NWP model forecast skill optimization via closure parameter variations

Size: px
Start display at page:

Download "NWP model forecast skill optimization via closure parameter variations"

Transcription

1 Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. 139: , July 2013 B NWP model forecast skill optimization via closure parameter variations Pirkka Ollinaho, a,b * Marko Laine, a Antti Solonen, a,c Heikki Haario a,c and Heikki Järvinen a a Finnish Meteorological Institute, Helsinki, Finland b Department of Physics, University of Helsinki, Finland c Lappeenranta University of Technology, Finland *Correspondence to: P. Ollinaho, Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland. pirkka.ollinaho@fmi.fi We apply a recently developed method, the Ensemble Prediction and Parameter Estimation System (EPPES), to demonstrate how numerical weather prediction (NWP) model closure parameters can be optimized. As proof of concept, we tune the medium-range forecast skill of the ECMWF model HAMburg version (ECHAM5) atmospheric general circulation model using an ensemble prediction system (EPS) emulator. Initial state uncertainty is represented in the EPS emulator by applying the initial state perturbations generated at the European Centre for Medium-range Weather Forecasts (ECMWF). Model uncertainty is represented in the emulator via parameter variations at the initial time. We vary four closure parameters related to parametrizations of subgrid-scale physical processes of clouds and precipitation. With this set-up, we generate ensembles of 10-day global forecasts with the ECHAM5 model at T42L31 resolution twice a day over a period of three months. The cost function in the optimization is formulated in terms of standard forecast skill scores, verified against the ECMWF operational analyses. A summarizing conclusion of the experiments is that the EPPES method is able to find ECHAM5 model closure parameter values that correspond to smaller values of the cost function. The forecast skill score improvements verify positively in dependent and independent samples. The main reason is the reduced temperature bias in the tropical lower troposphere. Moreover, the optimization improved the top-ofatmosphere radiation flux climatology of the ECHAM5 model, as verified against the Clouds and the Earth s Radiant Energy System (CERES) radiation data over a 6-year period, while the simulated tropical cloud cover was reduced, thereby increasing a negative bias as verified against the International Satellite Cloud Climatology Project (ISCCP) data. Key Words: NWP model tuning; closure parameter estimation; off-line optimization Received 5 January 2012; Revised 16 August 2012; Accepted 23 August 2012; Published online in Wiley Online Library 16 November 2012 Citation: Ollinaho P, Laine M, Solonen A Haario H, Järvinen H NWP model forecast skill optimization via closure parameter variations. Q. J. R. Meteorol. Soc. 139: DOI: /qj Introduction Numerical weather prediction (NWP) models are complex technical expressions of the science of weather forecasting. They operate at a generally high level of forecast skill which implies that all relevant multi-scale interactions and dynamics physics feedbacks are tuned into harmony. The need for model tuning arises in part from the fact that discrete numerical representation splits atmospheric processes into resolved and unresolved ones. Subgrid-scale c 2012 Royal Meteorological Society

2 Forecast Skill Optimization 1521 physical processes are parametrized with numerical schemes that contain explicit closure parameters (e.g. Stensrud, 2007). Typically, expert knowledge and manual techniques are used to specify the optimal parameter values at various stages of the model development and tuning process. This is a laborious task, which needs to be repeated after any major model upgrade. Due to the high computational cost of NWP models, the tuning is limited by the affordable number of test cases. The optimal values and uncertainties of these parameters are therefore only approximately known. Algorithmic techniques to estimate model parameters can speed up model development, and improve usefulness of simulation results as their uncertainties are better understood. A prerequisite for parameter estimation is to understand the relationship between parameter variations and model response. Parameter variations can be used in ensemble prediction systems (EPS) to represent model uncertainty in addition to stochastic parametrization schemes (e.g. Bowler et al., 2008, and references therein). The reason is that in EPS initial condition perturbations alone do not generate enough spread to the ensemble of forecasts. Thus the ensemble, which should properly sample forecast uncertainty, may appear overconfident unless uncertainties in the model formulation and boundary forcing are accounted for, as well. For instance, the impact of parameter variations related to convection and boundarylayer parametrization on tropical ensemble spread and Brier scores was positively assessed by Reynolds et al. (2011) in a global forecasting system. Nielsen-Gammon et al. (2010) advocate studies of the sensitivities of model simulations to model parameter variations: successful parameter estimation requires that variations in a subset of parameters to be estimated produces sufficiently large, well-behaved, and unique signatures to model output. Hacker et al. (2011) studied the model response to parameter variations in a mesoscale ensemble prediction system. They did not find any clear linear scaling between parameter variations and ensemble properties: the perturbed models were typically indistinguishable. They concluded that ensemble prediction using perturbed parameters complement more complex model-error simulation methods, but parameter estimation may prove difficult or costly for real mesoscale NWP applications. A possible alternative avenue is to apply metamodels for parameter dependencies (Neelin et al., 2010). Applicability of ensemble techniques in parameter estimation has usually been considered from the state augmentation viewpoint, i.e. using state filters augmented with parameters as artificial states (e.g. Aksoy et al., 2006a, 2006b). In filtering approaches, the focus is on very-shortrange forecasting as the state is propagated basically from one observation time to the next. Thus, parameter estimation is conditional on model performance in very-short-range forecasts. NWP systems are known to suffer from spinup/down problems. For instance, moist variables exhibit a tendency towards the model attractor because the model hydrological cycle is not in balance at the initial state (e.g. Trenberth and Guillemot, 1998; Betts et al., 2003). Uncertainties are often related to parameters in moist physical processes, and may be affected by this imbalance early in the forecast. In the following, we put forward our parameter estimation approach, which is not in the immediate context of data assimilation, but uses shortto-medium range forecasts generated in abundance by ensemble prediction systems. Forecast error growth studies hint at how parameter variations evolve in complex systems. Forecast errors are due to initial state errors and model errors but these are not easily separable because the estimation of the initial state involves a forecast model, and thus initial state errors are affected by model errors too (Leutbecher and Palmer, 2008). Growth of very-short-range forecast error is nevertheless dominated by the exponential growth of initial state errors, and the linear growth of model errors becomes important later in the forecast (Savijärvi, 1995). This tends to imply that early in the forecast range, the parameter variations do not yet have a sizable effect. On the other hand, late in the forecast, parameter variations have a stronger impact but are masked by the quadratic nonlinearity of the system and weaken parameter identifiability nonlinearity is considered quadratic because the main terms of atmospheric dynamics have quadratic expressions. Thus, somewhere in between these extremes, there might be an optimal forecast range where parameter variations already affect the model output but chaoticity does not yet dominate the system behaviour and overwhelm parameter identifiability. This is supported by the finding of Zhu and Navon (1999) that a low-resolution global atmospheric general circulation model (GCM) tends to first lose the impact of the optimal initial condition while the impact of optimally identified parameter values persists beyond 72 hours. Interestingly, experiments with the European Centre for Medium-range Forecasts (ECMWF) analysis and forecasting system, in which satellite data are first denied and then reintroduced, suggest that observations older than about three days have no influence on the quality of the analysis (Fisher, 2006). A recent dual article (Järvinen et al., 2012; Laine et al., 2012; hereafter JL2012) presented an Ensemble Prediction and Parameter Estimation System (EPPES), and argued that ensemble prediction systems can be utilized to make statistical inference about the NWP model closure parameters by means of parameter perturbations. The idea of JL2012 was to impose initial-time parameter variations on an ensemble of forecasts and to infer the parameter values and their uncertainties based on how likely different ensemble members appear against observations. From the parameter-estimation point of view, the initial values can be seen as nuisance parameters whose uncertainty should be integrated out. In EPPES, this is done by sampling over a large number of different flow types (i.e. initial states). This is further enhanced by the use of initial state perturbations. In EPPES, the likelihood can be formulated in terms of forecast skill at some suitable forecast range covered by the ensemble, say at five days. Thus, one directly attempts to optimize the medium-range forecast skill. The appeal of EPPES is that the computational power traditionally used in operational ensemble production for assessing the forecast uncertainties could be harnessed for model tuning too. The method can be implemented into operational EPS with minimal technical changes to the code infrastructure. The EPPES algorithm itself is virtually cost-free. Moreover, it is a model-independent algorithm which can be easily transferred to new modelling systems, as long as the relationship of parameter variation and signatures in the model output are sufficiently understood. NWP model

3 1522 P. Ollinaho et al. tuning is certainly challenging, but these potential benefits render further experimentation worthwhile. Based on experimentation with a stochastic version of the Lorenz-95 model (Lorenz, 1995; Wilks, 2005), JL2012 concluded that EPPES might be a step towards algorithmic model parameter estimation. The results of JL2012 cannot, however, be directly scaled up to realistic systems since the rich dynamics of the atmospheric circulation cannot be simulated with the Lorenz-95 model. Therefore, this article takes a step towards a more realistic set-up, and demonstrates the EPPES method using a global atmospheric GCM. An EPS emulator is developed based on the ECMWF model HAMburg version (ECHAM5: Roeckner et al., 2003). The motivation to use a climate model rather than an NWP model is that for the proof of concept in large- and multi-scale systems, basically any primitive equation system should suffice. In our case, the ECHAM5 model provided the shortest development path. Furthermore, we rely on the ECMWF operational analyses and their EPS initial state perturbations. We copy the perturbed initial conditions and verifying analyses from ECMWF, and use ECHAM5 as a state propagator to make 10-day global forecasts. This enables very convenient testing of the EPPES algorithm and allows full control of the necessary components while avoiding the need to develop the EPS infrastructure. We present the experimental set-up in section 2, the parameter estimation and validation results in section 3, before discussion and conclusions. 2. Experimental set-up 2.1. The ECHAM5 model and the subset of parameters Version 5.4 of the ECHAM5 atmospheric general circulation model (Roeckner et al., 2003, 2006) was used. The dynamical part of ECHAM5 is formulated in spherical harmonics, while physical parametrizations are computed in grid-point space. The simulations reported here used a coarse horizontal resolution of T42, i.e. triangular truncation at wave number 42, corresponding to a grid spacing of The model vertical grid had 31 layers with model top at 10 hpa. A semiimplicit time integration scheme is used for model dynamics with a time step of 20 min. Model physical parametrizations (Roeckner et al., 2006) are invoked every time step with the exception of radiation, which is computed once per two hours. Four ECHAM5 closure parameters were considered (Table 1). These parameters are related to physical parametrizations of clouds and precipitation. The choice of these parameters is motivated by their substantial influence on the model s climate. Additionally, our research group is familiar with the impact of varying these parameters. In Järvinen et al. (2010), adaptive Markov chain Monte Carlo technique (MCMC: Haario et al., 2006) was applied to estimate posterior joint probability densities of these parameters; two of them (CMFCTOP, ENTRSCV: Fig. 4 of Järvinen et al., 2010) were well identified while two others (CAULOC, CPRCON) were found to be rather poorly identifiable with the chosen formulation of the cost function. As ECHAM5 is primarily a climate model, the impact of variations of the chosen subset of parameters on mediumrange forecast skill was not well understood prior to the experiments. Table 1. The subset of ECHAM5 closure parameters which contain parameter variations. Parameter CAULOC CMFCTOP CPRCON ENTRSCV Description A parameter influencing the accretion of cloud droplets by precipitation (rain formation in stratiform clouds) Relative cloud mass flux at the level above nonbuoyancy (in cumulus mass flux scheme) A coefficient for determining conversion from cloud water to rain (in convective clouds) Entrainment rate for shallow convection There are two principal approaches to parameter variations: either to keep the parameter variation fixed during the forecast, or to treat parameters as stochastic variables and model their variations during the forecast by some autoregressive process (Lin and Neelin, 2000). In EPPES, the parameter variations are specified at initial time and are kept fixed during the forecast The ensemble prediction system emulator Ensemble prediction systems are composed of two main functionalities: generation of initial state perturbations, and representation of model errors. These functionalities are included into our EPS emulator as follows. First, the initial state perturbations are taken directly from the ECMWF operational EPS data archive. We use twice-daily (0000 and 1200 UTC) control and 50 perturbed initial conditions over a period of three months (January to March 2011). The ECHAM5 model state variables are the same as in the ECMWF forecast model (temperature, vorticity, divergence, logarithm of surface pressure, and specific humidity). Also, representation of the states is the same in the two systems, and hence conveniently applicable in the ECHAM5 model to generate 10-day forecasts. For validation purposes, the operational analyses were copied also for the periods of January to March 2010, and for April Second, the forecast model uncertainty is represented in the EPS emulator with the initial-time parameter variations. The parameter variations are generated by the EPPES sampling algorithm and serve the purpose of parameter estimation, though they are probably efficient also in sampling model uncertainties. No stochastic physics schemes were developed nor applied, and thus the ensembles generated with the EPS emulator may be somewhat underdispersive. The spread skill relationship was not calibrated at any stage of the parameter estimation process. We note that for on-line parameter estimation with EPPES using operational EPS runs, one has to ensure that the spread skill calibration is maintained, and that no poorly performing parameter values are used. Here, off-line parameter estimation is performed and the spread skill calibration is not such an important issue. The ensemble spread caused by the initial state perturbations and the parameter variations were first tested in separation. Both generate roughly equal amounts of spread to the ensemble, but these are not additive: in the EPS emulator, both perturbation sources were switched on, but the spread was only slightly larger than the separate effects of one or the other. This seems to indicate, as

4 Forecast Skill Optimization 1523 remarked by one of the peer-reviewers, that the initial state perturbations optimized to the ECMWF system do not carry over well to our ECHAM5-based EPS emulator since they only generate a similar spread as the parameter variations. This EPS emulator may be thus sub-optimal but nevertheless sufficiently effective for the proof of concept of NWP model forecast skill optimization. An additional remark is that the role of initial state perturbations in parameter estimation using the EPPES algorithm is to integrate out the uncertainty related to the initial state. The estimates obtained without using the initial state perturbations would probably lean more towards these particular analyses, and would not be the same ones as obtained when the initial state perturbations were used as well Implementation of the estimation algorithm The Ensemble Prediction and Parameter Estimation System (EPPES) algorithm is described in detail in JL2012, and demonstrated with an implementation using a stochastic version of the Lorenz-95 model (Lorenz, 1995; Wilks, 2005). In EPPES, we assume that for a time window i, the optimal model parameter θ i is a realization of a random variable, which follows a multivariate Gaussian distribution with a mean vector µ and a p p covariance matrix, as follows: θ i N(µ, ), i = 1, 2,... The distribution parameters µ and are assumed unknown but static over time. In EPPES, the problem of estimating the model parameter θ is formulated as a problem of estimating the distribution parameters (or, hyper-parameters) µ and. The interpretation is that there is a mean parameter value µ that performs best on average considering all weather types, seasons etc., but due to the evident modelling errors (possibly weather regime dependent), the optimal parameter value varies according to between different time windows, i.e. between different ensembles. The EPPES algorithm proceeds by drawing parameter value proposals from a distribution that accounts for the parameter uncertainty. The quality of the parameter values is tested in ensembles of medium-range forecasts, and wellperforming parameter values are qualified to feed back to the proposal distribution. We will refer to an ensemble by index i, covering one time window, including verifying observations regardless the observing time. An outline of the EPPES algorithm can be written as follows: 1. Initialize the hyper-parameters µ 0 and 0. The distribution N(µ 0, 0 ) is the initial prior for the first time window and the proposal distribution for the first sample. 2. At each time window i, sample a set of proposed values for the parameters θ i call them θ j i from the multivariate Gaussian distribution, θ j i N(µ i 1, i 1 ), j = 1,..., n ens,wheren ens is the ensemble size. 3. Generate the ensemble of predictions using the parameters θ j i. 4. Evaluate the cost function J( θ j i ) for each ensemble member and compute ( the importance weights w( θ j i ) p(y i θ j i ) exp 1 2 J( θ j i ), ) i.e. the likelihood of the observations y i given the parameters θ j i. 5. Using the importance weights, make a re-sampled ensemble of θ j i as θ j i, j = 1,..., n ens. 6. Update the hyper-parameters µ i and i with the resampled parameter values, using the EPPES update formulae (for details, see JL2012). 7. For the next time window i + 1, set the proposal distribution for parameter θ i+1 as N(µ i, i )andgo back to step 2. In the EPPES algorithm, the prior distribution mean and standard deviation for the first ensemble are specified based on expert knowledge. The initial mean values µ 0 correspond to the default model parameter values. The parameter uncertainties 0 at the initial time are specified so that the resulting parameter variations can be used in the model without significant loss of modelling accuracy. Initially, parameters can be assumed independent and therefore the 0 at the initial time is a diagonal covariance matrix. Possible parameter covariances will emerge during the estimation process. As a safety measure, minimum and maximum allowed parameter values are specified to prevent unrealistic values entering the forecast model. For the ECHAM5 model at T42L31 resolution, these values are given in Table 2. We want to emphasize that varying these parameters does not capture the full uncertainty in the ECHAM5 physical parametrizations. Only the parametric uncertainties related to the selected parameters are covered. Also, the entire structural uncertainty of the model formulation is intact. Furthermore, we believe that the optimal closure parameter values are implementation-specific. Hence, they are not necessarily optimal any longer if the model resolution or structure is changed. In JL2012, EPPES was tested using a stochastic version of the Lorenz-95 model. Because this model is an ordinary differential equation system without spatial dimensions, the likelihood was formulated as a simple sum-of-squares of the difference between forecast and verifying analysis with some noise. In the case of ECHAM5, the three-dimensional state vector needs to be compared either with observations or with a reference state. The proper formulation of the likelihood is thus a major technical difference here as compared with JL2012. Here, the cost function is a twin-criterion formulation of the squared forecast error: J(θ) = 5 2 A (z 72 f (θ) z a ) 2 da + A (zf 240 (θ) z a ) 2 da, where zf 72 (zf 240 ) is a 72-hour (240-hour) forecast of the 500 hpa geopotential height, z a is the verifying analysis, and da is the areal element of model grid. The factor 5/2 makes the two terms approximately equal in magnitude, and thereby balances their contributions to the cost function. The parameters θ in the formula imply that the forecasts depend on the sampled parameter values. We note that the cost function is closely related to the root-mean-squared forecast error (RMSE) commonly used as a headline score in NWP. Also, this cost function is only intended for demonstration purpose rather than as the ultimate formulation. Some alternative optimization criteria related to, for example, precipitation rate or cloud frequency of occurrence may lead to different parameter optima, but this has not been tested.

5 1524 P. Ollinaho et al. Table 2. ECHAM5 (T42L31 resolution) parameter values applied in the EPPES tests. Parameter Prior Bounds Posterior mean std. dev. mean std. dev. CAULOC CMFCTOP CPRCON ENTRSCV Prior mean values correspond to the default model values. Prior standard deviation (the width of the proposal distribution of the first ensemble) and bounds (minimum and maximum allowed parameter values) are subjectively specified. Posterior mean and standard deviation are the EPPES estimates after 180 estimation steps with the specified cost function. Figure 1. The cost function values in the ensembles launched during 1 10 January 2011, i.e. in the first 20 ensembles. Each vertically aligned group of markers corresponds to one ensemble. The cost function values are plotted for each ensemble member (black crosses), the default model run (large grey cross), and the re-sampled ensemble members affecting the proposal distribution (grey crosses; slightly offset to the right). 3. Results 3.1. Performance of ensembles in terms of cost function values In the EPPES runs performed here, each ensemble consists of 50 members with perturbed initial conditions, and one member using the unperturbed control analysis as initial state. All these 51 members contain parameter variations. Thus, 51 forecasts twice daily for three months result in an EPPES sequence of 9180 sample points in total. For diagnostic purposes, a forecast from the unperturbed control analysis is run also with the default parameter values in each ensemble. This control member does not affect the estimation process. Figure 1 displays the cost function values for ensemble members in the first 20 ensembles. One ensemble appears as a vertically aligned group of markers (black crosses). In the first ensemble, the cost function value of the default model (large grey cross) is about 215 (in arbitrary units) while the other members (black crosses) are distributed around the default value; their values range from about 205 to 232. The ensemble spread in terms of cost function values (Figure 1) varies from one ensemble to the next. For instance, the first and second ensembles have a pronounced spread while the 15th ensemble is relatively compact. Note that the spread is due to both the initial state perturbation and the parameter variations. Changes in atmospheric predictability appear such that, for instance, all members of the ensemble number 15 are at a higher cost function level than any of the members in the ensemble number 16. These varying levels highlight the fact that comparison of cost function values between consecutive ensembles has no particular relevance for statistical inference, as discussed in JL2012, but comparison of members within one ensemble can be very informative. Figure 1 also illustrates the EPPES re-sampling procedure. The re-sampled members (grey crosses; slightly offset to the right for better visibility) correspond to a relatively high forecast skill, and appear at the lower part of the group of markers. Note that the re-sample size is equal to the original ensemble, but members with presumably little impact on the posterior are abandoned and replaced with multiple copies of members with a greater impact. Only these ensemble members affect the hyper-parameters of proposal distribution. The control member applying the default parameter values would probably have been accepted in the re-sampling in the first ensemble (the control member is within the spread of the re-sample). This is the case in ten out of 20 ensembles. In this particular realization, the default model is never the best ensemble member but it is twice the worst performing member Evolution of the parameter values and their covariances Evolution of the four parameter values in 180 consecutive ensembles is shown in Figure 2. A vertical column of markers corresponds to one ensemble of proposed (grey) and resampled (black) parameter values. It is common for all four parameters that the adjustment rate of the mean value µ (continuous line in Figure 2) is large during the first 20 to 40 steps, after which it remains rather low. The width of the 95% probability range of the parameter uncertainty (µ ± 2 standard deviation; dashed lines in Figure 2), on the other hand, are in a slow and slightly erratic decrease during the sequence. Parameter mean and standard deviation values after 180 steps (i.e. the parameter posterior values) are given in Table 2. Three parameters tend to increase their mean values: CAULOC by a factor of 5, CPRCON by a factor of 40, and ENTRSCV by a factor of 1.5. CMFCTOP remains close to its default value. The standard deviation decreases by a factor of about 2, except for ENTRSCV where the decrease is by a factor of 4. Note that the initial uncertainty estimates were subjective. The parameter pairwise covariances are presented in Figure 3 at the initial time (Figure 3(a)), and after 180 estimation steps (Figure 3(b)). Initially (Figure 3(a)), the parameters are assumed independent and the specified

6 Forecast Skill Optimization 1525 Figure 2. Evolution of the parameter values in 180 consecutive ensembles. A vertical column of markers corresponds to one ensemble of proposed (grey) and re-sampled (black) parameter values. The parameter distribution mean value µ (continuous line) and µ ± 2 standard deviation (dashed lines) are also shown. For clarity, only every fourth ensemble is plotted. prior parameter uncertainties appear as ellipses centred at the default values µ 0. After 180 steps, the parameter mean values µ have drifted apart from the default values, and there is a slight tilt in the ellipses, most notably between CMFCTOP and CAULOC. This tilt is an indication of parameter covariance. Note that the default value of CPRCON is outside the 95% probability range of the parameter uncertainty, and the default value of CAULOC is right on the 95% probability contour. It would be easy to impose limits to parameters in the EPPES method to respect the theoretically justified parameter ranges of which the experts are convinced. Finally, we note that in Järvinen et al. (2010), two out of four parameters were well identified (CMFCTOP, ENTRSCV) while two others (CAULOC, CPRCON) identified poorly. Here the posterior distributions of all four parameters are compact. This supports our conclusion that the EPPES method has identified the parameter distributions of all four parameters Asymptotic behaviour In order to study the asymptotic behaviour of this implementation of the EPPES algorithm, we made the following test. After reaching the end of the three-month period (180 steps), the sequence was restarted from the first date. Ten sweeps over the same dataset were performed, totalling 1800 steps and sample points. We want to emphasize that the parameter estimates obtained in this procedure represent a close fit to this particular training dataset. In this experiment, the cost function contained only the 10-day forecasts error contribution. Thus, the final parameter values are not directly comparable with the results presented above. Asymptotic parameter evolution logically follows from the behaviour of the first sweep (Figure 2): in sweeps two to ten (not shown), the parameter mean values are in a slow and smooth evolution towards some asymptotic values. Just for comparison, these values are some 30% lower than the posterior values in Table 2. The 95% probability contours of the parameter uncertainty, on the other hand, reach an asymptotic level after 3 4 sweeps with no further decrease thereafter. These values, on the other hand, are some 40% lower than those in Table 2. ENTRSCV is an exception in this experiment: its mean value and uncertainty remained close to the default value. The parameter pairwise covariances after 1800 steps are presented in Figure 4. Strong covariances emerge, especially between ENTRSCV and CAULOC, and ENTRSCV and CMFCTOP. Some words of caution, though, are due on the experimental set-up. First, the covariances may be very specific for this training set, and random in that sense; in another data set the covariances might be different. Second, the covariances may be too strong, because the variability in the training dataset is limited; in another dataset with better representation of the natural variability, the covariances might be weaker. Interestingly enough, Klocke et al. (2011) are aware of the correlation between ENTRSCV and CMFCTOP, and have in fact coupled the variations of these two parameters because of their opposite effects on top-of-atmosphere net radiation through their impact on low cloudiness. Here, coupling of ENTRSCV and CAULOC appears even more pronounced Validation of forecast skill The optimized parameters of Table 2 are validated in forecast experiments, with focus on the 500 hpa geopotential

7 1526 P. Ollinaho et al. (a) (b) Figure 3. (a) Pairwise parameter covariances at the initial time. Default parameter values (µ 0 ) are denoted by thin dashed lines. The ellipse represents the prior parameter uncertainty as specified initially (the 95% probability range of the parameter uncertainty 0 ). The small circles are the proposed parameter values at the first step; darkness of colour is indicative of the weights given to re-sampled parameter values. (b) As (a), but after 180 consecutive ensembles. The small circles are the proposed parameter values at step 180. height field. We use two skill scores as validation measures: root-mean-squared forecast error (RMSE), and anomaly correlation coefficient (ACC), defined as dzf dz a ACC = ( (dzf ). 2 (dz a ) 2) 1 2 Here dz f and dz a are the forecast and analysis fields, respectively, minus a long-term climatology of the ECMWF operational analyses. RMSE is a commonly used forecast error measure in NWP. It is sensitive to forecast bias but tends to favour smooth forecast fields. ACC, on the other hand, is not sensitive to forecast bias and favours correct patterns in the forecast fields. Note that the optimization criterion (cost function) is closely related to RMSE while ACC is independent of the optimization. We use these two validation measures because they are complementary: if RMSE is decreased while ACC is not significantly degraded, we can conclude that the reduction in the cost function values (RMSE) is not due to the smoothing effect, but related

8 Forecast Skill Optimization 1527 either to bias reduction and/or more accurate forecasts of spatial variations of the height field. The forecast skill validation results are presented next. The RMSE differences are computed between the default and the optimized model (Figure 5, left column), while the ACC differences are between the optimized and the default model (Figure 5, right column). Thus the difference (continuous line in Figure 5) is the higher the better is the optimized model. The 95% confidence intervals are also indicated (grey bars in Figure 5; the bar width is two times the standard deviation of the differences divided by the square root of numberofcases).thetoprowoffigure5presentsthe validation in dependent data, that is, the dataset in which the parameters were optimized. The forecast dataset consists of 180 cases at 0000 and 1200 UTC, January March The RMSE is consistently better in the optimized model than in the default model at all forecast lead times. This is true at the 95% confidence level, except at 10-day range. In practice, the optimized model is some three hours ahead of the default model in terms of RMSE forecast quality at 10-day range. This result indicates that the EPPES algorithm works as intended because the optimization criterion used here is closely related to RMSE skill score. Based on ACC (right column), the optimized model is neutral or better than the default model indicating a genuine model improvement. Next, the validation is performed in an independent dataset of April 2011 (Figure 5, middle row), containing 60 forecast cases immediately after the training period. Presumably the flow type is somewhat similar to the last weeks of the training period, at least early in this period. Based on RMSE, the optimized model is again consistently better than the default model at all forecast lead times. However, at ranges beyond 6 7 days the result is not significant at the 95% confidence level. In terms of ACC, the optimized model is worse than the default model at 6 8 day ranges, and better at 9 10 day ranges. This result is, however, not 95% significant. Thus, we consider the optimized model as neutral in this dataset compared with the default model. The second independent dataset covers the same months (January March) as the training period but from the previous year, and includes 180 forecast cases (Figure 5, bottom row). This forecast experiment tests the robustness of the optimized model to interannually varying atmospheric state while the effects of intra-annual variability (seasonal cycle) are excluded. RMSE is again consistently better in the optimized model than in the default model. This result is 95% significant up to 8-day forecast ranges. In this dataset, the optimized model is neutral in terms of ACC up to 6-day range and consistently negative at longer ranges. This result is not significant at the 95% level. The conclusion is that the optimized model is generally better than the default model when the validation measure is similar to the one used in the optimization (RMSE). This conclusion holds both in dependent and independent datasets, including interannual variations but excluding seasonal variations in the atmospheric states. An independent and complementary criterion (ACC) is not degraded at 95% significance level, thus supporting the conclusion that the RMSE improvement is genuine. The skill scores were separately computed (not shown) for the Northern Hemisphere (NH; north of 20 N), Southern Hemisphere (SH; south of 20 S), and the tropical belt. The global RMSE skill improvement is mainly due to a reduction of the tropical temperature bias in the lower troposphere. A minor reason is the reduction of the 500 hpa geopotential height random error in the NH and SH scores. This is concluded from the fact that the RMSE decreased in the extratropics despite the bias slightly increased in the longer forecast ranges. Next we present a diagnosis of the model response to the parameter changes that explain the reduced tropical temperature bias Diagnosis of the reduced tropical temperature bias Here we concentrate on the 10-day forecasts in the period January March First, the parameter changes from the default values to the optimized ones resulted in increased convective precipitation between 30 N and 30 S (not shown), and consequently, reduced large-scale precipitation, both by about 10% on average. These changes are associated with a slightly larger cloud fraction in the lower troposphere, and a smaller fraction in a deep layer higher in the troposphere in the Tropics (Figure 6(a)), as well as a temperature change with 0.5 K warming at 700 hpa and a cooling of about 0.1 K at 850 hpa and 0.3 K at 300 hpa (Figure 6(b)). Therefore, the mean temperature below 500 hpa is increased, thus increasing the 500 hpa geopotential height in the Tropics. A qualitative cause effect relationship is as follows: (i) cloud fraction is increased in the lower troposphere because of the increased cloud lifetime (larger value of the parameter ENTRSCV, although opposed by the larger value of CAULOC), (ii) cloud fraction is decreased higher in the troposphere due to the increased precipitation efficiency (increased value of CRPCON), (iii) the combined effect is that the convection is shallower; (iv) there is enhanced latent heating due to the shallower and more intense convection, and perhaps (v) increased latent cooling due to the evaporation of precipitation and/or enhanced long-wave radiative cooling at cloud tops around 850 hpa; and (vi) the cooling at 300 hpa may result from the vertical re-distribution of heating and/or enhanced shortwave radiative cooling due to the reduced cloud fraction Validation of model climate Since ECHAM5 is a climate model, it is of interest to see how the parameter optimization affects the climate simulated by the model. For the validation purpose, we use two data sources. First, the Clouds and the Earth s Radiant Energy System (CERES) Energy Balanced and Filled dataset (Loeb et al., 2009) is used to compare net radiative fluxes (long-wave+ short-wave) at the top-of-atmosphere (TOA). Second, total cloud fraction (CTOT) is compared with the International Satellite Cloud Climatology Project (ISCCP) D2 data (Rossow et al., 1996; Rossow and Dueñas, 2004). We recall that the maximum-random overlap assumption is applied in the ECHAM5 model. Two six-year ECHAM5 model simulations ( ) are prepared using the default and optimized parameters (Table 2), respectively, so as to cover the CERES/ISCCP observation period. Prescribed distributions of sea-surface temperature and sea ice are used (AMIP Project Office, 1996). The comparisons of time latitude cross-sections of TOA variables are presented in Figure 7, where the left (middle) column is for the default (optimized) simulation minus observation, and the right column for the optimized minus default simulation. The rows one to four in Figure 7 are for the net, short-wave (SW), and long-wave (LW) TOA

9 1528 P. Ollinaho et al. Figure 4. As Figure 3(a), but after 1800 consecutive ensembles. The small circles are the proposed parameter values at step Note that the axis scales are different in Figure 3. Figure 5. The differences of the 500 hpa geopotential height forecast skill scores. Left column: RMSE (default minus optimized model), right column: ACC (optimized minus default model). Top row: dependent sample (January March 2011), middle row: independent sample of April 2011, bottom row: independent sample of January March Mean forecast score difference (continuous line), and the 95% confidence interval of the difference (grey bars).

10 Forecast Skill Optimization 1529 Figure 6. Pressure latitude (hpa ) cross-section of the cloud fraction (left panel; non-dimensional values between 0 and 1) and temperature (right panel; unit K) difference between the optimized and default models in 10-day forecasts in the period January March radiation fluxes, and CTOT, respectively. In the default model simulation, the largest net radiation flux errors (about 40 W m 2 ) appear at high latitudes ( 55 Sand 60 N) during local summer (Figure 7(a)). At lower latitudes, smaller positive biases prevail. In the simulation using the optimized parameter values (Figure 7(b)), the maximum monthly mean biases are reduced by about 10 W m 2. The default model global annual mean SW flux is biased negative ( 5.21 W m 2 ; Figure 7(d)), and the LW flux is biased positive (7.05 W m 2 ; Figure 7(g)). These biases partly cancel out such that the global annual-mean net radiation flux is biased positive by 1.84 W m 2 (Figure 7(a)); this indicates that the default model might have been tuned with the net radiation flux as a target criterion. In the optimized model, the corresponding biases are 1.62 W m 2 for the SW (Figure 7(e)) and 1.63 W m 2 for the LW fluxes (Figure 7(h)), respectively. Therefore, the global annualmean net flux bias practically vanishes in the optimized model ( 0.01 W m 2 ; Figure 7(b)). Note that the radiation fluxes were not used as an optimization criterion. Finally, total cloud fraction is considered. In comparison to the ISCCP data, the default model features too much cloudiness at high latitudes and too little cloudiness at lower latitudes, with the largest negative biases around 30 S and 30 N (Figure 7(j)). In the optimized model, cloudiness is reduced in the latitude band 30 S 30 N (Figure 7(k)) thus making the cloud climatology inferior as compared with the default model. As in the 10-day forecasts, the tropical cloud fraction has increased in the lower troposphere and decreased higher up. Clearly, the improved radiation flux climatology has been obtained at the expense of representation of tropical and subtropical radiatively active clouds. It is a known feature of the ECHAM5 model that a good simulation of both clouds and TOA radiation fluxes in the Tropics is challenging. The conclusion is that the optimized model is better than the default model in terms of net, SW, and LW radiation fluxes, despite the fact that these were not used as target criteria in the optimization. At the same time, the optimized model simulates smaller total-cloud fraction in the Tropics which further increases the model cloud bias. 4. Discussion We have been able to improve some aspects of the ECMAM5 model predictive skill. However, ECHAM5 is a climate model and has not been optimized for short-range weather forecasting. Thus, it may be an easy task to succeed either with EPPES or some other optimization method, although we are not aware of any previous attempts of algorithmic forecast skill optimization. Nevertheless, the complexity of the ECHAM5 model is in practical terms equal to NWP models currently in operational production. All relevant multi-scale interactions and dynamics physics feedbacks of the operational NWP models are present also in the ECHAM5 model. The parametrizations of the ECHAM5 model are very comprehensive too. In fact, they are in part even heavier than those used in NWP models, especially regarding climate-relevant physical processes near the surface. Two outstanding differences remain. First, the problem size, i.e. the number of grid points due to the spatial discretization, is clearly higher in the operational NWP than in the ECHAM5 model used here. Second, operational EPS systems contain additional stochastic effects to represent model errors. Our current research efforts are thus directed towards tests using a top-end global NWP system. We want to clarify whether or not the huge problem size and the additional stochastic effects of modern ensemble prediction systems overwhelm the parameter estimation with the EPPES method.

11 1530 P. Ollinaho et al. Figure 7. Time latitude cross-section of TOA net flux difference between the default ECHAM5 model (DEF) and CERES observations (panel (a)), the corresponding difference for the optimized ECHAM5 model (OPT; panel (b)), and the difference between these two model runs (panel (c); note the different scale of shading). (d) (f): Same as (a) (c) but for the (down up) short-wave flux at the TOA. (g) (i): Same as (a) (c) but for the (down up) long-wave flux at the TOA. (j) (l): Same as (a) (c) but for total cloud fraction (CTOT; per cent) compared with ISCCP satellite observations. In EPPES, we assume that the optimal model parameter θ i in time window i is a realization of a random variable, which follows a multivariate Gaussian distribution θ i N(µ, ). In model optimization, we are obviously interested in the mean parameter value µ. The distribution parameter is potentially very informative too, although in this article we have not utilized it. We point out three options to utilize the distribution parameter in model development: ensemble generation, detection of model deficiencies, and coupling of parameters. First, parameter variations can be used as a complementary technique to represent model uncertainty. If parameter variations are assumed independent, there is a risk of generating parameter variations that correspond to suboptimal models, and/or outlying ensemble members. This risk can be potentially alleviated by the parameter covariance information provided by the EPPES method. Second, model deficiencies can appear as excessive parameter uncertainty and/or weak parameter identifiability. With the EPPES method, one can systematically explore the identifiability of parameters related to subgrid-scale parametrizations. Third,

12 Forecast Skill Optimization 1531 strong parameter covariance can be indicative of a need to couple some parameters together. Finally, we note that the EPPES algorithm is not specifically designed for model bias reduction, although the forecast skill improvement of the ECHAM5 model was largely due to reduction of systematic model error, especially in the Tropics. We want to emphasize that stochastic parametrization schemes can significantly reduce systematic model errors (e.g. Berner et al., 2012). In contrast to these approaches, the ECHAM5 model was applied in a purely deterministic form in the validation runs where the parameter values were fixed to their optimized values. 5. Conclusions In this article, closure parameters of ECHAM5 model at T42L31 resolution are estimated using the Ensemble Prediction and Parameter Estimation System (EPPES: Järvinen et al., 2012; Laine et al., 2012). To emulate the functionalities of an ensemble prediction system (EPS), we applied the following procedure. First, an EPS emulator is set up by copying initial state perturbations from the ECMWF operational archive. Second, parameter perturbations are imposed on the ECHAM5 model to represent model errors. Here, four closure parameters relating to clouds and precipitation are considered. With this set-up, ensembles of 10-day global forecasts are generated with the ECHAM5 model over a period of three months such that each ensemble member has a different parameter perturbation at the initial time. After an ensemble of forecasts has been generated, the EPPES algorithm re-samples the ensemble members that verify well against observations; mean-squared error of 3- and 10-day forecasts of 500 hpa geopotential height, as verified against the ECMWF analyses, is used here as a target criterion. In a three-month period, 9180 sample points are generated in total. The mean values of the four closure parameters evolve towards more optimal values, and their uncertainties reduce from the values specified a priori. In the three-month twice-daily sequence, weak parameter covariances emerge. In asymptotic tests (ten times more sample points), the pairwise parameter covariances are stronger. For the validation of the ECHAM5 forecast skill, we use two validation measures: root-mean-squared forecast error (RMSE) and anomaly correlation coefficient (ACC) of 500 hpa geopotential height. RMSE is better or neutral in dependent and independent datasets, while ACC is mostly neutral. Thus we conclude that the reduction in the cost function values is not due to a smoothing effect, but is related either to bias reduction and/or more accurate forecasts of spatial variations of the height field. Since ECHAM5 is a climate model, we also evaluated the effects of parameter optimization on the climate simulated by the model. The default model is close to top-of-atmosphere global annual-mean net radiation flux balance, because sizable SW and LW radiation biases cancel out. The optimization improved the radiation flux climatology (net, SW and LW), as verified against the CERES radiation data over a 6-year period. At the same time, the model s negative bias in the tropical cloud cover has become worse, as compared with the ISCCP data. We conclude that optimization of medium-range forecast skill and maintaining realistic model climate are not conflicting targets. This is encouraging since a general requirement for climate models is that they perform well both in terms of bias and variability of essential climate variables. Climate models are typically optimized in terms of biases, while good forecast skill implies that the variability is also well captured. This tends to support our approach to use ensemble prediction with a relatively short forecast range in benefit of climate simulation. Our current research efforts are directed towards testing the EPPES method in the context of top-end global NWP systems. We want to clarify whether or not the huge problem size and the additional stochastic effects of modern ensemble prediction systems overwhelm the parameter estimation with the EPPES method. Finally, we note that the EPPES codes used here and some examples are available on-line at lainema/eppes/. Acknowledgements The authors are grateful for ECMWF for the access to operational data archives. Petri Räisänen from FMI is warmly acknowledged for discussions and comments on the manuscript. The peer-reviewers provided insightful comments which are acknowledged too. The research has been funded in part by the Academy of Finland (project numbers , , and ), the Nessling foundation, and by the European Commission s 7th Framework Programme, under Grant Agreement number , EMBRACE project ( References Aksoy A, Zhang FQ, Nielsen-Gammon JW. 2006a. Ensemble-based simultaneous state and parameter estimation with MM5. Geophys. Res. Lett. 33: L12801, DOI: /2006GL Aksoy A, Zhang FQ, Nielsen-Gammon JW. 2006b. Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Mon. Weather Rev. 134: AMIP Project Office AMIP II guidelines. AMIP Newsletter 8. Lawrence Livermore National Laboratory, Livermore, California, USA. Available at projects/amip/news/amipnl8.php Berner J, Jung T, Palmer TN Systematic model error: The impact of increased horizontal resolution versus improved stochastic and deterministic parameterizations. J. Climate 25: Betts AK, Ball JH, Viterbo P Evaluation of the ERA-40 surface water budget and surface temperature for the Mackenzie River basin. J. Hydrometeorol. 4: Bowler NE, Arribas A, Mylne KR, Robertson KB, Beare SE The MOGREPS short-range ensemble prediction system. Q. J. R. Meteorol. Soc. 134: Fisher M Optimizing data assimilation for re-analysis. Pp in Proceedings of the ECMWF/GEO Workshop on Atmospheric reanalysis, June Available on-line at Haario H, Laine M, Mira A, Saksman E DRAM: Efficient adaptive MCMC. Stat. Comput. 16: Hacker JP, Snyder C, Ha S-Y, Pocernich M Linear and non-linear response to parameter variations in a mesoscale model. Tellus 63A: Järvinen H, Räisänen P, Laine M, Tamminen J, Ilin A, Oja E, Solonen A, Haario H Estimation of ECHAM5 climate model closure parameters with adaptive MCMC. Atmos. Chem. Phys. 10: Järvinen H, Laine M, Solonen A, Haario H Ensemble prediction and parameter estimation system: The concept. Q. J. R. Meteorol. Soc. 138: Klocke D, Pincus R, Quaas J On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate 24: Laine M, Solonen A, Haario H, Järvinen H Ensemble prediction and parameter estimation system: The method. Q. J. R. Meteorol. Soc. 138:

Advanced uncertainty evaluation of climate models by Monte Carlo methods

Advanced uncertainty evaluation of climate models by Monte Carlo methods Advanced uncertainty evaluation of climate models by Monte Carlo methods Marko Laine marko.laine@fmi.fi Pirkka Ollinaho, Janne Hakkarainen, Johanna Tamminen, Heikki Järvinen (FMI) Antti Solonen, Heikki

More information

Parameter variations in prediction skill optimization at ECMWF

Parameter variations in prediction skill optimization at ECMWF https://helda.helsinki.fi Parameter variations in prediction skill optimization at ECMWF Ollinaho, P. 03 Ollinaho, P, Bechtold, P, Leutbecher, M, Laine, M, Solonen, A, Haario, H & Järvinen, H 03, ' Parameter

More information

Model parameters of chaotic dynamics: metrics for comparing trajectories

Model parameters of chaotic dynamics: metrics for comparing trajectories Model parameters of chaotic dynamics: metrics for comparing trajectories H. Haario 1,2, L.Kalachev 3, J. Hakkarainen 2, A. Bibov 1, FMI people June 25, 215 1 Lappeenranta University of Technology, Finland

More information

NOTES AND CORRESPONDENCE. Improving Week-2 Forecasts with Multimodel Reforecast Ensembles

NOTES AND CORRESPONDENCE. Improving Week-2 Forecasts with Multimodel Reforecast Ensembles AUGUST 2006 N O T E S A N D C O R R E S P O N D E N C E 2279 NOTES AND CORRESPONDENCE Improving Week-2 Forecasts with Multimodel Reforecast Ensembles JEFFREY S. WHITAKER AND XUE WEI NOAA CIRES Climate

More information

Stochastic methods for representing atmospheric model uncertainties in ECMWF's IFS model

Stochastic methods for representing atmospheric model uncertainties in ECMWF's IFS model Stochastic methods for representing atmospheric model uncertainties in ECMWF's IFS model Sarah-Jane Lock Model Uncertainty, Research Department, ECMWF With thanks to Martin Leutbecher, Simon Lang, Pirkka

More information

Model error and seasonal forecasting

Model error and seasonal forecasting Model error and seasonal forecasting Antje Weisheimer European Centre for Medium-Range Weather Forecasts ECMWF, Reading, UK with thanks to Paco Doblas-Reyes and Tim Palmer Model error and model uncertainty

More information

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming

High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl044119, 2010 High initial time sensitivity of medium range forecasting observed for a stratospheric sudden warming Yuhji Kuroda 1 Received 27 May

More information

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM

The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM The Impact of Background Error on Incomplete Observations for 4D-Var Data Assimilation with the FSU GSM I. Michael Navon 1, Dacian N. Daescu 2, and Zhuo Liu 1 1 School of Computational Science and Information

More information

Exploring and extending the limits of weather predictability? Antje Weisheimer

Exploring and extending the limits of weather predictability? Antje Weisheimer Exploring and extending the limits of weather predictability? Antje Weisheimer Arnt Eliassen s legacy for NWP ECMWF is an independent intergovernmental organisation supported by 34 states. ECMWF produces

More information

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction

4.3.2 Configuration. 4.3 Ensemble Prediction System Introduction 4.3 Ensemble Prediction System 4.3.1 Introduction JMA launched its operational ensemble prediction systems (EPSs) for one-month forecasting, one-week forecasting, and seasonal forecasting in March of 1996,

More information

Convective scheme and resolution impacts on seasonal precipitation forecasts

Convective scheme and resolution impacts on seasonal precipitation forecasts GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 20, 2078, doi:10.1029/2003gl018297, 2003 Convective scheme and resolution impacts on seasonal precipitation forecasts D. W. Shin, T. E. LaRow, and S. Cocke Center

More information

Diagnostics of the prediction and maintenance of Euro-Atlantic blocking

Diagnostics of the prediction and maintenance of Euro-Atlantic blocking Diagnostics of the prediction and maintenance of Euro-Atlantic blocking Mark Rodwell, Laura Ferranti, Linus Magnusson Workshop on Atmospheric Blocking 6-8 April 2016, University of Reading European Centre

More information

TC/PR/RB Lecture 3 - Simulation of Random Model Errors

TC/PR/RB Lecture 3 - Simulation of Random Model Errors TC/PR/RB Lecture 3 - Simulation of Random Model Errors Roberto Buizza (buizza@ecmwf.int) European Centre for Medium-Range Weather Forecasts http://www.ecmwf.int Roberto Buizza (buizza@ecmwf.int) 1 ECMWF

More information

Upgrade of JMA s Typhoon Ensemble Prediction System

Upgrade of JMA s Typhoon Ensemble Prediction System Upgrade of JMA s Typhoon Ensemble Prediction System Masayuki Kyouda Numerical Prediction Division, Japan Meteorological Agency and Masakazu Higaki Office of Marine Prediction, Japan Meteorological Agency

More information

Horizontal resolution impact on short- and long-range forecast error

Horizontal resolution impact on short- and long-range forecast error Quarterly Journal of the Royal Meteorological Society Q. J. R. Meteorol. Soc. :, April Part B Horizontal resolution impact on short- and long-range forecast error Roberto Buizza European Centre for Medium-Range

More information

An Overview of Atmospheric Analyses and Reanalyses for Climate

An Overview of Atmospheric Analyses and Reanalyses for Climate An Overview of Atmospheric Analyses and Reanalyses for Climate Kevin E. Trenberth NCAR Boulder CO Analysis Data Assimilation merges observations & model predictions to provide a superior state estimate.

More information

2. Outline of the MRI-EPS

2. Outline of the MRI-EPS 2. Outline of the MRI-EPS The MRI-EPS includes BGM cycle system running on the MRI supercomputer system, which is developed by using the operational one-month forecasting system by the Climate Prediction

More information

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches

Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Unified Cloud and Mixing Parameterizations of the Marine Boundary Layer: EDMF and PDF-based cloud approaches Joao Teixeira

More information

Update of the JMA s One-month Ensemble Prediction System

Update of the JMA s One-month Ensemble Prediction System Update of the JMA s One-month Ensemble Prediction System Japan Meteorological Agency, Climate Prediction Division Atsushi Minami, Masayuki Hirai, Akihiko Shimpo, Yuhei Takaya, Kengo Miyaoka, Hitoshi Sato,

More information

Correlation integral likelihood for stochastic differential equations

Correlation integral likelihood for stochastic differential equations Correlation integral likelihood for stochastic differential equations Heikki Haario, Janne Hakkarainen, Ramona Maraia, Sebastian Springer Abstract A new approach was recently introduced for the task of

More information

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics

Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Improved rainfall and cloud-radiation interaction with Betts-Miller-Janjic cumulus scheme in the tropics Tieh-Yong KOH 1 and Ricardo M. FONSECA 2 1 Singapore University of Social Sciences, Singapore 2

More information

The Canadian approach to ensemble prediction

The Canadian approach to ensemble prediction The Canadian approach to ensemble prediction ECMWF 2017 Annual seminar: Ensemble prediction : past, present and future. Pieter Houtekamer Montreal, Canada Overview. The Canadian approach. What are the

More information

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions

How surface latent heat flux is related to lower-tropospheric stability in southern subtropical marine stratus and stratocumulus regions Cent. Eur. J. Geosci. 1(3) 2009 368-375 DOI: 10.2478/v10085-009-0028-1 Central European Journal of Geosciences How surface latent heat flux is related to lower-tropospheric stability in southern subtropical

More information

Estimation of ECHAM5 climate model closure parameters with adaptive MCMC

Estimation of ECHAM5 climate model closure parameters with adaptive MCMC doi:10.5194/acp-10-9993-2010 Author(s) 2010. CC Attribution 3.0 License. Atmospheric Chemistry and Physics Estimation of ECHAM5 climate model closure parameters with adaptive MCMC H. Järvinen 1, P. Räisänen

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Hsi-Yen Ma In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang Program

More information

The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere

The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere GEOPHYSICAL RESEARCH LETTERS, VOL. 4, 388 392, doi:1.12/grl.575, 213 The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere

More information

Does increasing model stratospheric resolution improve. extended-range forecast skill?

Does increasing model stratospheric resolution improve. extended-range forecast skill? Does increasing model stratospheric resolution improve extended-range forecast skill? 0 Greg Roff, David W. J. Thompson and Harry Hendon (email: G.Roff@bom.gov.au) Centre for Australian Weather and Climate

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Intensification of Northern Hemisphere Subtropical Highs in a Warming Climate Wenhong Li, Laifang Li, Mingfang Ting, and Yimin Liu 1. Data and Methods The data used in this study consists of the atmospheric

More information

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions

The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions The Planetary Boundary Layer and Uncertainty in Lower Boundary Conditions Joshua Hacker National Center for Atmospheric Research hacker@ucar.edu Topics The closure problem and physical parameterizations

More information

Prof. Stephen G. Penny University of Maryland NOAA/NCEP, RIKEN AICS, ECMWF US CLIVAR Summit, 9 August 2017

Prof. Stephen G. Penny University of Maryland NOAA/NCEP, RIKEN AICS, ECMWF US CLIVAR Summit, 9 August 2017 COUPLED DATA ASSIMILATION: What we need from observations and modellers to make coupled data assimilation the new standard for prediction and reanalysis. Prof. Stephen G. Penny University of Maryland NOAA/NCEP,

More information

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction

MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction MODEL TYPE (Adapted from COMET online NWP modules) 1. Introduction Grid point and spectral models are based on the same set of primitive equations. However, each type formulates and solves the equations

More information

4.4 EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK

4.4 EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM2 UNDER CAPT FRAMEWORK . EVALUATION OF AN IMPROVED CONVECTION TRIGGERING MECHANISM IN THE NCAR COMMUNITY ATMOSPHERE MODEL CAM UNDER CAPT FRAMEWORK Shaocheng Xie, James S. Boyle, Richard T. Cederwall, and Gerald L. Potter Atmospheric

More information

Extratropical and Polar Cloud Systems

Extratropical and Polar Cloud Systems Extratropical and Polar Cloud Systems Gunilla Svensson Department of Meteorology & Bolin Centre for Climate Research George Tselioudis Extratropical and Polar Cloud Systems Lecture 1 Extratropical cyclones

More information

Systematic Errors in the ECMWF Forecasting System

Systematic Errors in the ECMWF Forecasting System Systematic Errors in the ECMWF Forecasting System Thomas Jung ECMWF Introduction Two principal sources of forecast error: Uncertainties in the initial conditions Model error How to identify model errors?

More information

Towards the Seamless Prediction of Weather and Climate

Towards the Seamless Prediction of Weather and Climate Towards the Seamless Prediction of Weather and Climate T.N.Palmer, ECMWF. Bringing the insights and constraints of numerical weather prediction (NWP) into the climate-change arena. With acknowledgements

More information

The benefits and developments in ensemble wind forecasting

The benefits and developments in ensemble wind forecasting The benefits and developments in ensemble wind forecasting Erik Andersson Slide 1 ECMWF European Centre for Medium-Range Weather Forecasts Slide 1 ECMWF s global forecasting system High resolution forecast

More information

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT

The effect of ocean mixed layer depth on climate in slab ocean aquaplanet ABSTRACT Climate Dynamics manuscript No. (will be inserted by the editor) 1 2 The effect of ocean mixed layer depth on climate in slab ocean aquaplanet experiments. 3 Aaron Donohoe Dargan Frierson 4 5 Manuscript

More information

Application and verification of ECMWF products 2017

Application and verification of ECMWF products 2017 Application and verification of ECMWF products 2017 Finnish Meteorological Institute compiled by Weather and Safety Centre with help of several experts 1. Summary of major highlights FMI s forecasts are

More information

Convective-scale NWP for Singapore

Convective-scale NWP for Singapore Convective-scale NWP for Singapore Hans Huang and the weather modelling and prediction section MSS, Singapore Dale Barker and the SINGV team Met Office, Exeter, UK ECMWF Symposium on Dynamical Meteorology

More information

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay

NSF 2005 CPT Report. Jeffrey T. Kiehl & Cecile Hannay NSF 2005 CPT Report Jeffrey T. Kiehl & Cecile Hannay Introduction: The focus of our research is on the role of low tropical clouds in affecting climate sensitivity. Comparison of climate simulations between

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine Lecture Ch. 12 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 12 For Wednesday: Read Ch.

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

ABSTRACT 2 DATA 1 INTRODUCTION

ABSTRACT 2 DATA 1 INTRODUCTION 16B.7 MODEL STUDY OF INTERMEDIATE-SCALE TROPICAL INERTIA GRAVITY WAVES AND COMPARISON TO TWP-ICE CAM- PAIGN OBSERVATIONS. S. Evan 1, M. J. Alexander 2 and J. Dudhia 3. 1 University of Colorado, Boulder,

More information

Figure ES1 demonstrates that along the sledging

Figure ES1 demonstrates that along the sledging UPPLEMENT AN EXCEPTIONAL SUMMER DURING THE SOUTH POLE RACE OF 1911/12 Ryan L. Fogt, Megan E. Jones, Susan Solomon, Julie M. Jones, and Chad A. Goergens This document is a supplement to An Exceptional Summer

More information

Improved Use of AIRS Data at ECMWF

Improved Use of AIRS Data at ECMWF Improved Use of AIRS Data at ECMWF A.D. Collard, A.P. McNally European Centre for Medium-Range Weather Forecasts, Reading, U.K. W.W. Wolf QSS Group, Inc., NOAA Science Center, 5200 Auth Road, Camp Springs

More information

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change

Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Chapter 1 Atmospheric and Oceanic Simulation Development of a Coupled Atmosphere-Ocean-Land General Circulation Model (GCM) at the Frontier Research Center for Global Change Project Representative Tatsushi

More information

Sensitivity of Tropical Tropospheric Temperature to Sea Surface Temperature Forcing

Sensitivity of Tropical Tropospheric Temperature to Sea Surface Temperature Forcing Sensitivity of Tropical Tropospheric Temperature to Sea Surface Temperature Forcing Hui Su, J. David Neelin and Joyce E. Meyerson Introduction During El Niño, there are substantial tropospheric temperature

More information

The skill of ECMWF cloudiness forecasts

The skill of ECMWF cloudiness forecasts from Newsletter Number 143 Spring 215 METEOROLOGY The skill of ECMWF cloudiness forecasts tounka25/istock/thinkstock doi:1.21957/lee5bz2g This article appeared in the Meteorology section of ECMWF Newsletter

More information

What kind of stratospheric sudden warming propagates to the troposphere?

What kind of stratospheric sudden warming propagates to the troposphere? What kind of stratospheric sudden warming propagates to the troposphere? Ken I. Nakagawa 1, and Koji Yamazaki 2 1 Sapporo District Meteorological Observatory, Japan Meteorological Agency Kita-2, Nishi-18,

More information

Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward the real world

Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward the real world JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, VOL. 5, 58 70, doi:10.1029/2012ms000167, 2013 Parameter estimation using data assimilation in an atmospheric general circulation model: From a perfect toward

More information

Understanding land-surfaceatmosphere. observations and models

Understanding land-surfaceatmosphere. observations and models Understanding land-surfaceatmosphere coupling in observations and models Alan K. Betts Atmospheric Research akbetts@aol.com MERRA Workshop AMS Conference, Phoenix January 11, 2009 Land-surface-atmosphere

More information

Will it rain? Predictability, risk assessment and the need for ensemble forecasts

Will it rain? Predictability, risk assessment and the need for ensemble forecasts Will it rain? Predictability, risk assessment and the need for ensemble forecasts David Richardson European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, UK Tel. +44 118 949

More information

Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea

Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea Effects of a convective GWD parameterization in the global forecast system of the Met Office Unified Model in Korea Young-Ha Kim 1, Hye-Yeong Chun 1, and Dong-Joon Kim 2 1 Yonsei University, Seoul, Korea

More information

A simple method for seamless verification applied to precipitation hindcasts from two global models

A simple method for seamless verification applied to precipitation hindcasts from two global models A simple method for seamless verification applied to precipitation hindcasts from two global models Matthew Wheeler 1, Hongyan Zhu 1, Adam Sobel 2, Debra Hudson 1 and Frederic Vitart 3 1 Bureau of Meteorology,

More information

Application and verification of ECMWF products 2012

Application and verification of ECMWF products 2012 Application and verification of ECMWF products 2012 Instituto Português do Mar e da Atmosfera, I.P. (IPMA) 1. Summary of major highlights ECMWF products are used as the main source of data for operational

More information

M. Mielke et al. C5816

M. Mielke et al. C5816 Atmos. Chem. Phys. Discuss., 14, C5816 C5827, 2014 www.atmos-chem-phys-discuss.net/14/c5816/2014/ Author(s) 2014. This work is distributed under the Creative Commons Attribute 3.0 License. Atmospheric

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

Observed Trends in Wind Speed over the Southern Ocean

Observed Trends in Wind Speed over the Southern Ocean GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051734, 2012 Observed s in over the Southern Ocean L. B. Hande, 1 S. T. Siems, 1 and M. J. Manton 1 Received 19 March 2012; revised 8 May 2012;

More information

ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM

ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM Kirsti Salonen and Niels Bormann ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom Abstract This article reports

More information

NOTES AND CORRESPONDENCE. On Ensemble Prediction Using Singular Vectors Started from Forecasts

NOTES AND CORRESPONDENCE. On Ensemble Prediction Using Singular Vectors Started from Forecasts 3038 M O N T H L Y W E A T H E R R E V I E W VOLUME 133 NOTES AND CORRESPONDENCE On Ensemble Prediction Using Singular Vectors Started from Forecasts MARTIN LEUTBECHER European Centre for Medium-Range

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

WaVaCS summerschool Autumn 2009 Cargese, Corsica

WaVaCS summerschool Autumn 2009 Cargese, Corsica Introduction Part I WaVaCS summerschool Autumn 2009 Cargese, Corsica Holger Tost Max Planck Institute for Chemistry, Mainz, Germany Introduction Overview What is a parameterisation and why using it? Fundamentals

More information

Interannual variability of top-ofatmosphere. CERES instruments

Interannual variability of top-ofatmosphere. CERES instruments Interannual variability of top-ofatmosphere albedo observed by CERES instruments Seiji Kato NASA Langley Research Center Hampton, VA SORCE Science team meeting, Sedona, Arizona, Sep. 13-16, 2011 TOA irradiance

More information

Calibration of ECMWF forecasts

Calibration of ECMWF forecasts from Newsletter Number 142 Winter 214/15 METEOROLOGY Calibration of ECMWF forecasts Based on an image from mrgao/istock/thinkstock doi:1.21957/45t3o8fj This article appeared in the Meteorology section

More information

For the operational forecaster one important precondition for the diagnosis and prediction of

For the operational forecaster one important precondition for the diagnosis and prediction of Initiation of Deep Moist Convection at WV-Boundaries Vienna, Austria For the operational forecaster one important precondition for the diagnosis and prediction of convective activity is the availability

More information

Latest thoughts on stochastic kinetic energy backscatter - good and bad

Latest thoughts on stochastic kinetic energy backscatter - good and bad Latest thoughts on stochastic kinetic energy backscatter - good and bad by Glenn Shutts DARC Reading University May 15 2013 Acknowledgments ECMWF for supporting this work Martin Leutbecher Martin Steinheimer

More information

Evolution of Forecast Error Covariances in 4D-Var and ETKF methods

Evolution of Forecast Error Covariances in 4D-Var and ETKF methods Evolution of Forecast Error Covariances in 4D-Var and ETKF methods Chiara Piccolo Met Office Exeter, United Kingdom chiara.piccolo@metoffice.gov.uk Introduction Estimates of forecast error covariances

More information

Global NWP Index documentation

Global NWP Index documentation Global NWP Index documentation The global index is calculated in two ways, against observations, and against model analyses. Observations are sparse in some parts of the world, and using full gridded analyses

More information

A stochastic method for improving seasonal predictions

A stochastic method for improving seasonal predictions GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi:10.1029/2012gl051406, 2012 A stochastic method for improving seasonal predictions L. Batté 1 and M. Déqué 1 Received 17 February 2012; revised 2 April 2012;

More information

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies

Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies Arctic System Reanalysis Provides Highresolution Accuracy for Arctic Studies David H. Bromwich, Aaron Wilson, Lesheng Bai, Zhiquan Liu POLAR2018 Davos, Switzerland Arctic System Reanalysis Regional reanalysis

More information

Numerical simulation of marine stratocumulus clouds Andreas Chlond

Numerical simulation of marine stratocumulus clouds Andreas Chlond Numerical simulation of marine stratocumulus clouds Andreas Chlond Marine stratus and stratocumulus cloud (MSC), which usually forms from 500 to 1000 m above the ocean surface and is a few hundred meters

More information

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China

NOTES AND CORRESPONDENCE. Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China 6036 J O U R N A L O F C L I M A T E VOLUME 21 NOTES AND CORRESPONDENCE Seasonal Variation of the Diurnal Cycle of Rainfall in Southern Contiguous China JIAN LI LaSW, Chinese Academy of Meteorological

More information

Ensemble Verification Metrics

Ensemble Verification Metrics Ensemble Verification Metrics Debbie Hudson (Bureau of Meteorology, Australia) ECMWF Annual Seminar 207 Acknowledgements: Beth Ebert Overview. Introduction 2. Attributes of forecast quality 3. Metrics:

More information

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models

Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Parameterization of Cumulus Convective Cloud Systems in Mesoscale Forecast Models Yefim L. Kogan Cooperative Institute

More information

Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques

Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Understanding Predictability and Model Errors Through Light, Portable Pseudo-Assimilation and Experimental Prediction Techniques

More information

Have a better understanding of the Tropical Cyclone Products generated at ECMWF

Have a better understanding of the Tropical Cyclone Products generated at ECMWF Objectives Have a better understanding of the Tropical Cyclone Products generated at ECMWF Learn about the recent developments in the forecast system and its impact on the Tropical Cyclone forecast Learn

More information

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total

Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total Supplementary Figure 1. Summer mesoscale convective systems rainfall climatology and trends. Mesoscale convective system (MCS) (a) mean total rainfall and (b) total rainfall trend from 1979-2014. Total

More information

The Predictability of Extratropical Storm Tracks and the. Sensitivity of their Prediction to the Observing System

The Predictability of Extratropical Storm Tracks and the. Sensitivity of their Prediction to the Observing System The Predictability of Extratropical Storm Tracks and the Sensitivity of their Prediction to the Observing System Lizzie S. R. Froude *, Lennart Bengtsson and Kevin I. Hodges Environmental Systems Science

More information

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity

WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity WCRP Grand Challenge Workshop: Clouds, Circulation and Climate Sensitivity Schloss Ringberg, 3700 Rottach-Egern, Germany March 24-28, 2014 This work was performed under the auspices of the U.S. Department

More information

High-latitude influence on mid-latitude weather and climate

High-latitude influence on mid-latitude weather and climate High-latitude influence on mid-latitude weather and climate Thomas Jung, Marta Anna Kasper, Tido Semmler, Soumia Serrar and Lukrecia Stulic Alfred Wegener Institute, Helmholtz Centre for Polar and Marine

More information

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research

Models for models. Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Models for models Douglas Nychka Geophysical Statistics Project National Center for Atmospheric Research Outline Statistical models and tools Spatial fields (Wavelets) Climate regimes (Regression and clustering)

More information

Seeking a consistent view of energy and water flows through the climate system

Seeking a consistent view of energy and water flows through the climate system Seeking a consistent view of energy and water flows through the climate system Robert Pincus University of Colorado and NOAA/Earth System Research Lab Atmospheric Energy Balance [Wm -2 ] 340.1±0.1 97-101

More information

1. Header Land-Atmosphere Predictability Using a Multi-Model Strategy Paul A. Dirmeyer (PI) Zhichang Guo (Co-I) Final Report

1. Header Land-Atmosphere Predictability Using a Multi-Model Strategy Paul A. Dirmeyer (PI) Zhichang Guo (Co-I) Final Report 1. Header Land-Atmosphere Predictability Using a Multi-Model Strategy Paul A. Dirmeyer (PI) Zhichang Guo (Co-I) Final Report 2. Results and Accomplishments Output from multiple land surface schemes (LSS)

More information

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell

NOTES AND CORRESPONDENCE. On the Seasonality of the Hadley Cell 1522 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 60 NOTES AND CORRESPONDENCE On the Seasonality of the Hadley Cell IOANA M. DIMA AND JOHN M. WALLACE Department of Atmospheric Sciences, University of Washington,

More information

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1 Stephen English, Una O Keeffe and Martin Sharpe Met Office, FitzRoy Road, Exeter, EX1 3PB Abstract The assimilation of cloud-affected satellite

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study

L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study from Newsletter Number 148 Summer 2016 METEOROLOGY L alluvione di Firenze del 1966 : an ensemble-based re-forecasting study Image from Mallivan/iStock/Thinkstock doi:10.21957/ nyvwteoz This article appeared

More information

Application and verification of ECMWF products 2016

Application and verification of ECMWF products 2016 Application and verification of ECMWF products 2016 Icelandic Meteorological Office (www.vedur.is) Bolli Pálmason and Guðrún Nína Petersen 1. Summary of major highlights Medium range weather forecasts

More information

Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence)

Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence) 1 Crux of AGW s Flawed Science (Wrong water-vapor feedback and missing ocean influence) William M. Gray Professor Emeritus Colorado State University There are many flaws in the global climate models. But

More information

Observational Zonal Mean Flow Anomalies: Vacillation or Poleward

Observational Zonal Mean Flow Anomalies: Vacillation or Poleward ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 1 7 Observational Zonal Mean Flow Anomalies: Vacillation or Poleward Propagation? SONG Jie The State Key Laboratory of Numerical Modeling for

More information

Heavier summer downpours with climate change revealed by weather forecast resolution model

Heavier summer downpours with climate change revealed by weather forecast resolution model SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE2258 Heavier summer downpours with climate change revealed by weather forecast resolution model Number of files = 1 File #1 filename: kendon14supp.pdf File

More information

Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models

Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models 152 MONTHLY WEATHER REVIEW Comparison between Wavenumber Truncation and Horizontal Diffusion Methods in Spectral Models PETER C. CHU, XIONG-SHAN CHEN, AND CHENWU FAN Department of Oceanography, Naval Postgraduate

More information

Monthly forecast and the Summer 2003 heat wave over Europe: a case study

Monthly forecast and the Summer 2003 heat wave over Europe: a case study ATMOSPHERIC SCIENCE LETTERS Atmos. Sci. Let. 6: 112 117 (2005) Published online 21 April 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/asl.99 Monthly forecast and the Summer 2003

More information

LATE REQUEST FOR A SPECIAL PROJECT

LATE REQUEST FOR A SPECIAL PROJECT LATE REQUEST FOR A SPECIAL PROJECT 2016 2018 MEMBER STATE: Italy Principal Investigator 1 : Affiliation: Address: E-mail: Other researchers: Project Title: Valerio Capecchi LaMMA Consortium - Environmental

More information

Application and verification of the ECMWF products Report 2007

Application and verification of the ECMWF products Report 2007 Application and verification of the ECMWF products Report 2007 National Meteorological Administration Romania 1. Summary of major highlights The medium range forecast activity within the National Meteorological

More information

Downscaling in Time. Andrew W. Robertson, IRI. Advanced Training Institute on Climate Variability and Food Security, 12 July 2002

Downscaling in Time. Andrew W. Robertson, IRI. Advanced Training Institute on Climate Variability and Food Security, 12 July 2002 Downscaling in Time Andrew W. Robertson, IRI Advanced Training Institute on Climate Variability and Food Security, 12 July 2002 Preliminaries Crop yields are driven by daily weather variations! Current

More information

SPECIAL PROJECT PROGRESS REPORT

SPECIAL PROJECT PROGRESS REPORT SPECIAL PROJECT PROGRESS REPORT Progress Reports should be 2 to 10 pages in length, depending on importance of the project. All the following mandatory information needs to be provided. Reporting year

More information

Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model

Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model Comparison of ensemble and NMC type of background error statistics for the ALADIN/HU model Kristian Horvath horvath@cirus.dhz.hr Croatian Meteorological and Hydrological Service supervised by Bölöni Gergely

More information

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher

Ensemble forecasting and flow-dependent estimates of initial uncertainty. Martin Leutbecher Ensemble forecasting and flow-dependent estimates of initial uncertainty Martin Leutbecher acknowledgements: Roberto Buizza, Lars Isaksen Flow-dependent aspects of data assimilation, ECMWF 11 13 June 2007

More information