atmosphere, land surface,

More information

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1

1) The energy balance at the TOA is: 4 (1 α) = σt (1 0.3) = ( ) 4. (1 α) 4σ = ( S 0 = 255 T 1 EAS488/B8800 Climate & Climate Change Homework 2: Atmospheric Radiation and Climate, surface energy balance, and atmospheric general circulation Posted: 3/12/18; due: 3/26/18 Answer keys 1. (10 points)

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

Activity 2.2: Recognizing Change (Observation vs. Inference)

Activity 2.2: Recognizing Change (Observation vs. Inference) Activity 2.2: Recognizing Change (Observation vs. Inference) Teacher Notes: Evidence for Climate Change PowerPoint Slide 1 Slide 2 Introduction Image 1 (Namib Desert, Namibia) The sun is on the horizon

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information