ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM

Size: px
Start display at page:

Download "ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM"

Transcription

1 ACCOUNTING FOR THE SITUATION-DEPENDENCE OF THE AMV OBSERVATION ERROR IN THE ECMWF SYSTEM Kirsti Salonen and Niels Bormann ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom Abstract This article reports the status of the work towards using situation dependent observation errors for Atmospheric Motion Vector (AMV) observations in the ECMWF system. The height assignment errors have been estimated from model best-fit pressure statistics, and the tracking errors from cases where the error due to error in height assignment is small. Impact studies with the new situation dependent observation errors show encouraging results. INTRODUCTION Numerical weather prediction (NWP) models provide the basis for weather forecasting by simulating the evolution of the atmospheric state. A good forecast requires that the initial state of the atmosphere is known accurately, and that the NWP model is a realistic representation of the atmosphere. Data assimilation methods are used to produce initial conditions for NWP models. The NWP model background field, typically a short-range forecast, is updated with observations in a statistically optimal way. A realistic specification of background and observation errors, and error correlations is essential as they determine to what extent the model background field is corrected to fit the observations. In this article, work towards accounting for the atmospheric motion vector (AMV) observation error characteristics in the ECMWF data assimilation system is discussed. AMV observation errors originate mainly from two sources, errors in the wind vector tracking and errors in the height assignment of the tracers. The latter can be very significant in regions where wind shear is strong, but is less relevant in areas where there is not much variation in wind speed with height. The observation errors applied in the operational ECMWF system for AMVs vary currently only with height. Thus, observation errors are independent of satellite, channel, and height assignment method as well as the prevailing atmospheric conditions. Forsythe and Saunders (28) have introduced an approach to estimate situation dependent AMV observation errors. The method is investigated in the ECMWF system. This article is organised as follows. First, estimation of the situation dependent observation errors in the ECMWF system is described. Second, results from model experiments are reported including evaluation of the new observation errors, and impact assessment. Finally, a short summary is given. ESTIMATION OF THE SITUATION DEPENDENT OBSERVATION ERRORS The Forsythe and Saunders (28) approach devides the AMV observation error into two parts, one originating from the AMV tracking and one originating from the error in the height assignment. [total u/v error] 2 = [Tracking error in u/v] 2 + [Error in u/v due to error in height assignment] 2. (1) 1

2 EBBT MET 9 GOES 11 MTSAT1 R H 2 O intercept CO 2 slicing Pressure (hpa) 6 Pressure (hpa) 6 Pressure (hpa) Pressure error (hpa) Pressure error (hpa) Pressure error (hpa) Figure 1: Pressure error estimates based on best-fit pressure statistics for Meteosat-9 (black solid line), GOES-11 (blue dashed line), and MTSAT1-R (red dash dotted line) infrared channel AMVs utilising EBBT (left panel), H 2O intercept (middle panel), and CO 2 slicing (right panel) height assignment methods, respectively. The advantage of the approach is that it allows to down-weight observations in regions with high vertical wind shear where errors in height assignment are problematic, and give greater weight to observations in regions where the height assignment error is less critical. Other errors may also contribute to the total AMV observation error, e.g. errors of representativeness, but these are not explicitly modelled here. In the ECMWF system, the height errors have been estimated based on model best-fit pressure statistics. The model best-fit pressure is defined as the height where the vector difference between the observed and the model background wind is the smallest. Another option would be to use producer provided estimates for the height errors. However, these are not yet operationally available. Use of the model best-fit pressure to characterise the AMV height assignment errors is discussed in more details in Salonen et al. (212) in these proceedings. Figure 1 shows the pressure errors as a function of height for Meteosat-9, GOES-11, and MTSAT1-R IR channel AMVs utilising the EBBT (left panel), the H 2 O intercept (middle panel), and the CO 2 slicing (right panel) height assignment methods, respectively, as an example of the results. The statistics have been examined separately for all satellites, channels, and height assignment methods. The height error estimates vary typically between 7 hpa and 12 hpa. The largest height error estimate of 26 hpa was found for GOES-13 cloudy water vapour AMVs at 4 6 hpa height, and the smallest height error estimate of 25 hpa for Meteosat-9 visible channel AMVs at 6 8 hpa height. A default value of 8 hpa is used, if a pre-defined height error estimate does not exist. The height error is converted to a wind error due to the error in height using equations 2 and 3 in each case (Forsythe and Saunders, 28) E vp = Wi (v i v n ) 2 Wi, (2) where W i = exp( (p i p n ) 2 2Ep 2 ) dp i. (3) 2

3 GEO POLAR 2 Pressure (hpa) Error in u/v (ms 1 ) Figure 2: Tracking error estimates for AMVs from geostationary (solid line) and polar (dashed line) satellites. In 2 and 3 i is the model level, v i is the wind component on model level i, v n is the wind component at the observation location, p i is the pressure on model level i, p n is the pressure assigned to the AMV, E p is the height error, and dp i is the layer thickness. The formulation assumes a Gaussian distribution of height error, and E p defines the width of the weighting function. An upper limit for the weighting function is set to the height of the model tropopause. It is assumed that there are no clouds or water vapour features suitable for AMV tracking above that height. The tracking errors have been estimated from cases where the error due to the error in height is small. Also the tracking errors have been studied separately for all satellites, channels, and height assignment methods but as the differences were relatively small, at the moment the tracking errors are defined separately only for AMVs from geostationary, and polar orbiting satellites (Fig. 2). The tracking error estimates vary between 2. ms 1 and 3.2 ms 1. A default value of 2.5 ms 1 is used if a predefined value does not exist. Finally, the total observation error for each AMV observation is calculated by combining the tracking error and the wind error due to error in observation height with equation 1. EXPERIMENTATION In order to evaluate the realism of the situation dependent observation errors, and to study their impact on model forecasts, a set of model experiments for July - August 21 have been performed with the ECMWF Integrated Forecasting System cycle 37r2 at T511 ( 4 km) resolution, 91 vertical levels and 12 hour 4D-Var. All operationally assimilated conventional and satellite observations have been used. The control run is similar to the current operationally used setup, i.e. the AMV observation errors vary only with height. In the experiments the new observation errors are used, and the experiment setup is varied in order to answer the following questions: Are the new observation errors realistic? Can the first guess check be simplified? Can the observation error due to the error in height be used to exclude suspicious observations? 3

4 Mean OmB, WV cloudy, 1 hpa 4 hpa 15 6 o N 1 3 o N 5 o 3 o S 5 6 o S 1 18 o W 12 o W 6 o W o 6 o E 12 o E 18 o W Mean obs error, WV cloudy, 1 hpa 4 hpa o N 3 o N 1 o 3 o S 5 6 o S 18 o W 12 o W 6 o W o 6 o E 12 o E 18 o W Figure 3: Mean OmB (upper panel), and mean observation error (lower panel) for cloudy water vapour AMV u- component at levels 1-4 hpa, 25th August 21, 12 UTC. What is the impact of using the new observation errors on model analysis and forecasts? Evaluation of the new observation errors Comparison of the situation dependent AMV observation errors and the operationally used observation errors which vary only with height indicate that on average the situation dependent observation errors are of the same magnitude, or slightly larger, than the current observation errors. To illustrate the situation dependence, Fig. 3 displays the mean observation minus background (OmB; upper panel) and the mean observation error (lower panel) for cloudy water vapour AMVs (u component) at levels 1-4 hpa at 25th August UTC. Comparison of the panels shows that at same locations where there are significant differences between the observed and model wind speed, also the situation dependent observation errors reach higher values. Thus, the behaviour of the new observation errors is consistent with expectations. Figure 4 shows the OmB standard deviation as a function of the situation dependent observation errors for the u wind component for Meteosat-9 cloudy water vapour AMVs applying CO2 height assignment method at levels 1-4 hpa. The grey histograms show the number of observations. There is a good agreement between the observation errors and the OmB standard deviation. The OmB standard deviation has a contribution from the background error as well. A similar comparison as Fig. 4 but for the background error reveals that the magnitude of the background error is relatively constant as a function of the situation dependent observation errors (not shown). Thus, the increase in the OmB 4

5 Figure 4: OmB standard deviation as a function of situation dependent observation errors (black dots) for southern hemisphere extra tropics (left panel), tropics (middle panel), and northern hemisphere extra tropics (right panel) Meteosat-9 cloudy water vapour AMVs applying CO2 height assignment method at levels 1-4 hpa. The grey histograms show the number of observations. standard deviation is clearly related to AMVs with increased error in wind due to error in the height assignment. In an ideal case the observation errors in Fig. 4 would lie above the one-to-one line. Thus, the results indicate that the new observation errors are slightly overestimated. This behaviour is quite typical for other satellite, channel, and height assignment combinations as well. However, at the moment the spatial and temporal correlations of the AMV observation errors are not taken into account, but only compensated by inflating the observation errors. From that point of view the magnitude of the new observation errors is justified. Model first guess check The model first guess check compares observations y with the model background information Hx b 1 2 ([(Hx b y) 2 σb 2 + ] u + [ (Hx b y) 2 σ2 o σb 2 + ] v ) L. (4) σ2 o Observations which deviate from the background more than a pre-defined limit L are rejected. In eq. 4 σb 2 and σ2 o are the background and observation error variances, respectively. Traditionally the first guess check has been very strict for AMV observations. In the operational ECMWF system tight rejection limits are applied, typically L is by factor 1 smaller for AMV observations compared to limits used for conventional wind observations. In addition, the first guess check is assymmetric, i.e. an additional penalty is applied to AMV observations that under-report wind speed when compared with the first guess field. There are also some geographical dependencies in the rejection limits, the first guess check is slightly relaxed for the low level winds, and in the tropics. The new situation dependent observation errors allow to down-weight observations in areas where wind shear is strong and the error in the height assignment can have a drastic impact. Thus, it is important to revise the first guess check and carefully consider how it could be simplified and possibly relaxed. 5

6 Figure 5: Demonstration of the operation of the model first guess check. The left panel shows Meteosat-9 WV AMVs at 1-4 hpa heights after blacklisting. The upper right panel displays the AMVs after applying the first guess check used in the operational system, and the lower middle panel the after the modified first guess which is under investigations. The lower right panel shows AMVs after applying the criterion to limit the magnitude of the observation error due to height error to be smaller than twice the tracking error. Figure 5 illustrates how the first guess check operates. In the left, a scatter plot of observed wind speed versus first guess wind speed is shown for Meteosat-9 WV AMVs at 1-4 hpa heights. The upper panel shows the scatter plot for AMVs which have been accepted by the first guess check used in the operational system. Outliers have been removed very effectively, and also the impact of the asymmetric check is clearly seen. The lower panel illustrates the simplified first guess check that is under investigations. In the simplified first guess check the asymmetric part has been removed, and the same rejection limits are used independent of the geographical location of the AMV observation. In Fig. 5, the rejection limits have also been slightly relaxed compared to the operational ones. The modified first guess check rejects outliers as well but the spread in the scatter plot is notably wider compared to the operational first guess check. Another aspect under investigation, and illustrated in the low right panel of Fig. 5, is how the observation error due to the error in height could be used to exclude bad quality observations. A first trial has been to limit the magnitude of the observation error due to height error to be smaller than twice the tracking error. Excluding AMVs with large errors due to errors in height assignment is motivated by the fact that the height assignment errors are likely to be more correlated spatially, and such correlations are currently neglected. Impact assessment Next, results from an experiment where the situation dependent observation errors, the above described modified first guess check, and the criterion to limit the magnitude of the observation error due to height error to be smaller than twice the tracking error have been used are discussed. The control run is similar to the current operational setup. 6

7 Vector difference of mean wind analysis, Exps fmfg-fhrd LEV=2, 2171 to W 6 W 6 E 12 E N 6 N N 3 N S 3 S S 6 S W 6 W 6 E 12 E.5 2.5m/s Figure 6: Difference in the mean wind analysis at 2 hpa between the experiment using situation dependent observation errors and the control. Shading indicates the difference in mean wind speed (ms 1 ). The considered period is 1 July - 31 August 21. Figure 6 shows the vector difference between the experiment and the control for the mean wind analysis at level 2 hpa. The most significant impact is seen in the tropics where the difference reaches values as high as 2.5 ms 1. In the mid-latitudes the magnitude of the changes is typically less than.5 ms 1. The vector difference is mainly positive, i.e. the mean wind is stronger in the experiment than in the control. At 3 hpa level the modifications tested in the experiment tend to weaken the mean wind field in the tropics, the highest differences being 1 ms 1 (not shown). At lower levels the differences in the mean wind analysis are typically less than ±.5 ms 1. The largest differences in the mean wind analysis are seen over sea where very few radiosonde or pilot observations are available, and it is difficult to assess whether the changes in these areas indicate positive or negative impact. Figure 7 shows the normalised difference in RMS error for 48-hour wind forecasts at 5 hpa level. Verification has been done against own analysis. The difference is calculated as experiment minus control, i.e. blue shades indicate positive impact and green and red shades negative impact. The overall impression is that using the situation dependent observation errors, and the modifications have a positive impact on the forecast. Positive impact can be seen on other levels and forecast ranges as well. However, at 2 hpa level a more mixed impact is found. The main findings from all performed experiments are: Using the situation dependent observation errors has generally a positive impact on model analysis and forecasts. Removing the assymetric part from the first guess check is possible without degrading the forecast quality. However, verification against the own analysis indicates that relaxing the first guess check limits results into negative forecast impact at high levels, and on high latitudes (north from 8 N and south from 8 S) for short forecast ranges at all levels. Criterion [Error in u/v due to error in height assignment] < n [Tracking error in u/v] is an effective tool to detect and reject suspicious observations. However n=2 seems to be too tight criterion and too many good quality observations are also rejected. This leads to negative forecast impact in some areas in the tropics at high levels. 7

8 Figure 7: Normalised difference (experiment - control) in RMS error for 48-hour wind forecasts at 5 hpa level. Ongoing experimentation is addressing the remaining open questions related to defining the rejection limits for the modified first guess check, and the possible use of the limiting criterion to detect bad quality observations. Operational implementation of the changes is planned after finalising the experimentation. SUMMARY The status of the work towards taking into account the AMV observation error characteristics in the ECMWF data assimilation system has been reported in this article. The two main sources of AMV observation errors are errors in the wind vector derivation, and errors in the height assignment of the tracers. An approach which allows to estimate situation dependent observation errors have been implemented in the system. Thus, observations in regions with high vertical wind shear where errors in height assignment are problematic can be down-weighted in the model analysis, and observations in regions where the height assignment error is less critical can get greater weight. Experiments indicate that the new situation dependent observation errors are on average of the same magnitude, or slightly larger, than the currently used observation errors which vary only with height. Comparisons with OmB standard deviation indicate good agreement, and results from impact studies show encouraging results. However, some further investigations are still required before making final conclusions and changes to the operational system. REFERENCES Forsythe, M., Saunders, R., 28. AMV errors: a new approach in NWP. Proceedings of the 9th International Wind Workshop, Annapolis, Maryland, USA, April 28 EUMETSAT P.51. Salonen, K., Cotton, J., Bormann, N., Forsythe, M., 212. Characterising AMV height assignment error by comparing best-fit pressure statistics from the Met Office and ECMWF system. Proceedings of the 11th International Wind Workshop, Auckland, New Zealand, 2-24 February

AMVs in the ECMWF system:

AMVs in the ECMWF system: AMVs in the ECMWF system: Overview of the recent operational and research activities Kirsti Salonen and Niels Bormann Slide 1 AMV sample coverage: monitored GOES-15 GOES-13 MET-10 MET-7 MTSAT-2 NOAA-15

More information

AMVs in the operational ECMWF system

AMVs in the operational ECMWF system AMVs in the operational ECMWF system Kirsti Salonen and Niels Bormann Slide 1 AMV sample coverage: monitored GOES-15 GOES-13 MET-10 MET-7 MTSAT-2 NOAA-15 NOAA-18 NOAA-19 FY-2D FY-2E AQUA TERRA METOP-A

More information

AMVs in the ECMWF system:

AMVs in the ECMWF system: AMVs in the ECMWF system: Highlights of the operational and research activities Kirsti Salonen and Niels Bormann Slide 1 Number of used AMVs Look back: how the use of AMVs has evolved NOAA-15,-16,-18,-19

More information

COMPARISON OF AMV HEIGHT ASSIGNMENT BIAS ESTIMATES FROM MODEL BEST-FIT PRESSURE AND LIDAR CORRECTIONS

COMPARISON OF AMV HEIGHT ASSIGNMENT BIAS ESTIMATES FROM MODEL BEST-FIT PRESSURE AND LIDAR CORRECTIONS Proceedings for the 13th International Winds Workshop 27 June - 1 July 216, Monterey, California, USA COMPARISON OF AMV HEIGHT ASSIGNMENT BIAS ESTIMATES FROM MODEL BEST-FIT PRESSURE AND LIDAR CORRECTIONS

More information

IMPACT STUDIES OF HIGHER RESOLUTION COMS AMV IN THE KMA NWP SYSTEM

IMPACT STUDIES OF HIGHER RESOLUTION COMS AMV IN THE KMA NWP SYSTEM Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA IMPACT STUDIES OF HIGHER RESOLUTION COMS AMV IN THE KMA NWP SYSTEM Jung-Rim Lee, Hyun-Cheol Shin,

More information

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP

TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA TOWARDS IMPROVED HEIGHT ASSIGNMENT AND QUALITY CONTROL OF AMVS IN MET OFFICE NWP James Cotton, Mary

More information

IMPACTS OF SPATIAL OBSERVATION ERROR CORRELATION IN ATMOSPHERIC MOTION VECTORS ON DATA ASSIMILATION

IMPACTS OF SPATIAL OBSERVATION ERROR CORRELATION IN ATMOSPHERIC MOTION VECTORS ON DATA ASSIMILATION Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA IMPACTS OF SPATIAL OBSERVATION ERROR CORRELATION IN ATMOSPHERIC MOTION VECTORS ON DATA ASSIMILATION

More information

STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF

STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF STATUS AND DEVELOPMENT OF SATELLITE WIND MONITORING BY THE NWP SAF Mary Forsythe (1), Antonio Garcia-Mendez (2), Howard Berger (1,3), Bryan Conway (4), Sarah Watkin (1) (1) Met Office, Fitzroy Road, Exeter,

More information

Use of satellite winds at Deutscher Wetterdienst (DWD)

Use of satellite winds at Deutscher Wetterdienst (DWD) Use of satellite winds at Deutscher Wetterdienst (DWD) Alexander Cress Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach am Main, Germany alexander.cress@dwd.de Ø Introduction Ø Atmospheric

More information

Improving the use of satellite winds at the Deutscher Wetterdienst (DWD)

Improving the use of satellite winds at the Deutscher Wetterdienst (DWD) Improving the use of satellite winds at the Deutscher Wetterdienst (DWD) Alexander Cress Deutscher Wetterdienst, Frankfurter Strasse 135, 63067 Offenbach am Main, Germany alexander.cress@dwd.de Ø Introduction

More information

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT

NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY. ECMWF, Shinfield Park, Reading ABSTRACT NUMERICAL EXPERIMENTS USING CLOUD MOTION WINDS AT ECMWF GRAEME KELLY ECMWF, Shinfield Park, Reading ABSTRACT Recent monitoring of cloud motion winds (SATOBs) at ECMWF has shown an improvement in quality.

More information

Niels Bormann, Graeme Kelly, and Jean-Noël Thépaut

Niels Bormann, Graeme Kelly, and Jean-Noël Thépaut CHARACTERISING AND CORRECTING SPEED BIASES IN ATMOSPHERIC MOTION VECTORS WITHIN THE ECMWF SYSTEM Niels Bormann, Graeme Kelly, and Jean-Noël Thépaut European Centre for Medium-Range Weather Forecasts (ECMWF)

More information

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS

OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS OBSERVING SYSTEM EXPERIMENTS ON ATOVS ORBIT CONSTELLATIONS Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United Kingdom Abstract

More information

WHAT CAN WE LEARN FROM THE NWP SAF ATMOSPHERIC MOTION VECTOR MONITORING?

WHAT CAN WE LEARN FROM THE NWP SAF ATMOSPHERIC MOTION VECTOR MONITORING? WHAT CAN WE LEARN FROM THE NWP SAF ATMOSPHERIC MOTION VECTOR MONITORING? Mary Forsythe 1, James Cotton 1, Antonio Garcia-Mendez 2, Bryan Conway 1 (1) Met Office, FitzRoy Road, Exeter, EX1 3PB, United Kingdom

More information

QUALITY CONTROL OF WINDS FROM METEOSAT 8 AT METEO FRANCE : SOME RESULTS

QUALITY CONTROL OF WINDS FROM METEOSAT 8 AT METEO FRANCE : SOME RESULTS QUALITY CONTROL OF WINDS FROM METEOSAT 8 AT METEO FRANCE : SOME RESULTS Christophe Payan Météo France, Centre National de Recherches Météorologiques, Toulouse, France Astract The quality of a 30-days sample

More information

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22

JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 5 July 2013 Prepared by JMA Agenda Item: II/6 Discussed in WG II JMA s ATMOSPHERIC MOTION VECTORS In response to Action 40.22 This paper reports on the recent status of JMA's AMVs from MTSAT-2 and MTSAT-1R,

More information

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery

OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery OSSE to infer the impact of Arctic AMVs extracted from highly elliptical orbit imagery L. Garand 1 Y. Rochon 1, S. Heilliette 1, J. Feng 1, A.P. Trishchenko 2 1 Environment Canada, 2 Canada Center for

More information

GOES-16 AMV data evaluation and algorithm assessment

GOES-16 AMV data evaluation and algorithm assessment GOES-16 AMV data evaluation and algorithm assessment Katie Lean and Niels Bormann IWW14, Jeju Island, South Korea, 23-27 th April 2018 katie.lean@ecmwf.int ECMWF May 3, 2018 Outline Introduction Changes

More information

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders

Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders ASSIMILATION OF METEOSAT RADIANCE DATA WITHIN THE 4DVAR SYSTEM AT ECMWF Rosemary Munro*, Graeme Kelly, Michael Rohn* and Roger Saunders European Centre for Medium Range Weather Forecasts Shinfield Park,

More information

Current status and plans of JMA operational wind product

Current status and plans of JMA operational wind product Current status and plans of JMA operational wind product Kazuki Shimoji Japan Meteorological Agency / Meteorological Satellite Center 3-235, Nakakiyoto, Kiyose, Tokyo, Japan Abstract The Meteorological

More information

Wind tracing from SEVIRI clear and overcast radiance assimilation

Wind tracing from SEVIRI clear and overcast radiance assimilation Wind tracing from SEVIRI clear and overcast radiance assimilation Cristina Lupu and Tony McNally ECMWF, Reading, UK Slide 1 Outline Motivation & Objective Analysis impact of SEVIRI radiances and cloudy

More information

HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION

HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION HIGH SPATIAL AND TEMPORAL RESOLUTION ATMOSPHERIC MOTION VECTORS GENERATION, ERROR CHARACTERIZATION AND ASSIMILATION John Le Marshall Director, JCSDA 2004-2007 CAWCR 2007-2010 John Le Marshall 1,2, Rolf

More information

REPROCESSING OF ATMOSPHERIC MOTION VECTORS FROM METEOSAT IMAGE DATA

REPROCESSING OF ATMOSPHERIC MOTION VECTORS FROM METEOSAT IMAGE DATA REPROCESSING OF ATMOSPHERIC MOTION VECTORS FROM METEOSAT IMAGE DATA Jörgen Gustafsson, Leo van de Berg, Fausto Roveda, Ahmet Yildirim Meteorological Operations Division, EUMETSAT Am Kavalleriesand 31,

More information

Height correction of atmospheric motion vectors (AMVs) using lidar observations

Height correction of atmospheric motion vectors (AMVs) using lidar observations Height correction of atmospheric motion vectors (AMVs) using lidar observations Kathrin Folger and Martin Weissmann Hans-Ertel-Centre for Weather Research, Data Assimilation Branch Ludwig-Maximilians-Universität

More information

Assessment of new AMV data in the ECMWF system: First year report

Assessment of new AMV data in the ECMWF system: First year report EUMETSAT/ECMWF Fellowship Programme Research Report No. 43 Assessment of new AMV data in the ECMWF system: First year report K. Lean, N. Bormann and K. Salonen January 2017 Series: EUMETSAT/ECMWF Fellowship

More information

Extending the use of surface-sensitive microwave channels in the ECMWF system

Extending the use of surface-sensitive microwave channels in the ECMWF system Extending the use of surface-sensitive microwave channels in the ECMWF system Enza Di Tomaso and Niels Bormann European Centre for Medium-range Weather Forecasts Shinfield Park, Reading, RG2 9AX, United

More information

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION J. Waller, S. Dance, N. Nichols (University of Reading) D. Simonin, S. Ballard, G. Kelly (Met Office) 1 AIMS 2 OBSERVATION ERRORS

More information

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF

Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Assimilation of Geostationary WV Radiances within the 4DVAR at ECMWF Christina Köpken Graeme Kelly, Jean-Noël Thépaut ECMWF EUMETSAT Fellowship ITSC-XII Lorne, Australia, 27 February - 5 March 2002 Assimilation

More information

AMVS: PAST PROGRESS, FUTURE CHALLENGES

AMVS: PAST PROGRESS, FUTURE CHALLENGES Proceedings for the 13 th International Winds Workshop 27 June - 1 July 2016, Monterey, California, USA AMVS: PAST PROGRESS, FUTURE CHALLENGES Mary Forsythe, James Cotton, Francis Warrick Met Office, FitzRoy

More information

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe

ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1. Stephen English, Una O Keeffe and Martin Sharpe ASSIMILATION OF CLOUDY AMSU-A MICROWAVE RADIANCES IN 4D-VAR 1 Stephen English, Una O Keeffe and Martin Sharpe Met Office, FitzRoy Road, Exeter, EX1 3PB Abstract The assimilation of cloud-affected satellite

More information

Assessment of Himawari-8 AMV data in the ECMWF system

Assessment of Himawari-8 AMV data in the ECMWF system EUMETSAT/ECMWF Fellowship Programme Research Report No. 42 Assessment of Himawari-8 AMV data in the ECMWF system K. Lean, N. Bormann and K. Salonen December 2016 Series: EUMETSAT/ECMWF Fellowship Programme

More information

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF

UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF UPDATES IN THE ASSIMILATION OF GEOSTATIONARY RADIANCES AT ECMWF Carole Peubey, Tony McNally, Jean-Noël Thépaut, Sakari Uppala and Dick Dee ECMWF, UK Abstract Currently, ECMWF assimilates clear sky radiances

More information

GLOBAL ATMOSPHERIC MOTION VECTOR INTER-COMPARISON STUDY

GLOBAL ATMOSPHERIC MOTION VECTOR INTER-COMPARISON STUDY GLOBAL ATMOSPHERIC MOTION VECTOR INTER-COMPARISON STUDY Iliana Genkova (1), Regis Borde (2), Johannes Schmetz (2), Chris Velden (3), Ken Holmlund (2), Mary Forsythe (4), Jamie Daniels (5), Niels Bormann

More information

by Howard Berger University of Wisconsin-CIMSS NWP SAF visiting scientist at the Met Office, UK

by Howard Berger University of Wisconsin-CIMSS NWP SAF visiting scientist at the Met Office, UK by Howard Berger University of Wisconsin-CIMSS NWP SAF visiting scientist at the Met Office, UK This documentation was developed within the context of the EUMETSAT Satellite Application Facility on Numerical

More information

An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF

An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF An Evaluation of FY-3C MWHS-2 and its potential to improve forecast accuracy at ECMWF Heather Lawrence, final-year EUMETSAT fellow, ECMWF Supervised by: Niels Bormann & Stephen English Slide 1 China s

More information

Current Status of COMS AMV in NMSC/KMA

Current Status of COMS AMV in NMSC/KMA Current Status of COMS AMV in NMSC/KMA Eunha Sohn, Sung-Rae Chung, Jong-Seo Park Satellite Analysis Division, NMSC/KMA soneh0431@korea.kr COMS AMV of KMA/NMSC has been produced hourly since April 1, 2011.

More information

Estimates of observation errors and their correlations in clear and cloudy regions for microwave imager radiances from NWP

Estimates of observation errors and their correlations in clear and cloudy regions for microwave imager radiances from NWP Estimates of observation errors and their correlations in clear and cloudy regions for microwave imager radiances from NWP Niels Bormann, Alan J. Geer and Peter Bauer ECMWF, Shinfield Park, Reading RG2

More information

Introduction. Recent changes in the use of AMV observations. AMVs over land. AMV impact study. Use of Scatterometer data (Ascat, Oceansat-2)

Introduction. Recent changes in the use of AMV observations. AMVs over land. AMV impact study. Use of Scatterometer data (Ascat, Oceansat-2) Recent progress in using satellite winds at the German Weather Service Alexander Cress, Heinz Werner Bitzer German Weather Service, Offenbach am Main, Germany, email: Alexander.Cress@dwd.de Introduction

More information

IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS. P. Butterworth, S. English, F. Hilton and K.

IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS. P. Butterworth, S. English, F. Hilton and K. IMPROVEMENTS IN FORECASTS AT THE MET OFFICE THROUGH REDUCED WEIGHTS FOR SATELLITE WINDS P. Butterworth, S. English, F. Hilton and K. Whyte Met Office London Road, Bracknell, RG12 2SZ, UK ABSTRACT Following

More information

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM

AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM AN OBSERVING SYSTEM EXPERIMENT OF MTSAT RAPID SCAN AMV USING JMA MESO-SCALE OPERATIONAL NWP SYSTEM Koji Yamashita Japan Meteorological Agency / Numerical Prediction Division 1-3-4, Otemachi, Chiyoda-ku,

More information

JMA s atmospheric motion vectors

JMA s atmospheric motion vectors Prepared by JMA Agenda Item: WG II/6 Discussed in WG II JMA s atmospheric motion vectors This paper reports on the recent status of JMA's Atmospheric Motion Vectors (AMVs) from MTSAT-2 and MTSAT-1R, and

More information

Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model

Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model Assimilation of hyperspectral infrared sounder radiances in the French global numerical weather prediction ARPEGE model N. Fourrié, V. Guidard, M. Dahoui, T. Pangaud, P. Poli and F. Rabier CNRM-GAME, Météo-France

More information

Towards a better use of AMSU over land at ECMWF

Towards a better use of AMSU over land at ECMWF Towards a better use of AMSU over land at ECMWF Blazej Krzeminski 1), Niels Bormann 1), Fatima Karbou 2) and Peter Bauer 1) 1) European Centre for Medium-range Weather Forecasts (ECMWF), Shinfield Park,

More information

PCA assimilation techniques applied to MTG-IRS

PCA assimilation techniques applied to MTG-IRS PCA assimilation techniques applied to MTG-IRS Marco Matricardi ECMWF Shinfield Park, Reading, UK WORKSHOP Assimilation of Hyper-spectral Geostationary Satellite Observation ECMWF Reading UK 22-25 May

More information

Global NWP Index documentation

Global NWP Index documentation Global NWP Index documentation The global index is calculated in two ways, against observations, and against model analyses. Observations are sparse in some parts of the world, and using full gridded analyses

More information

NWP SAF AMV monitoring: the 7th Analysis Report (AR7)

NWP SAF AMV monitoring: the 7th Analysis Report (AR7) Document NWPSAF-MO-TR-032 Version 1.0 24/05/16 NWP SAF AMV monitoring: the 7th Analysis Report (AR7) Francis Warrick Met Office, UK NWP SAF AMV monitoring: the 7th Analysis Report (AR7) Francis Warrick

More information

Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics

Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics Satellite-Derived Winds in the U.S. Navy s Global NWP System: Usage and Data Impacts in the Tropics Patricia Pauley 1, Rolf Langland 1, Rebecca Stone 2, and Nancy Baker 1 1 Naval Research Laboratory, Monterey,

More information

RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC

RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC 1 th International Winds Workshop, Tokyo, Japan, - ruary 1 RECENT UPGRADES OF AND ACTIVITIES FOR ATMOSPHERIC MOTION VECTORS AT JMA/MSC Ryo OYAMA Meteorological Satellite Center of Japan Meteorological

More information

OPERATIONAL RETRIEVAL OF MSG AMVS USING THE NEW CCC METHOD FOR HEIGHT ASSIGNMENT.

OPERATIONAL RETRIEVAL OF MSG AMVS USING THE NEW CCC METHOD FOR HEIGHT ASSIGNMENT. OPERATIONAL RETRIEVAL OF MSG AMVS USING THE NEW CCC METHOD FOR HEIGHT ASSIGNMENT. M. Doutriaux-Boucher, M. Carranza, A. de Smet, G. Dew, and R. Borde Eumetsat, Darmstadt, Germany. Present AMV retrieval

More information

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models

Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models Feature-tracked 3D Winds from Satellite Sounders: Derivation and Impact in Global Models David Santek, Anne-Sophie Daloz 1, Samantha Tushaus 1, Marek Rogal 1, Will McCarty 2 1 Space Science and Engineering

More information

VALIDATION OF DUAL-MODE METOP AMVS

VALIDATION OF DUAL-MODE METOP AMVS VALIDATION OF DUAL-MODE METOP AMVS Ákos Horváth 1, Régis Borde 2, and Hartwig Deneke 1 1 Leibniz Institute for Tropospheric Research, Permoserstrasse 15, Leipzig, Germany 2 EUMETSAT, Eumetsat Allee 1,

More information

AVHRR Global Winds Product: Validation Report

AVHRR Global Winds Product: Validation Report AVHRR Global Winds Product: Validation Report Doc.No. : EUM/TSS/REP/14/751801 Issue : v1d Date : 25 February 2015 WBS : EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49

More information

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA

EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA EVALUATION OF TWO AMV POLAR WINDS RETRIEVAL ALGORITHMS USING FIVE YEARS OF REPROCESSED DATA Roger Huckle, Marie Doutriaux-Boucher, Rob Roebeling, and Jörg Schulz EUMETSAT, Eumetsat-Allee 1, Darmstadt,

More information

GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR

GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR GENERATION OF HIMAWARI-8 AMVs USING THE FUTURE MTG AMV PROCESSOR Manuel Carranza 1, Régis Borde 2, Masahiro Hayashi 3 1 GMV Aerospace and Defence S.A. at EUMETSAT, Eumetsat Allee 1, D-64295 Darmstadt,

More information

INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT

INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT INTRODUCTION OF THE RECURSIVE FILTER FUNCTION IN MSG MPEF ENVIRONMENT Gregory Dew EUMETSAT Abstract EUMETSAT currently uses its own Quality Index (QI) scheme applied to wind vectors derived from the Meteosat-8

More information

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION

DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION DIAGNOSING OBSERVATION ERROR STATISTICS FOR NUMERICAL WEATHER PREDICTION J. Waller, S. Dance, N. Nichols (University of Reading) D. Simonin, S. Ballard, G. Kelly (Met Office) EMS Annual Meeting: European

More information

Assimilating only surface pressure observations in 3D and 4DVAR

Assimilating only surface pressure observations in 3D and 4DVAR Assimilating only surface pressure observations in 3D and 4DVAR (and other observing system impact studies) Jean-Noël Thépaut ECMWF Acknowledgements: Graeme Kelly Workshop on atmospheric reanalysis, 19

More information

USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO. Pauline Butterworth. Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT

USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO. Pauline Butterworth. Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT USE, QUALITY CONTROL AND MONITORING OF SATELLITE WINDS AT UKMO Pauline Butterworth Meteorological Office, London Rd, Bracknell RG12 2SZ, UK ABSTRACT Satellite wind fields derived from geostationary imagery

More information

Use of reprocessed AMVs in the ECMWF Interim Re-analysis

Use of reprocessed AMVs in the ECMWF Interim Re-analysis Use of reprocessed AMVs in the ECMWF Interim Re-analysis Claire Delsol EUMETSAT Fellow Dick Dee and Sakari Uppala (Re-Analysis), IoannisMallas(Data), Niels Bormann, Jean-Noël Thépaut, and Peter Slide Bauer

More information

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation

METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation METEOSAT cloud-cleared radiances for use in three/fourdimensional variational data assimilation G. A. Kelly, M. Tomassini and M. Matricardi European Centre for Medium-Range Weather Forecasts, Reading,

More information

NWP SAF AMV monitoring: the 8th Analysis Report (AR8)

NWP SAF AMV monitoring: the 8th Analysis Report (AR8) Document NWPSAF-MO-TR-035 Version 1.0 08/03/18 NWP SAF AMV monitoring: the 8th Analysis Report (AR8) Francis Warrick, James Cotton Met Office, UK NWP SAF AMV monitoring: the 8th Analysis Report (AR8) Francis

More information

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields

Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Derivation of AMVs from single-level retrieved MTG-IRS moisture fields Laura Stewart MetOffice Reading, Meteorology Building, University of Reading, Reading, RG6 6BB Abstract The potential to derive AMVs

More information

Assimilation of Himawari-8 data into JMA s NWP systems

Assimilation of Himawari-8 data into JMA s NWP systems Assimilation of Himawari-8 data into JMA s NWP systems Masahiro Kazumori, Koji Yamashita and Yuki Honda Numerical Prediction Division, Japan Meteorological Agency 1. Introduction The new-generation Himawari-8

More information

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany

THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION. Kenneth Holmlund. EUMETSAT Am Kavalleriesand Darmstadt Germany THE ATMOSPHERIC MOTION VECTOR RETRIEVAL SCHEME FOR METEOSAT SECOND GENERATION Kenneth Holmlund EUMETSAT Am Kavalleriesand 31 64293 Darmstadt Germany ABSTRACT The advent of the Meteosat Second Generation

More information

Reprocessed Satellite Data Products for Assimilation and Validation

Reprocessed Satellite Data Products for Assimilation and Validation Reprocessed Satellite Data Products for Assimilation and Validation Leo van de Berg, Bertrand Theodore EUMETSAT Page 1 Historical Presentation Contents Results of Eumetsat ERA-40 Activities Lessons Learned

More information

Instrument Calibration Issues: Geostationary Platforms

Instrument Calibration Issues: Geostationary Platforms Instrument Calibration Issues: Geostationary Platforms Ken Holmlund EUMETSAT kenneth.holmlund@eumetsat.int Abstract The main products derived from geostationary satellite data and used in Numerical Weather

More information

Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency

Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency Assimilation of Himawari-8 Atmospheric Motion Vectors into the Numerical Weather Prediction Systems of Japan Meteorological Agency Koji Yamashita Japan Meteorological Agency kobo.yamashita@met.kishou.go.jp,

More information

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada

The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada The assimilation of AMSU and SSM/I brightness temperatures in clear skies at the Meteorological Service of Canada Abstract David Anselmo and Godelieve Deblonde Meteorological Service of Canada, Dorval,

More information

Impact of hyperspectral IR radiances on wind analyses

Impact of hyperspectral IR radiances on wind analyses Impact of hyperspectral IR radiances on wind analyses Kirsti Salonen and Anthony McNally Kirsti.Salonen@ecmwf.int ECMWF November 30, 2017 Motivation The upcoming hyper-spectral IR instruments on geostationary

More information

Scatterometer Wind Assimilation at the Met Office

Scatterometer Wind Assimilation at the Met Office Scatterometer Wind Assimilation at the Met Office James Cotton International Ocean Vector Winds Science Team (IOVWST) meeting, Brest, June 2014 Outline Assimilation status Global updates: Metop-B and spatial

More information

ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT

ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT ATMOSPHERIC MOTION VECTORS DERIVED FROM MSG RAPID SCANNING SERVICE DATA AT EUMETSAT Manuel Carranza 1, Arthur de Smet 2, Jörgen Gustafsson 2 1 GMV Aerospace and Defence S.A. at EUMETSAT, Eumetsat-Allee

More information

The satellite winds in the operational NWP system at Météo-France

The satellite winds in the operational NWP system at Météo-France The satellite winds in the operational NWP system at Météo-France Christophe Payan CNRM UMR 3589, Météo-France/CNRS 13th International Winds Workshop, Monterey, USA, 27 June 1st July 2016 Outline Operational

More information

Satellite Radiance Data Assimilation at the Met Office

Satellite Radiance Data Assimilation at the Met Office Satellite Radiance Data Assimilation at the Met Office Ed Pavelin, Stephen English, Brett Candy, Fiona Hilton Outline Summary of satellite data used in the Met Office NWP system Processing and quality

More information

STATUS AND DEVELOPMENT OF OPERATIONAL METEOSAT WIND PRODUCTS. Mikael Rattenborg. EUMETSAT, Am Kavalleriesand 31, D Darmstadt, Germany ABSTRACT

STATUS AND DEVELOPMENT OF OPERATIONAL METEOSAT WIND PRODUCTS. Mikael Rattenborg. EUMETSAT, Am Kavalleriesand 31, D Darmstadt, Germany ABSTRACT STATUS AND DEVELOPMENT OF OPERATIONAL METEOSAT WIND PRODUCTS Mikael Rattenborg EUMETSAT, Am Kavalleriesand 31, D-64295 Darmstadt, Germany ABSTRACT The Operational Meteosat Meteorological Products are produced

More information

IMPROVEMENTS TO EUMETSAT AMVS. Régis Borde, Greg Dew, Arthur de Smet and Jörgen Bertil Gustaffson

IMPROVEMENTS TO EUMETSAT AMVS. Régis Borde, Greg Dew, Arthur de Smet and Jörgen Bertil Gustaffson IMPROVEMENTS TO EUMETSAT AMVS Régis Borde, Greg Dew, Arthur de Smet and Jörgen Bertil Gustaffson BACKGROUND Create a direct link between feature tracked and Height Assignment of AMV. References: Borde

More information

High Latitude Satellite Derived Winds from Combined Geostationary and Polar Orbiting Satellite Data

High Latitude Satellite Derived Winds from Combined Geostationary and Polar Orbiting Satellite Data High Latitude Satellite Derived Winds from Combined Geostationary and Polar Orbiting Satellite Data Brett Hoover Dave Santek, Matt Lazzara, Rich Dworak, Jeff Key, Chris Velden, and Nick Bearson 11 th International

More information

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office

Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Plans for the Assimilation of Cloud-Affected Infrared Soundings at the Met Office Ed Pavelin and Stephen English Met Office, Exeter, UK Abstract A practical approach to the assimilation of cloud-affected

More information

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM

ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM ASSIMILATION EXPERIMENTS WITH DATA FROM THREE CONICALLY SCANNING MICROWAVE INSTRUMENTS (SSMIS, AMSR-E, TMI) IN THE ECMWF SYSTEM Niels Bormann 1, Graeme Kelly 1, Peter Bauer 1, and Bill Bell 2 1 ECMWF,

More information

The role of GPS-RO at ECMWF" ! COSMIC Data Users Workshop!! 30 September 2014! !!! ECMWF

The role of GPS-RO at ECMWF ! COSMIC Data Users Workshop!! 30 September 2014! !!! ECMWF The role of GPS-RO at ECMWF"!!!! COSMIC Data Users Workshop!! 30 September 2014! ECMWF WE ARE Intergovernmental organisation! 34 Member and Cooperating European states! 270 staff at ECMWF, in Reading,

More information

Evaluation of calibration and potential for assimilation of SEVIRI radiance data from Meteosat-8

Evaluation of calibration and potential for assimilation of SEVIRI radiance data from Meteosat-8 EUMETSAT/ECMWF Fellowship Programme, Research Report No. 5 Evaluation of calibration and potential for assimilation of SEVIRI radiance data from Meteosat- Matthew Szyndel, Graeme Kelly, Jean-Noël Thépaut

More information

The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results

The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results The Impact of Satellite Atmospheric Motion Vectors in the U.S. Navy Global Data Assimilation System NWP Results Nancy L. Baker 1, Rolf Langland 1, Patricia M. Pauley 1, Liang Xu 1, Dagmar Merkova 2,3,

More information

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA

DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA DERIVING ATMOSPHERIC MOTION VECTORS FROM AIRS MOISTURE RETRIEVAL DATA David Santek 1, Sharon Nebuda 1, Christopher Velden 1, Jeff Key 2, Dave Stettner 1 1 Cooperative Institute for Meteorological Satellite

More information

NEW APPROACH FOR HEIGHT ASSIGNMENT AND STRINGENT QUALITY CONTROL TESTS FOR INSAT DERIVED CLOUD MOTION VECTORS. P. N. Khanna, S.

NEW APPROACH FOR HEIGHT ASSIGNMENT AND STRINGENT QUALITY CONTROL TESTS FOR INSAT DERIVED CLOUD MOTION VECTORS. P. N. Khanna, S. NEW APPROACH FOR HEIGHT ASSIGNMENT AND STRINGENT QUALITY CONTROL TESTS FOR INSAT DERIVED CLOUD MOTION VECTORS P. N. Khanna, S. Prasad India Meteorological Department, Lodhi Road, New Delhi 110003. ABSTRACT

More information

Satellite data assimilation for Numerical Weather Prediction II

Satellite data assimilation for Numerical Weather Prediction II Satellite data assimilation for Numerical Weather Prediction II Niels Bormann European Centre for Medium-range Weather Forecasts (ECMWF) (with contributions from Tony McNally, Jean-Noël Thépaut, Slide

More information

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08

Assimilation of IASI data at the Met Office. Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Assimilation of IASI data at the Met Office Fiona Hilton Nigel Atkinson ITSC-XVI, Angra dos Reis, Brazil 07/05/08 Thanks to my other colleagues! Andrew Collard (ECMWF) Brett Candy, Steve English, James

More information

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI

PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI PRECONVECTIVE SOUNDING ANALYSIS USING IASI AND MSG- SEVIRI Marianne König, Dieter Klaes EUMETSAT, Eumetsat-Allee 1, 64295 Darmstadt, Germany Abstract EUMETSAT operationally generates the Global Instability

More information

Direct assimilation of all-sky microwave radiances at ECMWF

Direct assimilation of all-sky microwave radiances at ECMWF Direct assimilation of all-sky microwave radiances at ECMWF Peter Bauer, Alan Geer, Philippe Lopez, Deborah Salmond European Centre for Medium-Range Weather Forecasts Reading, Berkshire, UK Slide 1 17

More information

RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA

RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA RECENT ADVANCES TO EXPERIMENTAL GMS ATMOSPHERIC MOTION VECTOR PROCESSING SYSTEM AT MSC/JMA Ryoji Kumabe 1, Yoshiki Kajino 1 and Masami Tokuno 2 1 Meteorological Satellite Center, Japan Meteorological Agency

More information

MODIS- and AVHRR-derived Polar Winds Experiments using the NCEP GDAS/GFS NA10NES

MODIS- and AVHRR-derived Polar Winds Experiments using the NCEP GDAS/GFS NA10NES Proposed Work MODIS- and AVHRR-derived Polar Winds Experiments using the NCEP GDAS/GFS NA10NES4400011 Year 3 First-half Progress Report June 2012 through November 2012 28 December 2012 David Santek, PI

More information

R.C.BHATIA, P.N. Khanna and Sant Prasad India Meteorological Department, Lodi Road, New Delhi ABSTRACT

R.C.BHATIA, P.N. Khanna and Sant Prasad India Meteorological Department, Lodi Road, New Delhi ABSTRACT Improvements in Automated Cloud Motion Vectors ---------------------------------------------- (CMVs) derivation scheme using INSAT VHRR data. ---------------------------------------------- by R.C.BHATIA,

More information

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC

STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC STATUS OF JAPANESE METEOROLOGICAL SATELLITES AND RECENT ACTIVITIES OF MSC Daisaku Uesawa Meteorological Satellite Center, Japan Meteorological Agency Abstract MTSAT-1R is the current operational Japanese

More information

Progress towards better representation of observation and background errors in 4DVAR

Progress towards better representation of observation and background errors in 4DVAR Progress towards better representation of observation and background errors in 4DVAR Niels Bormann 1, Massimo Bonavita 1, Peter Weston 2, Cristina Lupu 1, Carla Cardinali 1, Tony McNally 1, Kirsti Salonen

More information

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency

Masahiro Kazumori, Takashi Kadowaki Numerical Prediction Division Japan Meteorological Agency Development of an all-sky assimilation of microwave imager and sounder radiances for the Japan Meteorological Agency global numerical weather prediction system Masahiro Kazumori, Takashi Kadowaki Numerical

More information

Improved Use of AIRS Data at ECMWF

Improved Use of AIRS Data at ECMWF Improved Use of AIRS Data at ECMWF A.D. Collard, A.P. McNally European Centre for Medium-Range Weather Forecasts, Reading, U.K. W.W. Wolf QSS Group, Inc., NOAA Science Center, 5200 Auth Road, Camp Springs

More information

REPORT ABOUT ENVISAT SCIAMACHY NRT OZONE PRODUCT (SCI RV 2P) FOR JULY August 11, 2005

REPORT ABOUT ENVISAT SCIAMACHY NRT OZONE PRODUCT (SCI RV 2P) FOR JULY August 11, 2005 REPORT ABOUT ENVISAT SCIAMACHY NRT OZONE PRODUCT (SCI RV 2P) Vanda da Costa Bechtold ECMWF, Shinfield Park, Reading, RG2 9AX, United Kingdom, Email: Vanda.Bechtold@ecmwf.int, Tel: 44 8 9499369 August,

More information

Use of ATOVS raw radiances in the operational assimilation system at Météo-France

Use of ATOVS raw radiances in the operational assimilation system at Météo-France Use of ATOVS raw radiances in the operational assimilation system at Météo-France Élisabeth Gérard, Florence Rabier, Delphine Lacroix Météo-France, Toulouse, France Zahra Sahlaoui Maroc-Météo, Casablanca,

More information

Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO

Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO Assimilation of MSG visible and near-infrared reflectivity in KENDA/COSMO Leonhard Scheck1,2, Tobias Necker1,2, Pascal Frerebeau2, Bernhard Mayer2, Martin Weissmann1,2 1) Hans-Ertl-Center for Weather Research,

More information

Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English

Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English Does the ATOVS RARS Network Matter for Global NWP? Brett Candy, Nigel Atkinson & Stephen English Met Office, Exeter, United Kingdom 1. Introduction Along with other global numerical weather prediction

More information

Atmospheric Motion Vectors: Product Guide

Atmospheric Motion Vectors: Product Guide Atmospheric Motion Vectors: Product Guide Doc.No. Issue : : EUM/TSS/MAN/14/786435 v1a EUMETSAT Eumetsat-Allee 1, D-64295 Darmstadt, Germany Tel: +49 6151 807-7 Fax: +49 6151 807 555 Date : 9 April 2015

More information

Tracer quality identifiers for accurate Cloud Motion Wind

Tracer quality identifiers for accurate Cloud Motion Wind Abstract for the Workshop on Wind extraction from operational Meteorological Satellite data Washington DC, 17-19 September 1991 Tracer quality identifiers for accurate Cloud Motion Wind estimates Kenneth

More information