Supplement of Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations

Size: px
Start display at page:

Download "Supplement of Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations"

Transcription

1 Supplement of Atmos. Chem. Phys., 18, , Author(s) This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations Sandip S. Dhomse et al. Correspondence to: Sandip S. Dhomse Douglas Kinnison and Martyn P. Chipperfield The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

2 This document contains additional figures to support those presented in the main document. For discussion of the figures and references see the main text. 1

3 550 Arctic (Mar.) 550 Arctic (Mar.) ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AM3/CM3 HadGM3-ES IPSL MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM median MMM MMM1S SBUV MOD Figure S1. (a) Total column ozone time series (DU) for Arctic (60 N 90 N) in March from 19 individual CCMs for March for the REF-C2 simulations along with observations from the SBUV merged ozone dataset. The MMM, median (MedM) and MMM1S are shown with thick green, blue and red lines, respectively. Light blue shaded region indicates 10th and 90th percentile range. Light green and red regions show 1-σ variability w.r.t. MMM and MMM1S mean lines. (b) Same as (a) but adjusted total ozone time series w.r.t. mean observations. The dashed black line indicates 1980 reference value. 2

4 SH midlat SH midlat 340 ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AM3/CM3 HadGM3-ES IPSL MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM median MMM MMM1S SBUV MOD Figure S2. As Figure S1 but for annual mean total column ozone for SH mid-latitudes (60 S 35 S). 3

5 380 NH midlat NH midlat ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AM3/CM3 HadGM3-ES IPSL MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM median MMM MMM1S SBUV MOD Figure S3. As Figure S1 but for annual mean total column ozone for NH mid-latitudes (35 N 60 N). 4

6 290 Tropics Tropics 240 ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AM3/CM3 HadGM3-ES IPSL MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM median MMM MMM1S SBUV MOD Figure S4. As Figure S1 but for annual mean total column ozone for the tropics (20 S 20 N). 5

7 ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AM3/CM3 HadGM3-ES IPSL MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM median MMM MMM1S SBUV MOD Figure S5. As Figure S1 but for annual mean near-global mean (60 S 60 N) total column ozone. 6

8 360 SH midlat 380 NH midlat SH midlat 380 NH midlat REF-C1 REF-C1SD REF-C2 SBUV MOD Figure S6. MMM1S total column ozone time series (DU) from REF-C1 (blue), REF-C1SD (dark cyan) and REF-C2 (red) simulations for (left) SH mid-latitudes (60 S 35 S) and (right) NH mid-latitudes (35 N 60 N). Dashed black lines show 1980 reference value for a given zonal latitude band. The top row shows the unadjusted modelled values and the bottom row shows the time series adjusted with respect to mean observations. Also shown are merged SBUV observations. 7

9 290 Tropics Tropics REF-C1 REF-C1SD REF-C2 SBUV MOD Figure S7. As Figure S6 but for the tropics (20 S 20 N) and near-global average (60 S 60 N). 8

10 2100 tco return (SEN-C2-fGHG) 2100 tco return (SEN-C2-fN2O) SH mid-lat Tropics NH mid-lat Arctic (Mar) SH mid-lat Tropics NH mid-lat Arctic (Mar) 2100 tco return (SEN-C2-fCH4) 2100 tco return (SEN-C2-RCPCH485) SH mid-lat Tropics NH mid-lat Arctic (Mar) SH mid-lat Tropics NH mid-lat Arctic (Mar) ACCESS CCSR CAM4 CHASER CNRM EMAC-L47 EMAC-L90 GEOS GFDL HadGEM IPSL MRI UMUKCA Figure S8. Estimated MMM1S return dates (red triangles) of total column ozone from the SEN-C2-fGHG, SEN-C2-fN2O, SEN-C2-fCH4 and SEN-C2-CH4RCP85 simulations for different latitude bands. The estimated 1-σ uncertainties are shown with vertical black lines Estimates for individual models are shown with coloured dots. Some individual models do not predict a return of column ozone in the tropics. Return dates from REF-C2 (see Figure 4 in main paper) are shown with grey triangles

11 2100 tco return (SEN-C2-RCP45) 2100 tco return (SEN-C2-RCP85) SH mid-lat Tropics NH mid-lat Arctic (Mar) SH mid-lat Tropics NH mid-lat Arctic (Mar) Figure S9. As Figure S8 but for the SEN-C2-RCP45 and SEN-C2-RCP85 simulations. 10

12 50 hpa O3 (ppm) 50 hpa O3 (ppm) Global (annual) Tropics hpa o3 (ppm) hpa O3 (ppm) 50 hpa O3 (ppm) SH midlat ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AF3/CM HadGEM3-ES MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM MMM1S GOZCARDS Figure S10. Time series of adjusted ozone at 50 hpa from the REF-C2 simulations for Antarctic (60 N 90 N), SH mid-latitudes (60 S 35 S), tropics (20 S 20 N) and near-global (60 S 60 N) mean. The dark red line shows the MMM1S and the shaded region indicates corresponding 1-σ standard deviation. The reference value for year 1980 is shown with dashed black line. Also shown are observations from the GOZCARDS merged dataset. 11

13 5 hpa O3 (ppm) Global (annual) hpa O3 (ppm) SH midlat hpa O3 (ppm) hpa o3 (ppm) 9.0 Tropics hpa O3 (ppm) ACCESS-CCM CCSRNIES CESM1-CAM4 CESM1- CNRM-CM5-3 EMAC-L47MA EMAC-L90MA GEOSCCM GFDL-AF3/CM3 HadGEM3-ES MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT UMUKCA-UCAM MMM1S GOZCARDS Figure S11. As Figure S10 but for 5 hpa. 12

14 hpa Bry (ppt) hpa Bry (ppt) hpa Bry (ppt) ACCESS-CCM CCSRNIES CESM1- CHASER-MIROC CNRM-CM5-3 EMAC-L90MA GEOSCCM HadGEM3-ES MRI-ESM1r1 -UKCA SOCOL3 -CCM IMCAT MMM1S Figure S12. Evolution of inorganic bromine (Bry, ppt) at 5 hpa (top) and 50 hpa (bottom) from the REF-C2 simulations. 13

15 CO2 (ppm) 4 3 CH4 (ppm) RCP6.0 RCP8.5 A1b fixed@ N2O (ppb) Figure S13. Volume mixing ratios (vmrs) of CO 2, CH 4 and N 2O used in the REF-C2 (RCP6.0, red lines), and SEN-C2-RCP8.5 (orange lines) simulations along with the values from the SRES A1b scenario (blue lines). The values for reference year 1960 are shown with green lines. 14

16 CCSRNIES GEOSCCM -UKCA SOCOL IMCAT REF-C2 SEN-C2-fODS SEN-C2-fGHG SEN-C2-fCH4 SEN-C2-fN2O SEN-C2-CH4RCP85 BSVertOzone Figure S14. Evolution of Arctic (March, (60 N 90 N)) stratospheric ozone columns (DU) from selected models for REF-C2, SEN-C2- fods, SEN-C2-fCH4, SEN-C2-fN2O and SEN-C2-CH4RCP85 simulations. Also shown are observations from the merged SBUV dataset. 15

17 CCSRNIES GEOSCCM -UKCA SOCOL IMCAT REF-C2 SEN-C2-fODS SEN-C2-fGHG SEN-C2-fCH4 SEN-C2-fN2O SEN-C2-CH4RCP85 BSVertOzone Figure S15. As Figure S14 but for NH mid-latitudes (35 N 60 N). 16

18 CCSRNIES GEOSCCM UKCA 230 SOCOL IMCAT REF-C2 SEN-C2-fODS SEN-C2-fGHG SEN-C2-fCH4 230 SEN-C2-fN2O SEN-C2-CH4RCP85 BSVertOzone Figure S16. As Figure S14 but for near-global average (60 S 60 N). 17

19 SCO return (senc2fghg)2100 EMAC-L90 mean EMAC-L90CCSR CCSR SCO return (senc2fghg)2100 ACCESS 2100 mean Arctic (Mar.) ACCESS 2100 SCO return (senc2fghg)2100 SCO return (senc2fghg)2100 mean CCSR EMAC-L90 SH midlat ACCESS 2100 EMAC-L90 mean NH midlat ACCESS CCSR 2100 Figure S17. Correlation plots of stratospheric column ozone (SCO) return dates from the SEN-C2-fGHG simulations against SCO return dates from REF-C2 simulations for individual models within four latitude bands. 18

20 SCO return (senc2fn2o)2100 SOCO CCSR GEOS SCO return (senc2fn2o)2100 SOCO GEOS CCSR SH midlat SCO return (senc2fn2o) CCSR SOCO Arctic (Mar.) GEOS 2100 SOCO GEOS SCO return (senc2fn2o) NH midlat CCSR 2100 Figure S18. As Figure S17 but for simulation SEN-C2-fN2O. 19

21 SCO return (senc2fch4)2100 SOCO CCSR GEOS SCO return (senc2fch4)2100 SOCO GEOS CCSR SH midlat SCO return (senc2fch4) SOCO CCSR Arctic (Mar.) GEOS 2100 SOCO GEOS SCO return (senc2fch4) NH midlat CCSR 2100 Figure S19. As Figure S17 but for simulation SEN-C2-fCH4. 20

22 SCO return (senc2ch485) SCO return (senc2ch485) SOCO GEOS 2100 GEOS Arctic (Mar.) SOCO 2100 Figure S20. As Figure S17 but for simulation SEN-C2-CH4RCP85. SCO return (senc2ch485) SCO return (senc2ch485) SOCO GEOS SOCO SH midlat GEOS 2100 NH midlat

Supplementary Material for Estimates of ozone return dates from Chemistry-Climate Model Initiative Simulations

Supplementary Material for Estimates of ozone return dates from Chemistry-Climate Model Initiative Simulations Supplementary Material for Estimates of ozone return dates from Chemistry-Climate Model Initiative Simulations Sandip S. Dhomse 1, Douglas Kinnison 2, Martyn P. Chipperfield 1, Irene Cionni 3, Michaela

More information

Future changes in wintertime stratospheric Arctic variability in CCMI models

Future changes in wintertime stratospheric Arctic variability in CCMI models Future changes in wintertime stratospheric Arctic variability in CCMI models B. Ayarzagüena 1, U. Langematz 1, J. Abalichin 1, H. Akiyoshi 2, M. Michou 3, O. Morgenstern 4 & L. Oman 5 1 Institut für Meteorologie,

More information

Radiative forcing from tropospheric and stratospheric ozone

Radiative forcing from tropospheric and stratospheric ozone Radiative forcing from tropospheric and stratospheric ozone 1850-2100 David Stevenson (The University of Edinburgh) I. Cionni, V. Eyring, J. F. Lamarque, W. J. Randel, F. Wu, G. E. Bodeker, T. G. Shepherd,

More information

More extreme precipitation in the world s dry and wet regions

More extreme precipitation in the world s dry and wet regions More extreme precipitation in the world s dry and wet regions Markus G. Donat, Andrew L. Lowry, Lisa V. Alexander, Paul A. O Gorman, Nicola Maher Supplementary Table S1: CMIP5 simulations used in this

More information

CESM2 (WACCM6): Stratospheric Evaluation

CESM2 (WACCM6): Stratospheric Evaluation CESM2 (WACCM6): Stratospheric Evaluation D. Kinnison, M. Mills, R. Garcia, D. Marsh, A. Gettelman, F. Vitt, S. Glanville, C. Bardeen, S. Tilmes, A. Smith, J-F. Lamarque, L. Emmons, A. Conley, J. Richter,

More information

Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material

Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1002/, 1 2 3 Reconciling the Observed and Modeled Southern Hemisphere Circulation Response to Volcanic Eruptions Supplemental Material Marie C. McGraw

More information

Significant anthropogenic-induced changes. of climate classes since 1950

Significant anthropogenic-induced changes. of climate classes since 1950 Significant anthropogenic-induced changes of climate classes since 95 (Supplementary Information) Duo Chan and Qigang Wu * School of Atmospheric Science, Nanjing University, Hankou Road #22, Nanjing, Jiangsu,

More information

Supplement of Insignificant effect of climate change on winter haze pollution in Beijing

Supplement of Insignificant effect of climate change on winter haze pollution in Beijing Supplement of Atmos. Chem. Phys., 18, 17489 17496, 2018 https://doi.org/10.5194/acp-18-17489-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

More information

The Implication of Ural Blocking on the East Asian Winter Climate in CMIP5 Models

The Implication of Ural Blocking on the East Asian Winter Climate in CMIP5 Models The Implication of Ural Blocking on the East Asian Winter Climate in CMIP5 Models Hoffman H. N. Cheung, Wen Zhou (hncheung-c@my.cityu.edu.hk) City University of Hong Kong Shenzhen Institute Guy Carpenter

More information

Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models

Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2015, VOL. 8, NO. 1, 57 62 Trends of Lower- to Mid-Stratospheric Water Vapor Simulated in Chemistry-Climate Models HU Ding-Zhu 1, HAN Yuan-Yuan 1, SANG Wen-Jun

More information

Supplemental Material

Supplemental Material Supplemental Material Copyright 2018 American Meteorological Society Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided

More information

Supplement of Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015

Supplement of Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015 Supplement of Atmos. Chem. Phys., 17, 13903 13919, 2017 https://doi.org/10.5194/acp-17-13903-2017-supplement Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License.

More information

CCM Modelling : LMDz-Reprobus

CCM Modelling : LMDz-Reprobus CCM Modelling : LMDz-Reprobus Marchand Marion, Slimane Bekki, Franck Lefèvre, François Lott, David Cugnet, Line Jourdain, Perrine Lemmenais, Virginie Poulain, Julien Jumelet, Slimane Bekki, marie-pierre

More information

Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades

Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2277 Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades Masato Mori 1*, Masahiro Watanabe 1, Hideo Shiogama 2, Jun Inoue 3,

More information

Stratospheric Processes And their Role in Climate (SPARC)

Stratospheric Processes And their Role in Climate (SPARC) Stratospheric Processes And their Role in Climate (SPARC) Co-chairs: Joan Alexander (NWRA) Greg Bodeker (Bodeker Scientific) SPARC Office Director: Johannes Staehelin (ETH Zürich) Other SPARC Office staff:

More information

Drylands face potential threat under 2 C global warming target

Drylands face potential threat under 2 C global warming target In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3275 Drylands face potential threat under 2 C global warming target Jianping Huang 1 *, Haipeng Yu 1,

More information

Quantitative performance metrics for stratospheric-resolving chemistry-climate models

Quantitative performance metrics for stratospheric-resolving chemistry-climate models Atmos. Chem. Phys., 8, 5699 5713, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Atmospheric Chemistry and Physics Quantitative performance metrics for

More information

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models

Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE1530 Twenty-first-century projections of North Atlantic tropical storms from CMIP5 models SUPPLEMENTARY FIGURE 1. Annual tropical Atlantic SST anomalies (top

More information

SPARC Assessment of Chemistry Climate Models Chapter 8: Natural Variability of Stratospheric Ozone

SPARC Assessment of Chemistry Climate Models Chapter 8: Natural Variability of Stratospheric Ozone 1 1 1 1 1 1 1 1 0 1 0 1 0 1 SPARC Assessment of Chemistry Climate Models Chapter : Natural Variability of Stratospheric Ozone Lead Authors: Elisa Manzini, Katja Matthes Co-Authors: Christian Blume, Greg

More information

Future freshwater stress for island populations

Future freshwater stress for island populations Future freshwater stress for island populations Kristopher B. Karnauskas, Jeffrey P. Donnelly and Kevin J. Anchukaitis Summary: Top left: Overview map of the four island stations located in the U.S. state

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature11576 1. Trend patterns of SST and near-surface air temperature Bucket SST and NMAT have a similar trend pattern particularly in the equatorial Indo- Pacific (Fig. S1), featuring a reduced

More information

Intensification of landfalling typhoons over the northwest Pacific since the late 1970s

Intensification of landfalling typhoons over the northwest Pacific since the late 1970s SUPPLEMENTARY INFORMATION DOI:.8/NGEO79 Intensifiation of landfalling typhoons over the northwest Paifi sine the late 97s Wei Mei and Shang-Ping Xie Supplementary Figures Lifetime peak intensity (m/s)

More information

Early benefits of mitigation in risk of regional climate extremes

Early benefits of mitigation in risk of regional climate extremes In the format provided by the authors and unedited. DOI: 10.1038/NCLIMATE3259 Early benefits of mitigation in risk of regional climate extremes Andrew Ciavarella 1 *, Peter Stott 1,2 and Jason Lowe 1,3

More information

Supplementary Figure 1 Current and future distribution of temperate drylands. (a b-f b-f

Supplementary Figure 1 Current and future distribution of temperate drylands. (a b-f b-f Supplementary Figure 1 Current and future distribution of temperate drylands. (a) Five temperate dryland regions with their current extent for 1980-2010 (green): (b) South America; (c) North America; (d)

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/1153966/dc1 Supporting Online Material for The Sensitivity of Polar Ozone Depletion to Proposed Geoengineering Schemes Simone Tilmes,* Rolf Müller, Ross Salawitch *To

More information

Changes in the El Nino s spatial structure under global warming. Sang-Wook Yeh Hanyang University, Korea

Changes in the El Nino s spatial structure under global warming. Sang-Wook Yeh Hanyang University, Korea Changes in the El Nino s spatial structure under global warming Sang-Wook Yeh Hanyang University, Korea Changes in El Nino spatial structure Yeh et al. (2009) McPhaden et al. (2009) Why the spatial structure

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12310 We present here two additional Tables (Table SI-1, 2) and eight further Figures (Figures SI-1 to SI-8) to provide extra background information to the main figures of the paper.

More information

Future Projections of the Large Scale Meteorology Associated with California Heat Waves in CMIP5 Models

Future Projections of the Large Scale Meteorology Associated with California Heat Waves in CMIP5 Models 1 2 3 4 5 6 7 Supporting Information for Future Projections of the Large Scale Meteorology Associated with California Heat Waves in CMIP5 Models Erool Palipane 1 and Richard Grotjahn 1* 1 Department of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2988 Hemispheric climate shifts driven by anthropogenic aerosol-cloud interactions Eui-Seok Chung and Brian

More information

Evaluation of CESM1 (WACCM) free-running and specified-dynamics atmospheric composition simulations using global multi-species satellite data records

Evaluation of CESM1 (WACCM) free-running and specified-dynamics atmospheric composition simulations using global multi-species satellite data records Atmos. Chem. Phys. Discuss., https://doi.org/./acp-0- Discussion started: June 0 c Author(s) 0. CC BY.0 License. 0 0 0 Evaluation of CESM (WACCM) free-running and specified-dynamics atmospheric composition

More information

Contents of this file

Contents of this file Geophysical Research Letters Supporting Information for Future changes in tropical cyclone activity in high-resolution large-ensemble simulations Kohei Yoshida 1, Masato Sugi 1, Ryo Mizuta 1, Hiroyuki

More information

Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming

Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming SUPPLEMENTARY INFORMATION DOI: 1.18/NCLIMATE2 Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming Shayne McGregor, Axel Timmermann, Malte F. Stuecker, Matthew H. England,

More information

Impact of Solar and Sulfate Geoengineering on Surface Ozone

Impact of Solar and Sulfate Geoengineering on Surface Ozone Impact of Solar and Sulfate Geoengineering on Surface Ozone Lili Xia 1, Peer J. Nowack 2, Simone Tilmes 3 and Alan Robock 1 1 Department of Environmental Sciences, Rutgers University, New Brunswick, NJ

More information

Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet

Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet Supplementary Figure 1: Time series of 48 N AMOC maximum from six model historical simulations based on different models. For each model, the wavelet analysis of AMOC is also shown; bold contours mark

More information

Beyond IPCC plots. Ben Sanderson

Beyond IPCC plots. Ben Sanderson Beyond IPCC plots Ben Sanderson What assumptions are we making? The Chain of Uncertainty: Heat waves Future Emissions Global Climate Sensitivity Regional Feedbacks Random variability Heat wave frequency

More information

Halogen Chemistry in CAM-CHEM & CCMVal

Halogen Chemistry in CAM-CHEM & CCMVal Halogen Chemistry in CAM-CHEM & CCMVal D. Kinnison, A. Saiz-Lopez, J.F. Lamarque, S. Tilmes, plus A. Gettelman, J. Orlando, S. Schauffler, E. Atlas, and R. Garcia February 12 CCSM CCWG Boulder, Co dkin@ucar.edu

More information

Desert Amplification in a Warming Climate

Desert Amplification in a Warming Climate Supporting Tables and Figures Desert Amplification in a Warming Climate Liming Zhou Department of Atmospheric and Environmental Sciences, SUNY at Albany, Albany, NY 12222, USA List of supporting tables

More information

On-Line Supplementary Material IPCC WGII AR5 Chapter 30

On-Line Supplementary Material IPCC WGII AR5 Chapter 30 Tables Table SM30-1: Table SM30-2: Table SM30-3: Table SM30-4: Percentage area of the Ocean, average primary productivity (SEAWiFS: 4 Sep 1997 30 Nov 2010) and fisheries productivity of key ocean sub-regions

More information

IPCC Chapter 12: Long- term climate change: projections, commitments and irreversibility

IPCC Chapter 12: Long- term climate change: projections, commitments and irreversibility GEF4400 The Earth System Autumn 2015 23.11.2015 IPCC Chapter 12: Long- term climate change: projections, commitments and irreversibility Introduction and Background (from Chapter 10 and 11) Climate Model

More information

Paul W. Stackhouse, Jr., NASA Langley Research Center

Paul W. Stackhouse, Jr., NASA Langley Research Center An Assessment of Actual and Potential Building Climate Zone Change and Variability From the Last 30 Years Through 2100 Using NASA s MERRA and CMIP5 Simulations Paul W. Stackhouse, Jr., NASA Langley Research

More information

Anthropogenic forcing of the Northern Annular Mode in CCMVal 2 models

Anthropogenic forcing of the Northern Annular Mode in CCMVal 2 models JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jd013347, 2010 Anthropogenic forcing of the Northern Annular Mode in CCMVal 2 models O. Morgenstern, 1 H. Akiyoshi, 2 S. Bekki, 3 P. Braesicke,

More information

Chemistry-climate model simulations of recent trends in lower stratospheric temperature and stratospheric residual circulation

Chemistry-climate model simulations of recent trends in lower stratospheric temperature and stratospheric residual circulation JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jd017130, 2012 Chemistry-climate model simulations of recent trends in lower stratospheric temperature and stratospheric residual circulation

More information

Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM)

Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM) Polar Ozone Depletion and Trends as Represented by the Whole Atmosphere Community Climate Model (WACCM) Doug Kinnison 1, Susan Solomon 2, Diane Ivy 2, Mike Mills 1, Ryan Neely III 3, and Anja Schmidt 3

More information

Chapter 3. Radiation. Lead Authors: Victor I. Fomichev & Piers M. Forster

Chapter 3. Radiation. Lead Authors: Victor I. Fomichev & Piers M. Forster Chapter 3 Radiation Lead Authors: Victor I. Fomichev & Piers M. Forster Co-authors: Chiara Cagnazzo, Andreas I. Jonsson, Ulrike Langematz, Eugene Rozanov, Victoria Falaleeva, Boris Fomin, Nathan Gillett,

More information

Supplement to CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model

Supplement to CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model Manuscript prepared for J. Name with version 2.2 of the L A T E X class copernicus discussions.cls. Date: 19 January 212 Supplement to CAM-chem: description and evaluation of interactive atmospheric chemistry

More information

CHAPTER 4. Stratospheric Dynamics. Lead Authors: Neal Butchart & Andrew J. Charlton-Perez

CHAPTER 4. Stratospheric Dynamics. Lead Authors: Neal Butchart & Andrew J. Charlton-Perez CHAPTER 4 Stratospheric Dynamics Lead Authors: Neal Butchart & Andrew J. Charlton-Perez Co-authors: Irene Cionni Steven C. Hardiman Kirstin Krüger Paul Kushner Paul Newman Scott M. Osprey Judith Perlwitz

More information

CAM-Chem Chemical Forecasts

CAM-Chem Chemical Forecasts CAM-Chem Chemical Forecasts D. Kinnison, J-F Lamarque, F. Vitt, S. Tilmes, C. Homeyer, L. Pan, S. Honomichi, J. Luo, E. Apel, R. Hornbrook, & A. Weinheimer (NCAR) A. Saiz-Lopez & R. Fernandez (CISC, Spain)

More information

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone

Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Impact of wind changes in the upper troposphere lower stratosphere on tropical ozone Martin Dameris Deutsches Zentrum für Luft- und Raumfahrt (DLR) Institut für Physik der Atmosphäre, Oberpfaffenhofen

More information

List of Exposure and Dose Metrics

List of Exposure and Dose Metrics List of Exposure and Dose Metrics First approved by the TOAR Steering Committee on July 31, 2015, and revised on June 27, 2016 to add two additional metrics. Following is the list of exposure and dose

More information

The SPARC LOTUS Initiative

The SPARC LOTUS Initiative The SPARC LOTUS Initiative Project Leads: I. Petropavlovskikh S. Godin-Beekmann D. Hubert Group Leads: R. Damadeo V. Sofieva B. Hassler S. Frith and 30+ Contributors CEOS AC-VC-14 Meeting, May 2-4, 2018

More information

Snow occurrence changes over the central and eastern United States under future. warming scenarios

Snow occurrence changes over the central and eastern United States under future. warming scenarios Snow occurrence changes over the central and eastern United States under future warming scenarios Liang Ning 1,2,3* and Raymond S. Bradley 2 1 Key Laboratory of Virtual Geographic Environment of Ministry

More information

BREA Final Results Forum Results from the Canadian Centre for Climate Modelling and Analysis

BREA Final Results Forum Results from the Canadian Centre for Climate Modelling and Analysis BREA Final Results Forum Results from the Canadian Centre for Climate Modelling and Analysis Gregory M. Flato (PI), W. Merryfield, W.S. Lee, M. Sigmond, B. Pal, C. Reader Project Title: FORECASTING OCEAN

More information

Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols

Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols Decreased monsoon precipitation in the Northern Hemisphere due to anthropogenic aerosols Article Supplemental Material Polson, D., Bollasina, M., Hegerl, G. C. and Wilcox, L. J. (214) Decreased monsoon

More information

Nicola Bodini et al. Correspondence to: Nicola Bodini

Nicola Bodini et al. Correspondence to: Nicola Bodini Supplement of Atmos. Meas. Tech., 11, 4291 4308, 2018 https://doi.org/10.5194/amt-11-4291-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

A revival of Indian summer monsoon rainfall since 2002

A revival of Indian summer monsoon rainfall since 2002 In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3348 A revival of Indian summer monsoon rainfall since 2002 Qinjian Jin and Chien Wang* Center for Global

More information

Two Types of California Central Valley Heat Waves

Two Types of California Central Valley Heat Waves Two Types of California Central Valley Heat Waves Virgin River junction with Orderville Canyon UT R. Grotjahn Richard Grotjahn and Yun-Young Lee University of California Davis Outline 1. Introduction Region

More information

Understanding the Relation between V PSC and Arctic Ozone Loss

Understanding the Relation between V PSC and Arctic Ozone Loss Understanding the Relation between V PSC and Arctic Ozone Loss Neil Harris European Ozone Research Coordinating Unit Department of Chemistry, University of Cambridge Ralph Lehmann, Markus Rex, Peter von

More information

AMIP-type horizontal resolution experiments with NorESM. Øyvind Seland, Trond Iversen, Ivar Seierstad

AMIP-type horizontal resolution experiments with NorESM. Øyvind Seland, Trond Iversen, Ivar Seierstad AMWG meeting 10th-12th February 2014 AMIP-type horizontal resolution experiments with NorESM Øyvind Seland, Trond Iversen, Ivar Seierstad Motivation: For given a computer resource, ESMs need to balance

More information

S16. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 2014 BOREAL SPRING EAST AFRICAN DROUGHT

S16. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 2014 BOREAL SPRING EAST AFRICAN DROUGHT S6. ASSESSING THE CONTRIBUTIONS OF EAST AFRICAN AND WEST PACIFIC WARMING TO THE 204 BOREAL SPRING EAST AFRICAN DROUGHT Chris Funk, Shraddhanand Shukla, Andy Hoell, and Ben Livneh This document is a supplement

More information

The importance of ENSO phase during volcanic eruptions for detection and attribution

The importance of ENSO phase during volcanic eruptions for detection and attribution Geophysical Research Letters Supporting Information for The importance of ENSO phase during volcanic eruptions for detection and attribution Flavio Lehner 1, Andrew P. Schurer 2, Gabriele C. Hegerl 2,

More information

SST forcing of Australian rainfall trends

SST forcing of Australian rainfall trends SST forcing of Australian rainfall trends www.cawcr.gov.au Julie Arblaster (with thanks to David Karoly & colleagues at NCAR and BoM) Climate Change Science Team, Bureau of Meteorology Climate Change Prediction

More information

Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why

Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why Math, Models, and Climate Change How shaving cream moved a jet stream, and how mathematics can help us better understand why Edwin P. Gerber Center for Atmosphere and Ocean Science Courant Institute of

More information

Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top

Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top Supplementary Figure 1 A figure of changing surface air temperature and top-1m soil moisture: (A) Annual mean surface air temperature, and (B) top 1-m soil moisture averaged over California from CESM1.

More information

Chapter 6. Stratospheric Chemistry. Lead Authors: Martyn Chipperfield & Douglas Kinnison

Chapter 6. Stratospheric Chemistry. Lead Authors: Martyn Chipperfield & Douglas Kinnison Chapter Stratospheric Chemistry Lead Authors: Martyn Chipperfield & Douglas Kinnison Co-Authors: Slimane Bekki Huisheng Bian Christoph Brühl Tim Canty Irene Cionni Sandip Dhomse Lucien Froidevaux Ryan

More information

The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun

The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun The Response of ENSO Events to Higher CO 2 Forcing: Role of Nonlinearity De-Zheng Sun, Jiabing Shuai, and Shao Sun CIRES, University of Colorado & Earth System Research Laboratory, NOAA http://www.esrl.noaa.gov/psd/people/dezheng.sun/

More information

Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes

Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes VOLUME 23 J O U R N A L O F C L I M A T E 15 OCTOBER 2010 Chemistry Climate Model Simulations of Twenty-First Century Stratospheric Climate and Circulation Changes NEAL BUTCHART, a I. CIONNI, b V. EYRING,

More information

Grey swan tropical cyclones

Grey swan tropical cyclones Grey swan tropical cyclones Ning Lin 1* and Kerry Emanuel 2 1 Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA 2 Department of Earth, Atmospheric, and Planetary

More information

Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation

Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation Comparisons of IR Sounder and COSMIC Radio Occultation Temperatures: Guidance for CrIS NUCAPS Validation Michelle Feltz, Robert Knuteson, Lori Borg, Steve Ackerman, Dave Tobin UW Madison SSEC / CIMSS 02Nov2015

More information

Geophysical Research Letters. Supporting Information for. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front

Geophysical Research Letters. Supporting Information for. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front Geophysical Research Letters Supporting Information for Ozone-induced climate change propped up by the Southern Hemisphere oceanic front Authors and affiliations Fumiaki Ogawa, Geophysical Institute, University

More information

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21" 22" 23" 24" 25" 26" 27" 28" 29" 30" 31" 32" 33" 34" 35"

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 " " 3" " 5" 6" 7" 8" 9" " " " 3" " 5" 6" 7" 8" 9" " " " 3" " 5" 6" 7" 8" 9" 3" 3" 3" 33" 3" 35" Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP) Supplemental Online

More information

Introduction to climate modelling: Evaluating climate models

Introduction to climate modelling: Evaluating climate models Introduction to climate modelling: Evaluating climate models Why? How? Professor David Karoly School of Earth Sciences, University of Melbourne Experiment design Detection and attribution of climate change

More information

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications

Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications Aura Microwave Limb Sounder (MLS) ozone profile data record characteristics, quality and applications A presentation for the 2016 meeting of the Committee on Earth Observation Satellites (COES) Atmospheric

More information

Supplement of Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models

Supplement of Future snowfall in the Alps: projections based on the EURO-CORDEX regional climate models Supplement of The Cryosphere, 12, 1 24, 2018 https://doi.org/10.5194/tc-12-1-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of Future

More information

CMIP5 multimodel ensemble projection of storm track change under global warming

CMIP5 multimodel ensemble projection of storm track change under global warming JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012jd018578, 2012 CMIP5 multimodel ensemble projection of storm track change under global warming Edmund K. M. Chang, 1 Yanjuan Guo, 2 and Xiaoming

More information

Stratospheric Change and its Role for Climate Prediction (SHARP): A contribution to SPARC

Stratospheric Change and its Role for Climate Prediction (SHARP): A contribution to SPARC Stratospheric Change and its Role for Climate Prediction (SHARP): A contribution to SPARC U. Langematz, Freie Universität Berlin, Germany (ulrike.langematz@met.fu-berlin.de) and the SHARP consortium 32

More information

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models

Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models GEOPHYSICAL RESEARCH LETTERS Supporting Information for Relation of the double-itcz bias to the atmospheric energy budget in climate models Ori Adam 1, Tapio Schneider 1,2, Florent Brient 1, and Tobias

More information

NetCDF, NCAR s climate model data, and the IPCC. Gary Strand NCAR/NESL/CGD

NetCDF, NCAR s climate model data, and the IPCC. Gary Strand NCAR/NESL/CGD NetCDF, NCAR s climate model data, and the IPCC Gary Strand NCAR/NESL/CGD NCAR s climate model data A bit of history... 1960s - 1990s Self-designed self-implemented binary formats 1990s-2000s netcdf-3

More information

Impacts of modes of climate variability, monsoons, ENSO, annular modes

Impacts of modes of climate variability, monsoons, ENSO, annular modes Impacts of modes of climate variability, monsoons, ENSO, annular modes Iracema Fonseca de Albuquerque Cavalcanti National Institute for Space Research INPE Modes of variability- preferred patterns of variability.

More information

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols

Decadal shifts of East Asian summer monsoon in a climate. model free of explicit GHGs and aerosols Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols Renping Lin, Jiang Zhu* and Fei Zheng International Center for Climate and Environment Sciences, Institute

More information

Sensitivity of climate simulations to low-level cloud feedbacks

Sensitivity of climate simulations to low-level cloud feedbacks Sensitivity of climate simulations to low-level cloud feedbacks C. Roberto Mechoso 1, Timothy Myers 1 and Mike DeFlorio 2 1 U. California, Los Angeles, USA 2 NASA/Caltech Jet Propulsion Laboratory, USA

More information

The Interaction between Climate Forcing and Feedbacks From the global scale to the process level

The Interaction between Climate Forcing and Feedbacks From the global scale to the process level The Interaction between Climate Forcing and Feedbacks From the global scale to the process level A. Gettelman (NCAR), L. Lin (U. Lanzhou), B. Medeiros, J. Olson (NCAR) The interaction of Forcing & Feedbacks

More information

High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes

High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes High-Resolution MPAS Simulations for Analysis of Climate Change Effects on Weather Extremes ALLISON MICHAELIS, GARY LACKMANN, & WALT ROBINSON Department of Marine, Earth, and Atmospheric Sciences, North

More information

Simulation of Polar Ozone Depletion: An Update

Simulation of Polar Ozone Depletion: An Update Simulation of Polar Ozone Depletion: An Update Image taken from www.zmescience.com D. Kinnison (NCAR), S. Solomon (MIT), and J. Bandoro (MIT) February 17, 2015 WACCM Working Group Meeting, Boulder Co.

More information

Contribution from GOME on the linkage between solar activity and climate

Contribution from GOME on the linkage between solar activity and climate Contribution from GOME on the linkage between solar activity and climate Mark Weber Institute of Environmental Physics (IUP), University Bremen (UB) www.iup.physik.uni-bremen.de/gome weber@uni-bremen.de

More information

HTAP-2 analysis for the Arctic

HTAP-2 analysis for the Arctic Institute for Climate and Atmospheric Science SCHOOL OF EARTH AND ENVIRONMENT Photo: Chuck Brock, NOAA. HTAP-2 analysis for the Arctic Steve R. Arnold 1, Louisa K. Emmons 2, Kathy S. Law 3, Sarah A. Monks

More information

Anthropogenic forcing fingerprint on the tropical Pacific sea level trend pattern from the CMIP5 simulations of the XXI st century

Anthropogenic forcing fingerprint on the tropical Pacific sea level trend pattern from the CMIP5 simulations of the XXI st century Anthropogenic forcing fingerprint on the tropical Pacific sea level trend pattern from the CMIP5 simulations of the XXI st century Benoît t Meyssignac 1, David Salas y Melia Anny Cazenave 1 1 LEGOS, CNRM/Météo

More information

Response of the North Atlantic jet and its variability to increased greenhouse gasses in the CMIP5 models

Response of the North Atlantic jet and its variability to increased greenhouse gasses in the CMIP5 models Response of the North Atlantic jet and its variability to increased greenhouse gasses in the CMIP5 models 1,3 Lorenzo Polvani 2 Dennis Hartman 3 1 Lamont-Doherty Earth Observatory 2 Columbia University

More information

Linkages between Arctic sea ice loss and midlatitude

Linkages between Arctic sea ice loss and midlatitude Linkages between Arctic sea ice loss and midlatitude weather patterns Response of the wintertime atmospheric circulation to current and projected Arctic sea ice decline Gudrun Magnusdottir and Yannick

More information

Impacts of historical ozone changes on climate in GFDL-CM3

Impacts of historical ozone changes on climate in GFDL-CM3 Impacts of historical ozone changes on climate in GFDL-CM3 Larry Horowitz (GFDL) with: Vaishali Naik (GFDL), Pu Lin (CICS), and M. Daniel Schwarzkopf (GFDL) WMO (2014) Figure ADM 5-1 1 Response of tropospheric

More information

The role of ozone forcing on climate models

The role of ozone forcing on climate models San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2009 The role of ozone forcing on climate models Sium Tesfai Gebremariam Follow this and additional

More information

SC-WACCM! and! Problems with Specifying the Ozone Hole

SC-WACCM! and! Problems with Specifying the Ozone Hole SC-WACCM! and! Problems with Specifying the Ozone Hole R. Neely III, K. Smith2, D. Marsh,L. Polvani2 NCAR, 2Columbia Thanks to: Mike Mills, Francis Vitt and Sean Santos Motivation To design a stratosphere-resolving

More information

Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models

Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models Low-level wind, moisture, and precipitation relationships near the South Pacific Convergence Zone in CMIP3/CMIP5 models Matthew J. Niznik and Benjamin R. Lintner Rutgers University 25 April 2012 niznik@envsci.rutgers.edu

More information

Large divergence of satellite and Earth system model estimates of global terrestrial CO 2 fertilization

Large divergence of satellite and Earth system model estimates of global terrestrial CO 2 fertilization Large divergence of satellite and Earth system model estimates of global terrestrial CO 2 fertilization 4 5 W. Kolby Smith 1,2, Sasha C. Reed 3, Cory C. Cleveland 1, Ashley P. Ballantyne 1, William R.L.

More information

Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements

Stratospheric ozone loss in the Arctic winters between 2005 and 2013 derived with ACE-FTS measurements Stratospheric ozone loss in the Arctic winters between 0 and 13 derived with ACE-FTS measurements Debora Griffin 1, Kaley A. Walker 1, 2, Ingo Wohltmann 3, Sandip S. Dhomse 4,, Markus Rex 3, Martyn P.

More information

Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics

Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010jd013884, 2010 Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics M. I. Hegglin, 1 A. Gettelman, 2 P. Hoor,

More information

Supplement of Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance

Supplement of Evaluation of the CMIP5 models in the aim of regional modelling of the Antarctic surface mass balance Supplement of The Cryosphere, 9, 2 22, 25 http://www.the-cryosphere.net/9/2/25/ doi:94/tc-9-2-25-supplement Author(s) 25. CC Attribution. License. Supplement of Evaluation of the CMIP5 models in the aim

More information

The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations

The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura MLS observations JOURNAL OF GEOPHYSICAL RESEARCH: ATMOSPHERES, VOL. 118, 1563 1576, doi:10.2/jgrd.181, 2013 The contributions of chemistry and transport to low arctic ozone in March 2011 derived from Aura observations

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI:.8/NCLIMATE76 Supplementary information for Changes in South Pacific rainfall bands in a warming climate Matthew J. Widlansky, Axel Timmermann,, Karl Stein, Shayne McGregor,

More information

On the ability of CMIP3 and CMIP5 models in representing Caribbean current climate

On the ability of CMIP3 and CMIP5 models in representing Caribbean current climate On the ability of CMIP3 and CMIP5 models in representing Caribbean current climate Sullyandro Oliveira Guimarães sullyandro@gmail.com Alexandre Araújo Costa Domingo Cassain Sales Universidade Estadual

More information

Correction to Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models

Correction to Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2006jc003949, 2006 Correction to Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate

More information