Retrieving Snowfall Rate with Satellite Passive Microwave Measurements

Size: px
Start display at page:

Download "Retrieving Snowfall Rate with Satellite Passive Microwave Measurements"

Transcription

1 Retrieving Snowfall Rate with Satellite Passive Microwave Measurements Huan Meng 1, Ralph Ferraro 1, Banghua Yan 1, Cezar Kongoli 2, Nai-Yu Wang 2, Jun Dong 2, Limin Zhao 1 1 NOAA/NESDIS, USA 2 Earth System Science Interdisciplinary Center, UMCP, USA

2 Overview of Snowfall Rate Products Satellite retrieved water equivalent snowfall rate (SFR) over global land Uses measurements from passive microwave sensors, AMSU/MHS/ATMS AMSU/MHS SFR is operational at NESDIS ATMS SFR algorithm is under development Up to eight AMSU/MHS and two ATMS observations at any location over land and maybe more at higher latitudes Resolution: 16 km at nadir Maximum snowfall rate: 5 mm/hr AMSU/MHS SFR was validated against NMQ, StageIV, and gauge snowfall data from the contiguous United States

3 AMSU, MHS, & ATMS Sensors AMSU: Advanced Microwave Sounding Unit MHS: Microwave Humidity Sounder ATMS: Advanced Technology Microwave Sounder Cross track scanning, mixed polarizations AMSU/MHS onboard four NOAA POES and EUMETSAT Metop satellites, ATMS onboard SNPP and future JPSS satellites AMSU/MHS ATMS Ch GHz Pol Ch GHz Pol QV QV QV QV QV QH QH QV QH ± QH ± QH QH QH QV QH QH QH 9 fo = QH 10 fo = QH 10 fo ± QH 11 fo±0.3222±0.217 QH 11 fo±0.3222±0.048 QH 12 fo± ±0.048 QH 12 fo ±0.3222±0.022 QH 13 fo±0.3222±0.022 QH 13 fo± ± fo±0.3222± QH 14 fo± ±0.010 QH 15 fo± ± QH QH QV QV QV QV QH ± 1 QH ± 7 QH ± 3 QH ± 4.5 QH QV ± 3 QH ± 1.8 QH ± 1 QH

4 SFR Methodology 1. Detect snowfall areas 2. Retrieve cloud properties with an inversion method 3. Compute snow particle terminal velocity and derive snowfall rate

5 Snowfall Detection Start with two products: AMSU snowfall detection (SD) (Kongoli et al., 2003) and AMSU rain rate (RR) (Ferraro et al., 2005; Zhao and Weng, 2002) Apply filters (based on GFS T and RH profiles) to RR and SD to determine snowfall (Foster, et al., 2011) A new AMSU/MHS snowfall detection algorithm has been developed (Kongoli s and Dong s talk) and will replace the operational AMSU/MHS snowfall detection algorithm. ATMS SD follows the same approach. NMQ (radar) Phase SFR w/ Operational SD SFR w/ the new SD

6 Retrieval of Cloud Properties Inversion method I c D ε ε ε ε ε e Simulation of Tb s with a two-stream, one-layer RTM (Yan et al., 2008) 89/ / /176 = ( A T A + E) 1 A T T T T T T B23 B31 B89/88 B157 /165 B190/176 Ic: ice water path D e : ice particle effective diameter ε i : emissivity at 23.8, 31.4, 89(MHS)/88.2(ATMS), 157/165.5, and /183±7 GHz T Bi : brightness temperature at 23.8, 31.4, 89/88.2, 157/165.5, and /183±7 GHz A: derivatives of T Bi over IWP, D e, and ε i E: error matrix Iteration scheme with ΔT Bi thresholds IWP and De are retrieved when iteration stops

7 Snowfall Rate Terminal velocity: Heymsfield and Westbrook (2010): Snowfall rate Assume spherical habit An adjusting factor to compensate for non-uniform ice water content distribution in cloud column SFR model: Integration is solved numerically

8 Snowfall Rate Products AMSU/MHS Snowfall Rate Operational product Comprehensive validation ATMS Snowfall Rate ATMS has advantages (more water vapor channels, improved sampling etc.) and challenges (frequency and polarization changes etc.) Both snowfall detection and snowfall rate algorithms are still under development. Show agreement in basic patterns, maybe more false alarms than the AMSU/MHS SD in the shown case. AMSU/MHS, 8:37Z ATMS 8:05Z

9 Validation of AMSU/MHS SFR Validate over contiguous United States Validation Sources Station hourly accumulated precipitation data StageIV radar and gauge combined hourly precipitation data National Mosaic & Multi-Sensor QPE (NMQ) instantaneous radar precipitation data Validation challenges Spatial scale difference with station data: 16+ km footprint vs. point measurement Temporal scale difference with station/stageiv data: instantaneous vs. hourly Other issues with ground observations and radar snowfall data Station: Undercatch (underestimation) due to dynamic effect StageIV/NMQ: Range effect, overshooting, beam blockage, overestimation at the presence of melting snowflakes, etc.

10 Validation with StageIV and Station Data Five large-scale heavy snowfall events from Jan 27-28, 2009 Mar 23-24, 2009 Dec 08-09, 2009 Jan 28-30, 2010 Feb 05-06, 2010 The events cover diverse geographic areas and climate zones

11 Summary Statistics Combined statistics of all five events Bias RMSE Correlation Coeff. StageIV Station Sanity check - Comparison between StageIV and Station

12 Validation with NMQ Validation with NMQ instantaneous radar precipitation rate NMQ (Q2) radar only data: 0.01 degree, every 5 minutes Better comparability in spatial (radar weighted average) and temporal collocations between satellite and radar NMQ has considerable positive bias against StageIV Satellite NMQ (Radar)

13 Validation with NMQ Time series of mean snowfall rate from satellite and radar Time series of bias and correlation coefficient between satellite and radar snowfall rate

14 Applications Hydrology: Contribute to global blended precipitation products (most currently lacking satellite winter precipitation estimates) Weather forecast: Pair with GOES images to track snowstorm Identify snowstorm extent and areas with most intense snowfall Fill in data gaps in regions with limited radar and gauge observations Collaborating with NASA SPoRT and several NWS WFOs to evaluate AMSU/MHS SFR in this snow season (Courtesy of NASA/SPoRT)

15 Conclusions The operational AMSU/MHS snowfall rate product can provide up to eight snowfall rate retrievals per day over global land at near realtime. ATMS will add two more retrievals per day. The ATMS/MHS product follows well the evolution of StageIV and station hourly snowfall data; and especially well the evolution of instantaneous NMQ snowfall data. In spite of the large scale discrepancies, validation shows that AMSU/MHS SFR have reasonable correlation with the validation data ( on average), and the bias ranges from to 0.07 mm/hr. ATMS snowfall rate algorithm is under development but already shows reasonable agreement with the AMSU/MHS retrievals. The snowfall rate product may contribute to hydrology and weather forecast.

Snowfall Detection and Rate Retrieval from ATMS

Snowfall Detection and Rate Retrieval from ATMS Snowfall Detection and Rate Retrieval from ATMS Jun Dong 1, Huan Meng 2, Cezar Kongoli 1, Ralph Ferraro 2, Banghua Yan 2, Nai-Yu Wang 1, Bradley Zavodsky 3 1 University of Maryland/ESSIC/Cooperative Institute

More information

Latest Development on the NOAA/NESDIS Snowfall Rate Product

Latest Development on the NOAA/NESDIS Snowfall Rate Product Latest Development on the NOAA/NESDIS Snowfall Rate Product Jun Dong 1, Cezar Kongoli 1, Huan Meng 2, Ralph Ferraro 2, Banghua Yan 2, Nai-Yu Wang 1, Bradley Zavodsky 3 1 University of Maryland/ESSIC/Cooperative

More information

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA Huan Meng 1, Ralph Ferraro 1, Banghua Yan 2 1 NOAA/NESDIS/STAR, 5200 Auth Road Room 701, Camp Spring, MD, USA 20746 2 Perot Systems Government

More information

Snowfall Detection Using ATMS Measurements

Snowfall Detection Using ATMS Measurements Snowfall Detection Using ATMS Measurements Cezar Kongoli, Huan Meng, Ralph Ferraro and Jun Dong CICS/ESSIC, University of Maryland and NOAA/NESDIS/STAR Nov. 7, 2013 CICS-MD Science Meeting AMSU Heritage

More information

Snowfall Detection and Retrieval from Passive Microwave Satellite Observations. Guosheng Liu Florida State University

Snowfall Detection and Retrieval from Passive Microwave Satellite Observations. Guosheng Liu Florida State University Snowfall Detection and Retrieval from Passive Microwave Satellite Observations Guosheng Liu Florida State University Collaborators: Eun Kyoung Seo, Yalei You Snowfall Retrieval: Active vs. Passive CloudSat

More information

The Status of NOAA/NESDIS Precipitation Algorithms and Products

The Status of NOAA/NESDIS Precipitation Algorithms and Products The Status of NOAA/NESDIS Precipitation Algorithms and Products Ralph Ferraro NOAA/NESDIS College Park, MD USA S. Boukabara, E. Ebert, K. Gopalan, J. Janowiak, S. Kidder, R. Kuligowski, H. Meng, M. Sapiano,

More information

A Prototype Precipitation Retrieval Algorithm Over Land for SSMIS and ATMS

A Prototype Precipitation Retrieval Algorithm Over Land for SSMIS and ATMS A Prototype Precipitation Retrieval Algorithm Over Land for SSMIS and ATMS Yalei You 1, Nai-Yu Wang 2, Ralph Ferraro 2 1 CICS-MD/ESSIC/UMD 2 STAR/NESDIS/NOAA Background Our group provided the level-2 rainfall

More information

NESDIS Snowfall Rate Product Assessment

NESDIS Snowfall Rate Product Assessment NESDIS Snowfall Rate Product Assessment Introduction National Oceanic and Atmospheric Administration (NOAA) National Weather Service Forecast Offices (NWSFO) are tasked with issuing public watches and

More information

Spaceborne and Ground-based Global and Regional Precipitation Estimation: Multi-Sensor Synergy

Spaceborne and Ground-based Global and Regional Precipitation Estimation: Multi-Sensor Synergy Hydrometeorology and Remote Sensing Lab (hydro.ou.edu) at The University of Oklahoma Spaceborne and Ground-based Global and Regional Precipitation Estimation: Multi-Sensor Synergy Presented by: 温逸馨 (Berry)

More information

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data

Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Uncertainty of Atmospheric Temperature Trends Derived from Satellite Microwave Sounding Data Fuzhong Weng NOAA Center for Satellite Applications and Research and Xiaolei Zou University of University November

More information

Introducing NOAA s Microwave Integrated Retrieval System (MIRS)

Introducing NOAA s Microwave Integrated Retrieval System (MIRS) Introducing NOAA s Microwave Integrated Retrieval System (MIRS) S-A. Boukabara, F. Weng, R. Ferraro, L. Zhao, Q. Liu, B. Yan, A. Li, W. Chen, N. Sun, H. Meng, T. Kleespies, C. Kongoli, Y. Han, P. Van Delst,

More information

Two Prototype Hail Detection Algorithms Using the Advanced Microwave Sounding Unit (AMSU)

Two Prototype Hail Detection Algorithms Using the Advanced Microwave Sounding Unit (AMSU) Two Prototype Hail Detection Algorithms Using the Advanced Microwave Sounding Unit (AMSU) 2 James Beauchamp (vajim@essic.umd.edu) 2 1 Ralph Ferraro, 3 Sante Laviola 1 Satellite Climate Studies Branch,

More information

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season. Izabela Dyras, Bożena Łapeta, Danuta Serafin-Rek Satellite Research Department, Institute of Meteorology and

More information

THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM

THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM THE STATUS OF THE NOAA/NESDIS OPERATIONAL AMSU PRECIPITATION ALGORITHM R.R. Ferraro NOAA/NESDIS Cooperative Institute for Climate Studies (CICS)/ESSIC 2207 Computer and Space Sciences Building Univerisity

More information

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN

MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN MOISTURE PROFILE RETRIEVALS FROM SATELLITE MICROWAVE SOUNDERS FOR WEATHER ANALYSIS OVER LAND AND OCEAN John M. Forsythe, Stanley Q. Kidder, Andrew S. Jones and Thomas H. Vonder Haar Cooperative Institute

More information

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY

MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY MAIN ATTRIBUTES OF THE PRECIPITATION PRODUCTS DEVELOPED BY THE HYDROLOGY SAF PROJECT RESULTS OF THE VALIDATION IN HUNGARY Eszter Lábó OMSZ-Hungarian Meteorological Service, Budapest, Hungary labo.e@met.hu

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

TRMM Multi-satellite Precipitation Analysis (TMPA)

TRMM Multi-satellite Precipitation Analysis (TMPA) TRMM Multi-satellite Precipitation Analysis (TMPA) (sometimes known as 3B42/43, TRMM product numbers) R. Adler, G. Huffman, D. Bolvin, E. Nelkin, D. Wolff NASA/Goddard Laboratory for Atmospheres with key

More information

A New Microwave Snow Emissivity Model

A New Microwave Snow Emissivity Model A New Microwave Snow Emissivity Model Fuzhong Weng 1,2 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Office of Research and Applications Banghua Yan DSTI. Inc The 13 th International TOVS

More information

An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS)

An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS) An Effort toward Assimilation of F16 SSMIS UPP Data in NCEP Global Forecast System (GFS) Banghua Yan 1,4, Fuzhong Weng 2, John Derber 3 1. Joint Center for Satellite Data Assimilation 2. NOAA/NESDIS/Center

More information

Retrieval of upper tropospheric humidity from AMSU data. Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov

Retrieval of upper tropospheric humidity from AMSU data. Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov Retrieval of upper tropospheric humidity from AMSU data Viju Oommen John, Stefan Buehler, and Mashrab Kuvatov Institute of Environmental Physics, University of Bremen, Otto-Hahn-Allee 1, 2839 Bremen, Germany.

More information

Atmospheric Profiles Over Land and Ocean from AMSU

Atmospheric Profiles Over Land and Ocean from AMSU P1.18 Atmospheric Profiles Over Land and Ocean from AMSU John M. Forsythe, Kevin M. Donofrio, Ron W. Kessler, Andrew S. Jones, Cynthia L. Combs, Phil Shott and Thomas H. Vonder Haar DoD Center for Geosciences

More information

The Development of AMSU FCDR s and TCDR s for Hydrological Applications

The Development of AMSU FCDR s and TCDR s for Hydrological Applications The Development of AMSU FCDR s and TCDR s for Hydrological Applications Huan Meng, Ralph Ferraro Satellite Climate Studies Branch NOAA/NESDIS/STAR/CoRP Wenze Yang, Chabitha Devaraj, Isaac Moradi Corporative

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information

PUBLICATIONS. Journal of Geophysical Research: Atmospheres

PUBLICATIONS. Journal of Geophysical Research: Atmospheres PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Key Point: A snowfall algorithm from passive microwave measurements has been developed Correspondence to: C. Kongoli, cezar.kongoli@noaa.gov

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

Variational Inversion of Hydrometeors Using Passive Microwave Sensors

Variational Inversion of Hydrometeors Using Passive Microwave Sensors Variational Inversion of Hydrometeors Using Passive Microwave Sensors -Application to AMSU/MHS, SSMIS and ATMS- S.-A. Boukabara, F. Iturbide-Sanchez, R. Chen, W. Chen, K. Garrett, C. Grassotti F. Weng

More information

ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA

ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA ON COMBINING AMSU AND POLAR MM5 OUTPUTS TO DETECT PRECIPITATING CLOUDS OVER ANTARCTICA Stefano Dietrich, Francesco Di Paola, Elena Santorelli (CNR-ISAC, Roma, Italy) 2nd Antarctic Meteorological Observation,

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

A Microwave Snow Emissivity Model

A Microwave Snow Emissivity Model A Microwave Snow Emissivity Model Fuzhong Weng Joint Center for Satellite Data Assimilation NOAA/NESDIS/Office of Research and Applications, Camp Springs, Maryland and Banghua Yan Decision Systems Technologies

More information

H-SAF future developments on Convective Precipitation Retrieval

H-SAF future developments on Convective Precipitation Retrieval H-SAF future developments on Convective Precipitation Retrieval Francesco Zauli 1, Daniele Biron 1, Davide Melfi 1, Antonio Vocino 1, Massimiliano Sist 2, Michele De Rosa 2, Matteo Picchiani 2, De Leonibus

More information

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK

COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK COMPARISON OF SIMULATED RADIANCE FIELDS USING RTTOV AND CRTM AT MICROWAVE FREQUENCIES IN KOPS FRAMEWORK Ju-Hye Kim 1, Jeon-Ho Kang 1, Hyoung-Wook Chun 1, and Sihye Lee 1 (1) Korea Institute of Atmospheric

More information

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system

A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system A two-season impact study of the Navy s WindSat surface wind retrievals in the NCEP global data assimilation system Li Bi James Jung John Le Marshall 16 April 2008 Outline WindSat overview and working

More information

Joint Polar Satellite System (JPSS)

Joint Polar Satellite System (JPSS) Joint Polar Satellite System (JPSS) United States Plans for Continuity of Operational Polar Weather and Environmental Observations Harry Cikanek, Director Mitch Goldberg, Program Scientist Joint Polar

More information

Assimilation of precipitation-related observations into global NWP models

Assimilation of precipitation-related observations into global NWP models Assimilation of precipitation-related observations into global NWP models Alan Geer, Katrin Lonitz, Philippe Lopez, Fabrizio Baordo, Niels Bormann, Peter Lean, Stephen English Slide 1 H-SAF workshop 4

More information

for the Global Precipitation Mission

for the Global Precipitation Mission A Physically based Rainfall Rate Algorithm for the Global Precipitation Mission Kevin Garrett 1, Leslie Moy 1, Flavio Iturbide Sanchez 1, and Sid Ahmed Boukabara 2 5 th IPWG Workshop Hamburg, Germany October

More information

Satellite and Aircraft Observations of Snowfall Signature at Microwave Frequencies. Yoo-Jeong Noh and Guosheng Liu

Satellite and Aircraft Observations of Snowfall Signature at Microwave Frequencies. Yoo-Jeong Noh and Guosheng Liu Satellite and Aircraft Observations of Snowfall Signature at Microwave Frequencies Yoo-Jeong Noh and Guosheng Liu Department of Meteorology, Florida State University Tallahassee, Florida, USA Corresponding

More information

Combining Satellite & Model Information for Snowfall Retrieval

Combining Satellite & Model Information for Snowfall Retrieval Combining Satellite & Model Information for Snowfall Retrieval Yoo-Jeong Noh Cooperative Institute for Research in the Atmosphere Colorado State University CIRA/Colorado State University 5th Annual CoRP

More information

The Status of NOAA/NESDIS Precipitation Algorithms and Products

The Status of NOAA/NESDIS Precipitation Algorithms and Products The Status of NOAA/NESDIS Precipitation Algorithms and Products Ralph Ferraro NOAA/NESDIS College Park, MD USA Limin Zhao, Sid Boukabara, Tanvir Islam, Stan Kidder, Bob Kuligowski, Huan Meng, Patrick Meyers,

More information

NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters

NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters NOAA/NESDIS Tropical Web Page with LEO Satellite Products and Applications for Forecasters Sheldon Kusselson National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite Data

More information

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency

Microwave-TC intensity estimation. Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Microwave-TC intensity estimation Ryo Oyama Meteorological Research Institute Japan Meteorological Agency Contents 1. Introduction 2. Estimation of TC Maximum Sustained Wind (MSW) using TRMM Microwave

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Developing Vicarious Calibration for Microwave Sounding Instruments using Lunar Radiation

Developing Vicarious Calibration for Microwave Sounding Instruments using Lunar Radiation CICS Science Meeting, College Park, 2017 Developing Vicarious Calibration for Microwave Sounding Instruments using Lunar Radiation Hu(Tiger) Yang Contributor: Dr. Jun Zhou Nov.08, 2017 huyang@umd.edu Outline

More information

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU Frederick W. Chen*, David H. Staelin, and Chinnawat Surussavadee Massachusetts Institute of Technology,

More information

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations

A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations A statistical approach for rainfall confidence estimation using MSG-SEVIRI observations Elisabetta Ricciardelli*, Filomena Romano*, Nico Cimini*, Frank Silvio Marzano, Vincenzo Cuomo* *Institute of Methodologies

More information

The Use of ATOVS Microwave Data in the Grapes-3Dvar System

The Use of ATOVS Microwave Data in the Grapes-3Dvar System The Use of ATOVS Microwave Data in the Grapes-3Dvar System Peiming Dong 1 Zhiquan Liu 2 Jishan Xue 1 Guofu Zhu 1 Shiyu Zhuang 1 Yan Liu 1 1 Chinese Academy of Meteorological Sciences, Beijing, China 2

More information

PASSIVE MICROWAVE OBSERVATIONS OF THE HISTORIC FEBRUARY 2010 SNOW STORMS IN THE BALTIMORE/WASHINGTON D.C. AREA

PASSIVE MICROWAVE OBSERVATIONS OF THE HISTORIC FEBRUARY 2010 SNOW STORMS IN THE BALTIMORE/WASHINGTON D.C. AREA PASSIVE MICROWAVE OBSERVATIONS OF THE HISTORIC FEBRUARY 21 SNOW STORMS IN THE BALTIMORE/WASHINGTON D.C. AREA James Foster a, Gail Skofronick-Jackson a, Huan Meng b, George Riggs a, Ben Johnson a, Jim Wang

More information

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Robert Knuteson, Steve Ackerman, Hank Revercomb, Dave Tobin University of Wisconsin-Madison

More information

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean

The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean The impact of assimilation of microwave radiance in HWRF on the forecast over the western Pacific Ocean Chun-Chieh Chao, 1 Chien-Ben Chou 2 and Huei-Ping Huang 3 1Meteorological Informatics Business Division,

More information

Initial results from using ATMS and CrIS data at ECMWF

Initial results from using ATMS and CrIS data at ECMWF Initial results from using ATMS and CrIS data at ECMWF Niels Bormann 1, William Bell 1, Anne Fouilloux 1, Tony McNally 1, Ioannis Mallas 1, Nigel Atkinson 2, Steve Swadley 3 Slide 1 1 ECMWF, 2 Met Office,

More information

Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP

Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP Review of Microwave Integrated Retrieval System (MiRS) Improvements and Integration within CSPP Chris Grassotti 1, Xiwu Zhan 1, Sid Boukabara 2, Jim Davies 3 1 NOAA/NESDIS/STAR 2 NOAA/JCSDA 3 U. Wisconsin/SSEC

More information

Rain rate retrieval using the 183-WSL algorithm

Rain rate retrieval using the 183-WSL algorithm Rain rate retrieval using the 183-WSL algorithm S. Laviola, and V. Levizzani Institute of Atmospheric Sciences and Climate, National Research Council Bologna, Italy (s.laviola@isac.cnr.it) ABSTRACT High

More information

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop

Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop Assimilation of Satellite Cloud and Precipitation Observations in NWP Models: Report of a Workshop George Ohring and Fuzhong Weng Joint Center for Satellite Data Assimilation Ron Errico NASA/GSFC Global

More information

Recent improvements in the all-sky assimilation of microwave radiances at the ECMWF

Recent improvements in the all-sky assimilation of microwave radiances at the ECMWF Recent improvements in the all-sky assimilation of microwave radiances at the ECMWF Katrin Lonitz, Alan Geer and many more katrin.lonitz@ecmwf.int ECMWF January 30, 2018 clear sky assimilation all-sky

More information

Regional Profiles and Precipitation Retrievals and Analysis Using FY-3C MWHTS

Regional Profiles and Precipitation Retrievals and Analysis Using FY-3C MWHTS Atmospheric and Climate Sciences, 2016, 6, 273-284 Published Online April 2016 in SciRes. http://www.scirp.org/journal/acs http://dx.doi.org/10.4236/acs.2016.62023 Regional Profiles and Precipitation Retrievals

More information

IPWG s Potential Role in a Snow Hydrology Mission

IPWG s Potential Role in a Snow Hydrology Mission IPWG s Potential Role in a Snow Hydrology Mission Chris Kidd The University of Birmingham Birmingham, United Kingdom International Precipitation Working Group Ralph Ferraro NOAA/NESDIS College Park, MD

More information

Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas

Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas Generating Multi-Sensor Precipitation Estimates over Radar Gap Areas SHAYESTEH E. MAHANI and REZA KHANBILVARDI Civil Engineering Department City University of New York (CUNY) & Cooperative Remote Sensing

More information

Some NOAA Products that Address PSTG Satellite Observing Requirements. Jeff Key NOAA/NESDIS Madison, Wisconsin USA

Some NOAA Products that Address PSTG Satellite Observing Requirements. Jeff Key NOAA/NESDIS Madison, Wisconsin USA Some NOAA Products that Address PSTG Satellite Observing Requirements Jeff Key NOAA/NESDIS Madison, Wisconsin USA WMO Polar Space Task Group, 4 th meeting, Greenbelt, 30 September 2014 Relevant Missions

More information

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation http://www.hrcwater.org Central Asia Regional Flash Flood Guidance System 4-6 October 2016 Hydrologic Research Center A Nonprofit, Public-Benefit Corporation FFGS Snow Components Snow Accumulation and

More information

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004

Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Dag.Lohmann@noaa.gov, Land Data Assimilation at NCEP NLDAS Project Overview, ECMWF HEPEX 2004 Land Data Assimilation at NCEP: Strategic Lessons Learned from the North American Land Data Assimilation System

More information

Description of Precipitation Retrieval Algorithm For ADEOS II AMSR

Description of Precipitation Retrieval Algorithm For ADEOS II AMSR Description of Precipitation Retrieval Algorithm For ADEOS II Guosheng Liu Florida State University 1. Basic Concepts of the Algorithm This algorithm is based on Liu and Curry (1992, 1996), in which the

More information

The Development of AMSU FCDR s and TCDR s for Hydrological Applications

The Development of AMSU FCDR s and TCDR s for Hydrological Applications The Development of AMSU FCDR s and TCDR s for Hydrological Applications 1 Ralph Ferraro, 1 Huan Meng 2 Wenze Yang, 2 Isaac Moradi Collaborators: 2 Hai-Tien Lee, 1 Tom Smith, 2 Jim Beauchamp 1 Satellite

More information

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary.

Judit Kerényi. OMSZ - Hungarian Meteorological Service, Budapest, Hungary. H-1525 Budapest, P.O.Box 38, Hungary. SATELLITE-DERIVED PRECIPITATION ESTIMATIONS DEVELOPED BY THE HYDROLOGY SAF PROJECT CASE STUDIES FOR THE INVESTIGATION OF THEIR ACCURACY AND FEATURES IN HUNGARY Judit Kerényi OMSZ - Hungarian Meteorological

More information

291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES

291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES 291. IMPACT OF AIRS THERMODYNAMIC PROFILES ON PRECIPITATION FORECASTS FOR ATMOSPHERIC RIVER CASES AFFECTING THE WESTERN UNITED STATES Clay B. Blankenship, USRA, Huntsville, Alabama Bradley T. Zavodsky

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Classification of hydrometeors using microwave brightness. temperature data from AMSU-B over Iran

Classification of hydrometeors using microwave brightness. temperature data from AMSU-B over Iran Iranian Journal of Geophysics, Vol. 9, No. 5, 2016, Page 24-39 Classification of hydrometeors using microwave brightness temperature data from AMSU-B over Iran Abolhasan Gheiby 1* and Majid Azadi 2 1 Assistant

More information

A New Satellite Wind Climatology from QuikSCAT, WindSat, AMSR-E and SSM/I

A New Satellite Wind Climatology from QuikSCAT, WindSat, AMSR-E and SSM/I A New Satellite Wind Climatology from QuikSCAT, WindSat, AMSR-E and SSM/I Frank J. Wentz (presenting), Lucrezia Ricciardulli, Thomas Meissner, and Deborah Smith Remote Sensing Systems, Santa Rosa, CA Supported

More information

The NOAA/NESDIS/STAR IASI Near Real-Time Product Processing and Distribution System

The NOAA/NESDIS/STAR IASI Near Real-Time Product Processing and Distribution System The NOAA/NESDIS/STAR Near Real-Time Product Processing and Distribution System W. Wolf 2, T. King 1, Z. Cheng 1, W. Zhou 1, H. Sun 1, P. Keehn 1, L. Zhou 1, C. Barnet 2, and M. Goldberg 2 1 QSS Group Inc,

More information

Remote sensing of precipitation extremes

Remote sensing of precipitation extremes The panel is about: Understanding and predicting weather and climate extreme Remote sensing of precipitation extremes Climate extreme : (JSC meeting, June 30 2014) IPCC SREX report (2012): Climate Ali

More information

P4.4 THE COMBINATION OF A PASSIVE MICROWAVE BASED SATELLITE RAINFALL ESTIMATION ALGORITHM WITH AN IR BASED ALGORITHM

P4.4 THE COMBINATION OF A PASSIVE MICROWAVE BASED SATELLITE RAINFALL ESTIMATION ALGORITHM WITH AN IR BASED ALGORITHM P4.4 THE COMBINATION OF A PASSIVE MICROWAVE BASED SATELLITE RAINFALL ESTIMATION ALGORITHM WITH AN IR BASED ALGORITHM Robert Joyce 1), John E. Janowiak 2), and Phillip A. Arkin 3, Pingping Xie 2) 1) RS

More information

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval

Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Next generation of EUMETSAT microwave imagers and sounders: new opportunities for cloud and precipitation retrieval Christophe Accadia, Sabatino Di Michele, Vinia Mattioli, Jörg Ackermann, Sreerekha Thonipparambil,

More information

Satellite Radiance Data Assimilation at the Met Office

Satellite Radiance Data Assimilation at the Met Office Satellite Radiance Data Assimilation at the Met Office Ed Pavelin, Stephen English, Brett Candy, Fiona Hilton Outline Summary of satellite data used in the Met Office NWP system Processing and quality

More information

NPP ATMS Instrument On-orbit Performance

NPP ATMS Instrument On-orbit Performance NPP ATMS Instrument On-orbit Performance K. Anderson, L. Asai, J. Fuentes, N. George Northrop Grumman Electronic Systems ABSTRACT The first Advanced Technology Microwave Sounder (ATMS) was launched on

More information

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms

Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Future Opportunities of Using Microwave Data from Small Satellites for Monitoring and Predicting Severe Storms Fuzhong Weng Environmental Model and Data Optima Inc., Laurel, MD 21 st International TOV

More information

Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data.

Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data. Meteorological Products Generation Using Combined Analysis of NOAA AVHRR and ATOVS Data. Izabela Dyras, Danuta Serafin-Rek, Zofia Adamczyk Institute of Meteorology and Water Management, P. Borowego 14,

More information

Parameterization of the surface emissivity at microwaves to submillimeter waves

Parameterization of the surface emissivity at microwaves to submillimeter waves Parameterization of the surface emissivity at microwaves to submillimeter waves Catherine Prigent, Filipe Aires, Observatoire de Paris and Estellus Lise Kilic, Die Wang, Observatoire de Paris with contributions

More information

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM

USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM USE OF SATELLITE INFORMATION IN THE HUNGARIAN NOWCASTING SYSTEM Mária Putsay, Zsófia Kocsis and Ildikó Szenyán Hungarian Meteorological Service, Kitaibel Pál u. 1, H-1024, Budapest, Hungary Abstract The

More information

Global and Regional OSEs at JMA

Global and Regional OSEs at JMA Global and Regional OSEs at JMA Yoshiaki SATO and colleagues Japan Meteorological Agency / Numerical Prediction Division 1 JMA NWP SYSTEM Global OSEs Contents AMSU A over coast, MHS over land, (related

More information

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou

NOAA MSU/AMSU Radiance FCDR. Methodology, Production, Validation, Application, and Operational Distribution. Cheng-Zhi Zou NOAA MSU/AMSU Radiance FCDR Methodology, Production, Validation, Application, and Operational Distribution Cheng-Zhi Zou NOAA/NESDIS/Center for Satellite Applications and Research GSICS Microwave Sub-Group

More information

Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm

Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm Application of Himawari-8 AHI Data to the GOES-R Rainfall Rate Algorithm Yaping Li 1, Robert Kuligowski 2 and Yan Hao 1 1. IMSG at NOAA/NESDIS/STAR 2. NOAA/NESDIS/STAR, College Park, MD 1 GOES-R Baseline

More information

Assessment of AHI Level-1 Data for HWRF Assimilation

Assessment of AHI Level-1 Data for HWRF Assimilation Assessment of AHI Level-1 Data for HWRF Assimilation Xiaolei Zou 1 and Fuzhong Weng 2 1 Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland 2 Satellite Meteorology

More information

THE Advance Microwave Sounding Unit (AMSU) measurements

THE Advance Microwave Sounding Unit (AMSU) measurements IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 5, MAY 2005 1087 One-Dimensional Variational Retrieval Algorithm of Temperature, Water Vapor, and Cloud Water Profiles From Advanced Microwave

More information

Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data

Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data Comparison of AMSU-B Brightness Temperature with Simulated Brightness Temperature using Global Radiosonde Data V.O. John, S.A. Buehler, and M. Kuvatov Institute of Environmental Physics, University of

More information

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract

Ryo Oyama Meteorological Research Institute, Japan Meteorological Agency. Abstract Algorithm and validation of a tropical cyclone central pressure estimation method based on warm core intensity as observed using the Advanced Microwave Sounding Unit-A (AMSU-A) Ryo Oyama Meteorological

More information

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1 1. Introduction Precipitation is one of most important environmental parameters.

More information

The Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS)

The Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS) The Canadian Precipitation Analysis (CaPA) and the Canadian Land Data Assimilation System (CaLDAS) Vincent Fortin (and many collaborators) Division de la recherche en météorologie Environnement en Changement

More information

Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence

Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence Toward a better modeling of surface emissivity to improve AMSU data assimilation over Antarctica GUEDJ Stephanie, KARBOU Fatima and RABIER Florence International TOVS Study Conference, Monterey, California

More information

Stability in SeaWinds Quality Control

Stability in SeaWinds Quality Control Ocean and Sea Ice SAF Technical Note Stability in SeaWinds Quality Control Anton Verhoef, Marcos Portabella and Ad Stoffelen Version 1.0 April 2008 DOCUMENTATION CHANGE RECORD Reference: Issue / Revision:

More information

Refinement and operational implementation of a rain rate algorithm based AMSU/MHS, and SEVIRI data within the Hydrological-SAF

Refinement and operational implementation of a rain rate algorithm based AMSU/MHS, and SEVIRI data within the Hydrological-SAF Refinement and operational implementation of a rain rate algorithm based AMSU/MHS, and SEVIRI data within the Hydrological-SAF 1 Puca S., 2 Antonelli P., 2 Bennartz R., 1 Corina A., 3 De Leonibus L., 1

More information

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK

*Corresponding author address: Charles Barrere, Weather Decision Technologies, 1818 W Lindsey St, Norman, OK P13R.11 Hydrometeorological Decision Support System for the Lower Colorado River Authority *Charles A. Barrere, Jr. 1, Michael D. Eilts 1, and Beth Clarke 2 1 Weather Decision Technologies, Inc. Norman,

More information

Global Precipitation Measurement Mission Overview & NASA Status

Global Precipitation Measurement Mission Overview & NASA Status Global Precipitation Measurement Mission Overview & NASA Status Gail Skofronick Jackson GPM Project Scientist (appointed 14 January 2014) Replacing Dr. Arthur Hou (1947-2013) NASA Goddard Space Flight

More information

The Global Precipitation Measurement (GPM) Mission: Arthur Hou. NASA Goddard Space Flight Center

The Global Precipitation Measurement (GPM) Mission: Arthur Hou. NASA Goddard Space Flight Center The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status Arthur Hou NASA Goddard Space Flight Center 5 th IPWG Workshop 11-15 October 2010 GPM Mission Concept An international ti satellite

More information

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting

Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Report on CIMSS Participation in the Utility of GOES-R Instruments for Hurricane Data Assimilation and Forecasting Award Number: NA10NES4400010 Award Period: 06/01/2010-05/31/2014 Program Office: NESDIS

More information

Evaluation of Satellite Precipitation Products over the Central of Vietnam

Evaluation of Satellite Precipitation Products over the Central of Vietnam Evaluation of Satellite Precipitation Products over the Central of Vietnam Long Trinh-Tuan (1), Jun Matsumoto (1,2), Thanh Ngo-Duc (3) (1) Department of Geography, Tokyo Metropolitan University, Japan.

More information

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre)

REVISION OF THE STATEMENT OF GUIDANCE FOR GLOBAL NUMERICAL WEATHER PREDICTION. (Submitted by Dr. J. Eyre) WORLD METEOROLOGICAL ORGANIZATION Distr.: RESTRICTED CBS/OPAG-IOS (ODRRGOS-5)/Doc.5, Add.5 (11.VI.2002) COMMISSION FOR BASIC SYSTEMS OPEN PROGRAMME AREA GROUP ON INTEGRATED OBSERVING SYSTEMS ITEM: 4 EXPERT

More information

Division, 7 Grace Hopper Ave., Monterey, CA 93943, Tel: (831) ,

Division, 7 Grace Hopper Ave., Monterey, CA 93943, Tel: (831) , P6.20 PRECIPITATION SIGNATURES IN SSMIS IMAGERY F.J. Turk 1 T.F. Lee 1, S.D. Miller 1, R. Ferraro 2, F. Weng 2 1 Naval Research Laboratory, Marine Meteorology Division, Monterey, CA USA 2 NOAA-NESDIS,

More information

ECMWF. ECMWF Land Surface Analysis: Current status and developments. P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J.

ECMWF. ECMWF Land Surface Analysis: Current status and developments. P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J. Land Surface Analysis: Current status and developments P. de Rosnay M. Drusch, K. Scipal, D. Vasiljevic G. Balsamo, J. Muñoz Sabater 2 nd Workshop on Remote Sensing and Modeling of Surface Properties,

More information

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements

Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Improving Tropical Cyclone Forecasts by Assimilating Microwave Sounder Cloud-Screened Radiances and GPM precipitation measurements Hyojin Han a, Jun Li a, Mitch Goldberg b, Pei Wang a,c, Jinlong Li a,

More information

Rainfall estimation from satellite passive microwave observations in the range 89 GHz to 190 GHz

Rainfall estimation from satellite passive microwave observations in the range 89 GHz to 190 GHz JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2009jd011746, 2009 Rainfall estimation from satellite passive microwave observations in the range 89 GHz to 190 GHz E. Di Tomaso, 1 F. Romano, 1

More information

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation Correcting Microwave Precipitation Retrievals for near- Surface Evaporation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information