Cherenkov Radiation and RICH Detectors

Size: px
Start display at page:

Download "Cherenkov Radiation and RICH Detectors"

Transcription

1 Cherenkov Radiation and RICH Detectors Neville Harnew * HT 2016 Basic expression of Ch radiation History of Ch radiation and the RICH What is a RICH? Physics for which you need a RICH Ingredients of a RICH Illustrative RICHes geometry, radiators, photodetectors DELPHI BaBar DIRC LHCb Large scale RICH systems: Super-K Amanda / Icecube Pierre Auger Epilogue: a very quick look at transition radiation 1 * With thanks to Guy Wilkinson

2 History of Cherenkov Radiation Discovery : Pavel Cherenkov 1936 Radiation seen when uranyl salts exposed to radium source. Explanation: Tamm and Frank 1937 Experimental exploitation in HEP pioneered by Cherenkov himself Cherenkov: (Cherenkov, Tamm, Frank: Nobel Prize 1958) 2

3 Cherenkov Radiation in a Nutshell Occurs when the speed of a charged particle is greater than the speed of light in the medium Both a threshold and thereafter, an Fundamental Cherenkov relation: angular dependence up to saturation (β=1) Frank-Tamm relation: N γ = no. of photons; E = Photon energy; L=radiator length; Z = particle charge Determination of N γ requires an integration over energy range acceptance 3 So number of photons will increase with velocity (up to saturation)

4 RICH : Ring Imaging Cherenkov Fathers of the RICH Cherenkov : 1936 discovery Arthur Roberts: first to propose exploiting ϑ c Tom Ypsilantis: driving force behind practical RICH

5 What is a RICH? Measurement of β from RICH, together with p, from tracking system, allows mass, and hence PID to be determined. This is an excellent way of separating π from kaons and protons The simplest way to exploit Cherenkov radiation is to choose n such that heavy particles do not emit light. Threshold Cherenkov counter (not a RICH!) But if we want to do better, or if momentum is far from monochromatic, then we need to measure ϑ C. We have to image the ring. This is a RICH 5

6 Experiments which need Hadron ID B physics CP violation studies Hadron spectroscopy/exotic searches Large volume neutrino detectors (special case see later) Many other experiment would benefit (eg ATLAS/CMS), but they often have other priorities for the space! 6

7 B (& D) Physics Requirements for PID B physics CP violation experiments perform exclusive reconstruction of final states, with & without kaons (and protons). Hadron PID mandatory. eg. selection of B h + h - - below is an LHCb simulation study Another example: kaon flavour tagging essential in CP measurements 7

8 B (& D) Physics Requirements for PID Suppress background from combinatorics. PID allows much cleaner reconstruction of charm (and B) mesons D φ π Without PID With PID CLEO III D s φ π 8

9 Ingredients of a RICH We need a radiator, a mirror and a photon detector. Why do we need mirrors? 1. Often to take light out of detector acceptance 2. Mirrors focus light. Without mirrors we would have a splodge. But sometimes it is true we can survive without mirrors 9

10 Proximity Focusing : no mirrors If radiator is sufficiently narrow in extent, then light which emerges will be a ring, rather than a splodge. 16 cm Photon Detector Pure N 2 Charged Particle Cherenkov Photon LiF Radiator CLEO III RICH 20 µm wires CH +TEA 4 CaF Window mm Reinforcing G10 Rod Fibreglass Siderail This is proximity focusing. Works with solid and liquid radiators, where we get plenty of photoelectrons. Photon Detectors LiF Radiators 82 cm 101 cm 10

11 Considerations in Building a RICH Want to optimise ring resolution. Ring resolution determines how far in momentum we have PID. σ σ Contributions to ϑ C : Emission point error (how well the focusing works) Detection point error (the spatial resolution of the photodetector) Chromatic error see next slide. N pe optimised through radiator choice & length, and photodetector performance. 11

12 Chromatic Dispersion A significant source of uncertainty in the Cherenkov angle determination is that of chromatic dispersion. Refractive index varies with wavelength/photon energy, and hence so will ϑ c Control this effect by limiting wavelength. Do this with choice of photodetector technology &/or filters. Visible light preferable to U-V, although many U-V RICHes in use! 12

13 An untraviolet RICH: DELPHI ( ) OMEGA, DELPHI & SLD were the first experiments to use RICHes in anger. Provided PID from low p up to 25 GeV or so. 13

14 DELPHI RICH the principle Very nice! 14

15 DELPHI RICH the reality 3 fluid system, mirrors and HV shoehorned into 70cm (inaccessible) gap Gas radiator C 5 F 12 Mirrors Photosensitive (TMAE) drift volume MWPCs Liquid radiator C 6 F 14 AAgghhhh, the horror! 15

16 BaBar Detector of Internally Reflected Cherenkov Light (DIRC) DIRC radiators cover: 94% azimuth, 83% c.m. polar angle 16

17 BaBar DIRC BaBar PID requirements: π-k separation up to 4 GeV Low track density Must be fast (bx every 4 ns) Severe space and material constraints PMTs provide adequate resolution DIRC an ideal solution! 17

18 DIRC RECONSTRUCTION DIRC Ring images: reflection ambiguities up to 16 (θ c, φ c ) ambiguities per PMT hit, Cherenkov ring images are distorted: complex, disjoint images 18

19 DIRC Performance N pe and resolution π-k separation vs momentum σ( θ c, ) = 2.4 mrad 19

20 LHCb: a two RICH (3 radiator) detector 20

21 Why RICH? Why 3 radiators? Physics requirements, and kinematics of b production, mean there is a big range in the momentum of the hadrons we wish to identify Momentum Only suitable PID technique is RICH. Even then, three radiators are needed: Low p: aerogel ; central p: C 4 F 10 ; high p: CF 4. Span 2<p<100 GeV/c 21

22 LHCb RICH 1: a two-in-one detector Aerogel Spherical Mirror, tilted at 0.3 rad to focus rings and to keep photodetectors outside acceptance Gas volume Flat Mirror Photodetectors, enclosed in magnetic shielding box (not shown) to protect vs fringe field of dipole magnet 22

23 Aerogel as a RICH Radiator Aerogel: a low density form a quartz. Refractive index Well suited to low momentum π-k separation. Used extensively in threshold counters, but not in RICHes C=0.006 μm 4 cm -1 4 cm thick tile The problem of Rayleigh scattering: T = A e (- C t / λ 4 ) Scattering of photons limits transmission at low wavelength. Scattered photons background. Aim for as clear samples as possible, which means low values of C (= clarity coefficient ) 23

24 LHCb RICH: Hybrid Photo-Diodes (HPDs) Good single photon efficiency (~30% max) Sensitivity in visible Capacity to cover large area (several m 2 ) Good spatial resolution (order mm 2 ) High rate capabilities 24

25 Particle ID reconstruction Global event likelihood algorithm (particle ID algorithm fits the event as a whole in both RICHes). Likelihood function includes expected contributions from signal plus background for every pixel. IoP Tyndel-fest 1 st July 2011, RAL Neville Harnew 25

26 Cherenkov angle vs momentum Using isolated rings IoP Tyndel-fest 1 st July 2011, RAL Neville Harnew 26

27 PID calibration samples D from D* Κ s Λ Calibration data give unique π/k/p samples allow PID performance in efficiency and purity to be evaluated with data IoP Tyndel-fest 1 st July 2011, RAL Neville Harnew 27

28 Large water volume neutrino detectors Examples: SNO Super-Kamiokande 50 k ton H km underground Cherenkov rings are an ideal technique for detecting ν μ, e 28

29 Cherenkov Rings in Super-K Cherenkov light a perfect signature of a neutrino interaction ν e in water. μ e No momentum measurement, so PID performed from sharpness of ring. Timing response of PMTs necessary to determine particle direction. 29

30 Oh dear, oh dear! 30

31 Antartica 31

32 Ice Cube: a Cherenkov Counter for Studying High Energy Neutrinos 32

33 33

34 Hit Multiplicity Energy Measurement Upgoing muons from H.E. neutrino interactions. E µ =10 TeV, 90 hits E µ =6 PeV, 1000 hits 34

35 Pierre Auger Search for Ultra High Energy Cosmic Rays Knee Fluorescence detectors? Water Cherenkov Detectors 35

36 Communications antenna GPS antenna Electronics enclosure Solar panels Battery box 3 nine inch photomultiplier tubes Plastic tank with 12 tons of water 36

37 RICH Conclusions In the olden days, RICHes were tricky! Very often this technique is criticised as being too difficult and not reliable. We admit that in some senses this is true But today we know how to build them: B Physics Experiments Spectroscopy Atmospheric neutrinos Tom Ypsilantis Cherenkov detection is a vital tool in armoury of experimental HEP: RICH detectors, neutrino detectors, cosmic rays 37

38 Epilogue: a very superficial look at transition radiation detectors What is transition radiation and what is its use in HEP? Brief example: ATLAS TRT For more information: Boris Dolgoshein, Transition Radiation Detectors, Nuclear Instruments and Methods A326 (1993)

39 Basics of Transition Radiation Transition radiation emitted when particle moves across interface of 2 media with different dielectric constants (predicted in 1946 by Ginzburg and Frank) Consider ultra-relativistic particle passing through thin foil of material (1) in environment of material (2), then differential distribution of radiation is: E TR is energy of radiation; ω is angular frequency; ω p is plasma frequency ; Θ is angle of emission. Φ 1 is phase angle, due to interference between boundaries. Characteristics of transition radiation: 1) Forward peaked 2) X-rays 3) Total energy radiated proportional to γ! 39

40 Transition Radiation & HEP Applications Dependence on γ makes TR an attractive method of PID, particularly for discriminating between electrons and hadrons. Used for non-destructive electron identification (cf. calorimeter). Works over wide momentum range. Experimental challenges: 1) Radiation very feeble. So require many foils (usually lithium or polyethelene) 2) Forward peaking means that almost always X-rays and primary particle are seen by same detector. Generally one detects particle de/dx and TR together. So must distinguish sum of energy from de/dx alone, or look for clusters specifically associated with absorption of the X-rays. 40

41 ATLAS Transition Radiation Tracker Part of the ATLAS Inner Detector. Provides combined tracking, with standalone pattern recognition and electron identification. Layers of xenon-filled straw tubes interleaved with polypropylene foils. Can suppress pions by a factor of about 100, for 90% electron eff. 41

42 SPARE SLIDES 42

43 TMAE / What was tough about DELPHI What is this TMAE stuff? Tetrakis dimethylamine ethylene Glows sickly green on contact with oxygen Photo-sensitive ( photo-ionizing ) in the UV Some challenges of the DELPHI RICH Very limited and inaccessible space for 3 fluid system and mirrors. Need to keep gas radiator at 40 degrees to stop it condensing, whereas TMAE kept at 28 degrees (to optimise absorption length) Liberated photoelectrons which have to drift 1.5 m (TPC technique) Unsurprisingly, took a long time to commission. Not a plug and play detector. Many crises along the way. But when working it worked a treat! 43

44 DIRC RECONSTRUCTION Time information provides powerful tool to reject accelerator and event related background. Calculate expected arrival time of Cherenkov photon based on track TOF photon propagation in radiator bar and in water σ( t) = 1.7 nsec t: difference between measured and expected arrival time ± 300 nsec trigger window ± 8 nsec t window (~ background hits/event) (1-2 background hits/sector/event) t (nsec) 44

45 Belle Cherenkov Counter: not strictly a RICH! Cherenkov technique allows hadron PID even when ring not imaged merely look for presence/absence of light. No light means heavy particle. ( veto or threshold mode) Amount of light seen can still be exploited. This a viable approach if we do not need to cover a large range in p! 45

46 HPDs and Testbeam Results 46

47 Photodetectors for Ice Cube optical sensor 10 inch Hamamatsu R-7081 records timestamps digitizes waveforms penetrator pressure sphere optical gel HV board flasher board DOM main board delay board PMT mu metal cage transmits to surface at request via digital communications can do local coincidence triggering design requirement Noise rate ~1 khz SN monitoring within our Galaxy 47

48 AMS TRD Purpose: to look for positrons and suppress proton background by factor of To be achieved by combined TRD / ECAL system. 20 layers of polypropylene radiator and proportional straw tubes (Xe) 90% e-id efficiency for 0.1% contamination 48

Cherenkov Radiation and RICH Detectors

Cherenkov Radiation and RICH Detectors Cherenkov Radiation and RICH Detectors Basic expression of Ch radiation History of the Ch radiation and the RICH What is a RICH? Physics for which you need a RICH Ingredients of a RICH Illustrative RICHes

More information

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria

7 Particle Identification. Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7 Particle Identification Detectors for Particle Physics Manfred Krammer Institute of High Energy Physics, Vienna, Austria 7.0 Content 7.1 Methods for Particle Identification 7.2 Mass of Charged Particles

More information

An Overview of RICH Detectors From PID to Velocity Spectrometers

An Overview of RICH Detectors From PID to Velocity Spectrometers An RICH Detectors From PID to Velocity Spectrometers, January 29, 2008 Goal - a broad overview for this afternoon s session I. Introduction II. Recent RICH history. A review of some experiments and their

More information

Particle Detectors A brief introduction with emphasis on high energy physics applications

Particle Detectors A brief introduction with emphasis on high energy physics applications Particle Detectors A brief introduction with emphasis on high energy physics applications TRIUMF Summer Institute 2006 July 10-21 2006 Lecture I measurement of ionization and position Lecture II scintillation

More information

Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created 9 April 2010)

Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created 9 April 2010) Physics Notebook - 2010 Steve Sekula's Analysis Notebook Physics Notebook - 2010 Steve Sekula's Analysis Notebook Guest Lecture PHY 7361: Harnessing Cherenkov Radiation SteveSekula, 13 April 2010 (created

More information

Status of the LHCb RICH and hadron particle identification

Status of the LHCb RICH and hadron particle identification Status of the LHCb RICH and hadron particle identification M. Adinolfi University of Oxford On behalf of the LHCb collaboration (with many thanks to all the people whose presentations have been n hacked)

More information

Lecture 4 Calorimetry. Lecture 5a - Particle Identification. Lecture 5b - Detector Systems/ Design

Lecture 4 Calorimetry. Lecture 5a - Particle Identification. Lecture 5b - Detector Systems/ Design Outline Lecture - Introduction Lecture - Tracking Detectors Lecture 3 - Scintillation and Photodetection Lecture 4 Calorimetry Lecture 5a - Particle Identification C. Joram, L. Ropelewski L. Ropelewski,

More information

Particle Identification of the LHCb detector

Particle Identification of the LHCb detector HCP 2005 Particle Identification of the LHCb detector Ann.Van.Lysebetten@cern.ch on behalf of the LHCb collaboration CERN 5th July 2005 The LHCb experiment : introduction precision measurements of CP violation

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Transition radiation detectors

Transition radiation detectors Particle Identification de/dx measurement Time of flight Cherenkov detectors Κ π µ p Transition radiation detectors Christian Joram V/ Particle Identification Particle Identification Particle identification

More information

Cherenkov Detectors in Particle Physics. Brad Wogsland University of Tennessee

Cherenkov Detectors in Particle Physics. Brad Wogsland University of Tennessee Cherenkov Detectors in Particle Physics Brad Wogsland University of Tennessee Outline Cherenkov light RICH detectors CRID detectors The DIRC Design & performance Potential for use in Future experiments

More information

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015

Kaon Identification at NA62. Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Kaon Identification at NA62 Institute of Physics Particle, Astroparticle, and Nuclear Physics groups Conference 2015 Francis Newson April 2015 Kaon Identification at NA62 K πνν NA48 and NA62 K + π + νν

More information

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID

Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Particle Identification at a super B Factory. FRASCATI WORKSHOP DISCUSSION ON PID Do no harm! ( The Hippocratic oath of detector designers, especially for those outside you ). Keep a minimum thickness

More information

BaBar DIRC in SoLID. P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013

BaBar DIRC in SoLID. P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013 BaBar DIRC in SoLID P. Nadel-Turonski, Z. Zhao, C. Hyde... SoLID bi-weekly meeting, January 15, 2013 1 Emerging opportunity 1. BaBar DIRC suddenly becomes available in December 2012 SuperB (next generation

More information

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Peter Križan University of Ljubljana and J. Stefan Institute Contents Motivation and requirements BURLE MCP-PMT Beam test results

More information

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors

The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors The Factors That Limit Time Resolution for Photon Detection in Large Cherenkov Detectors Kate Scholberg, Duke University Chicago, April 2011 OUTLINE - Overview/physics motivation - Event reconstruction

More information

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511

The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 The HERMES Dual-Radiator Ring Imaging Cerenkov Detector N.Akopov et al., Nucl. Instrum. Meth. A479 (2002) 511 Shibata Lab 11R50047 Jennifer Newsham YSEP student from Georgia Institute of Technology, Atlanta,

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can be described for moderately

More information

RICH detectors for LHCb

RICH detectors for LHCb RICH detectors for LHCb Tito Bellunato INFN Milano-Bicocca On behalf of the LHCb RICH collaboration 10th International Conference on Instrumentation for Colliding Beam Physics 10th International Conference

More information

Detectors for Particle Physics. Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov

Detectors for Particle Physics. Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov Detectors for Particle Physics Lecture 2: Drift detectors Muon detectors MWPC, CSC, RPC, TRT, TPC, Cherenkov Outline Lecture 1: Collider detectors Charged particles in a magnetic field Silicon detectors

More information

7. Particle identification

7. Particle identification 7. Particle identification in general, momentum of a particle measured in a spectrometer and another observable is used to identity the species velocity time-of-flight Cherenkov threshold transition radiation

More information

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy

High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter. F. Pilo for the AMS-02 ECAL Group INFN Sezione di Pisa, Italy Frascati Physics Series Vol. 58 (2014) Frontier Objects in Astrophysics and Particle Physics May 18-24, 2014 High-energy Gamma Rays detection with the AMS-02 electromagnetic calorimeter F. Pilo for the

More information

Particle Energy Loss in Matter

Particle Energy Loss in Matter Particle Energy Loss in Matter Charged particles, except electrons, loose energy when passing through material via atomic excitation and ionization These are protons, pions, muons, The energy loss can

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors 20th February 2007 Fergus Wilson, RAL 1 How do we detect Particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons R. Pestotnik a, H. Chagani a, R. Dolenec a, S. Korpar a,b, P. Križan a,c, A. Stanovnik a,c a J. Stefan Institute, b University

More information

What detectors measure

What detectors measure What detectors measure As a particle goes through matter, it releases energy Detectors collect the released energy and convert it to electric signals recorded by DAQ Raw event record is a collection of

More information

Status of the LHCb RICH detector and the HPD

Status of the LHCb RICH detector and the HPD Beauty 2005 Status of the LHCb RICH detector and the HPD Tito Bellunato Università degli Studi di Milano Bicocca & INFN On behalf of the LHCb RICH group Assisi 23 June Assisi 2005 23 June Tito Bellunato

More information

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico

Aerogel counter with a Fresnel lens. Guy Paic Instituto de Ciencias Nucleares UNAM Mexico Aerogel counter with a Fresnel lens Guy Paic Instituto de Ciencias Nucleares UNAM Mexico outline The physics case The constraint on the detector The principle of propagation and focalisation Results of

More information

IceCube: Dawn of Multi-Messenger Astronomy

IceCube: Dawn of Multi-Messenger Astronomy IceCube: Dawn of Multi-Messenger Astronomy Introduction Detector Description Multi-Messenger look at the Cosmos Updated Diffuse Astrophysical Neutrino Data Future Plans Conclusions Ali R. Fazely, Southern

More information

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN)

The TORCH project. a proposed detector for precision time-of-flight over large areas. Roger Forty (CERN) The TORCH project a proposed detector for precision time-of-flight over large areas Roger Forty (CERN) DIRC 2013, Giessen, 4 6 September 2013 Introduction TORCH (Time Of internally Reflected CHerenkov

More information

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors

Content. Complex Detector Systems. Calorimeters Velocity Determination. Semiconductor detectors. Scintillation detectors. Cerenkov detectors Semiconductor detectors Semiconductor basics Sensor concepts Readout electronics Scintillation detectors General characteristics Organic materials Inorganic materials Light output response Calorimeters

More information

Cherenkov light imaging in particle and nuclear physics experiments

Cherenkov light imaging in particle and nuclear physics experiments Cherenkov light imaging in particle and nuclear physics experiments K. Inami (Nagoya univ.) 2016/9/5, RICH2016 Topics in the session 2 Performance of the LHCb RICH detectors during the LHC Run II ALICE-HMPID

More information

A RICH Photon Detector Module with G-APDs

A RICH Photon Detector Module with G-APDs A RICH Photon Detector Module with G-APDs S. Korpar a,b, H. Chagani b, R. Dolenec b, P. Križan b,c, R. Pestotnik b, A. Stanovnik b,c a University of Maribor, b J. Stefan Institute, c University of Ljubljana

More information

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1

Cherenkov Detector. Cosmic Rays Cherenkov Detector. Lodovico Lappetito. CherenkovDetector_ENG - 28/04/2016 Pag. 1 Cherenkov Detector Cosmic Rays Cherenkov Detector Lodovico Lappetito CherenkovDetector_ENG - 28/04/2016 Pag. 1 Table of Contents Introduction on Cherenkov Effect... 4 Super - Kamiokande... 6 Construction

More information

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006 The LHCb Experiment II Detector XXXIV SLAC Summer Institute, 17-28 July, 2006 Tatsuya NAKADA CERN and Ecole Polytechnique Fédérale de Lausanne (EPFL) 1) Introduction Physics requirements for the detector

More information

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010

Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Big, Fast, and Cheap: Precision Timing in the Next Generation of Cherenkov Detectors LAPPD Collaboration Meeting 2010 Matthew Wetstein - Enrico Fermi Institute, University of Chicago HEP Division, Argonne

More information

Particle Production Measurements at Fermilab

Particle Production Measurements at Fermilab Particle Production Measurements at Fermilab Dr. Nickolas Solomey, IIT and Fermilab co Spokesman of E907 TEV II Astroparticle Physics Conference Univ. of Wisconsin, Madison 28 31 Aug., 2006 Particle Production

More information

Hadronic vs e + e - colliders

Hadronic vs e + e - colliders Hadronic vs e + e - colliders Hadronic machines: enormous production of b-hadrons (σ bb ~ 50 µb) all b-hadrons can be produced trigger is challenging complicated many-particles events incoherent production

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Test with Argon S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Feb 19, 2016 Outline Test setup in Hall D Monte Carlo simulation First results

More information

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001 Status of the LHCb Experiment Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001 1 P b b P Number of pp inelastic interactions in one bunch crossing (σ inelastic = 80 mb): b b correlation

More information

Flavor Physics beyond the SM. FCNC Processes in the SM

Flavor Physics beyond the SM. FCNC Processes in the SM Flavor Physics beyond the SM 48 FCNC Processes in the SM A SM ( B ΔF = ΔF = 1 W q W b b u, c, t q b u, c, t q 0 q B ) ~ ( V V 0 q ) tb tq g m 16π m t W A SM ( b q) = V V tb tq g 16π m m t W FCNC in SM

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Feasibility studies S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Oct 9, 2015 Outline Motivation Introduction to TR TRD for GlueX Radiator Detector

More information

AIM AIM. Study of Rare Interactions. Discovery of New High Mass Particles. Energy 500GeV High precision Lots of events (high luminosity) Requirements

AIM AIM. Study of Rare Interactions. Discovery of New High Mass Particles. Energy 500GeV High precision Lots of events (high luminosity) Requirements AIM AIM Discovery of New High Mass Particles Requirements Centre-of-Mass energy > 1000GeV High Coverage Study of Rare Interactions Requirements Energy 500GeV High precision Lots of events (high luminosity)

More information

Detectors for astroparticle physics

Detectors for astroparticle physics Detectors for astroparticle physics Teresa Marrodán Undagoitia marrodan@physik.uzh.ch Universität Zürich Kern und Teilchenphysik II, Zürich 07.05.2010 Teresa Marrodán Undagoitia (UZH) Detectors for astroparticle

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 17th February 2010 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration The HARP Experiment (INFN-Ferrara) on behalf of the HARP Collaboration New Views in Particle Physics Outline Goals for a HAdRon Production experiment Example: KEK PS Neutrino beam-line Detector layout

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group

MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Central Detector Zhiwen Zhao for JLab MEIC Study Group MEIC Collaboration Meeting 2015/10/07 MEIC Design Goals Energy Full coverage of s from 15 to 65 GeV Electrons 3-10 GeV, protons 20-100 GeV, ions

More information

Development of Ring-Imaging Cherenkov Counter for Heavy Ions

Development of Ring-Imaging Cherenkov Counter for Heavy Ions Development of Ring-Imaging Cherenkov Counter for Heavy Ions Masahiro Machida Tokyo University of Science New Facilities and Instrumentation INPC 2016 Collaborators 2 Tokyo University of Science M. Machida,

More information

Observation of the rare B 0 s µ + µ decay

Observation of the rare B 0 s µ + µ decay Observation of the rare B 0 s µ + µ decay The combined analysis of CMS and LHCb data Luke Pritchett April 22, 2016 Table of Contents Theory and Overview Detectors Event selection Analysis Flavor physics

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 Results from HARP Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 The HAdRon Production Experiment 124 physicists 24 institutes2 Physics Goals Input for precise calculation

More information

Main Injector Particle Production Experiment

Main Injector Particle Production Experiment Main Injector Particle Production Experiment Andre Lebedev for the MIPP Collaboration: Colorado, Fermilab, Harvard, IIT, Iowa, Indiana, Livermore, Michigan, South Carolina, Virginia XLII Rencontres de

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

Early physics with the LHCb detector

Early physics with the LHCb detector XXVIII PHYSICS IN COLLISION - Perugia, Italy, June, 25-28, 2008 Early physics with the LHCb detector Dirk Wiedner CERN for the LHCb collaboration 27 June 2008 Dirk Wiedner at PIC2008 Perugia 1 Outline

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

Cherenkov Detector Simulation

Cherenkov Detector Simulation Outline E.Chudakov JLab Cherenkov Detector 1 Cherenkov Detector Simulation E.Chudakov 1 1 JLab For GLUEX Collaboration Meeting, March 2007 http://www.jlab.org/~gen/gluex/gas_cher_geom.html Outline E.Chudakov

More information

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector IceCube francis halzen why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector the discovery (and confirmation) of cosmic neutrinos from discovery to astronomy

More information

Particle Identification

Particle Identification Particle Identification Graduate Student Lecture Warwick Week Sajan Easo 28 March 2017 1 Outline Introduction Cherenkov Detectors Main techniques for Particle Identification (PID) Basic principles Photodetectors

More information

THE AMS RICH COUNTER

THE AMS RICH COUNTER THE AMS RICH COUNTER G. BOUDOUL ISN Grenoble ISN-GRENOBLE 1 The AMS RICH collaboration: Bologna, Grenoble, Lisbon, Madrid, Maryland, Mexico 2 The AMS collaboration UNAM S.C.C. TING (MIT), PI 3 AMS Scientific

More information

Particle Detectors. How to See the Invisible

Particle Detectors. How to See the Invisible Particle Detectors How to See the Invisible Which Subatomic Particles are Seen? Which particles live long enough to be visible in a detector? 2 Which Subatomic Particles are Seen? Protons Which particles

More information

The Cherenkov effect

The Cherenkov effect The Cherenkov effect A charged particle traveling in a dielectric medium with n>1 radiates Cherenkov radiation if its velocity is larger than the phase velocity of light v>c/n or β > 1/n (threshold) A

More information

B-Physics Potential of ATLAS, CMS, LHCb and BTeV

B-Physics Potential of ATLAS, CMS, LHCb and BTeV B-Physics Potential of ATLAS, CMS, LHCb and BTeV Neville Harnew University of Oxford 8th International Symposium on Heavy Flavour Physics N.Harnew 29th July 1999 1 Outline Introduction The 2nd Generation

More information

So, you want to build a neutrino detector?

So, you want to build a neutrino detector? Neutrino Detectors So, you want to build a neutrino detector? How many events do you need to do the physics? Determines detector mass Determines the target type What kind of interaction? e,, CC, NC? What

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Supervisor: Kai Schweda 5/18/2009 Johannes Stiller 1 Outline The Standard (Solar) Model Detecting Neutrinos The Solar Neutrino Problem Neutrino Oscillations Neutrino Interactions

More information

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva

LHC Detectors and their Physics Potential. Nick Ellis PH Department, CERN, Geneva LHC Detectors and their Physics Potential Nick Ellis PH Department, CERN, Geneva 1 Part 1 Introduction to the LHC Detector Requirements & Design Concepts 2 What is the Large Hadron Collider? Circular proton-proton

More information

Detectors in Nuclear and Particle Physics

Detectors in Nuclear and Particle Physics Detectors in Nuclear and Particle Physics Prof. Dr. Johanna Stachel Department of Physics und Astronomy University of Heidelberg July 1, 2014 J. Stachel (Physics University Heidelberg) Detectorphysics

More information

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta

Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Last Lecture 1) Silicon tracking detectors 2) Reconstructing track momenta Today s Lecture: 1) Electromagnetic and hadronic showers 2) Calorimeter design Absorber Incident particle Detector Reconstructing

More information

Experimental Particle Physics

Experimental Particle Physics Experimental Particle Physics Particle Interactions and Detectors Lecture 2 2nd May 2014 Fergus Wilson, RAL 1/31 How do we detect particles? Particle Types Charged (e - /K - /π - ) Photons (γ) Electromagnetic

More information

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV Trần Minh Tâm minh-tam.tran@epfl.ch on behalf of the LHCb Collaboration LHCb-CONF-2014-001 EPFL, Laboratoire de Physique

More information

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo

PoS(TIPP2014)033. Upgrade of MEG Liquid Xenon Calorimeter. Ryu SAWADA. ICEPP, the University of Tokyo ICEPP, the University of Tokyo E-mail: sawada@icepp.s.u-tokyo.ac.jp The MEG experiment yielded the most stringent upper limit on the branching ratio of the flavorviolating muon decay µ + e + γ. A major

More information

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies

Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Multi-messenger studies of point sources using AMANDA/IceCube data and strategies Cherenkov 2005 27-29 April 2005 Palaiseau, France Contents: The AMANDA/IceCube detection principles Search for High Energy

More information

EP228 Particle Physics

EP228 Particle Physics EP8 Particle Physics Topic 4 Particle Detectors Department of Engineering Physics University of Gaziantep Course web page www.gantep.edu.tr/~bingul/ep8 Oct 01 Page 1 Outline 1. Introduction. Bubble Chambers

More information

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics

Chapter 6.2: space based cosmic ray experiments. A. Zech, Instrumentation in High Energy Astrophysics Chapter 6.2: space based cosmic ray experiments 1 A bit of history... space based experiments 1912-1950: first observations of the cosmic ray flux with detectors onboard balloons and air-planes. 1950s/60s:

More information

Muon Reconstruction in IceCube

Muon Reconstruction in IceCube Muon Reconstruction in IceCube K.Hoshina for the IceCube collaboration June 26 2008 International workshop on High Energy Earth Science in Tokyo Introduction 2 IceCube is... A cubic-kilometer neutrino

More information

The Alice Experiment Felix Freiherr von Lüdinghausen

The Alice Experiment Felix Freiherr von Lüdinghausen The Alice Experiment Felix Freiherr von Lüdinghausen Alice, who is Alice? Alice is A Large Ion Collider Experiment. Worldwide hit in 1977 for the band Smokie Alice is the dedicated heavy ion experiment

More information

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT

9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT 9/27 JUNE 2003 SUMMER STAGE PARTICLES REVELATION THROUGH CERENKOV AND SCINTILLATION COUNTER AND THE CEBAF EXPERIMENT Students: Riccardo Falcione, Elisa Paris Liceo Scientifico Statale Farnesina Tutor:

More information

HARP (Hadron Production) Experiment at CERN

HARP (Hadron Production) Experiment at CERN HARP (Hadron Production) Experiment at CERN 2nd Summer School On Particle Accelerators And Detectors 18-24 Sep 2006, Bodrum, Turkey Aysel Kayιş Topaksu Çukurova Üniversitesi, ADANA Outline The Physics

More information

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program b Primary goal of the LHCb Experiment Search for New Physics contributions

More information

Indirect Dark Matter Detection

Indirect Dark Matter Detection Indirect Dark Matter Detection Martin Stüer 11.06.2010 Contents 1. Theoretical Considerations 2. PAMELA 3. Fermi Large Area Telescope 4. IceCube 5. Summary Indirect Dark Matter Detection 1 1. Theoretical

More information

The AMS-02 Anticoincidence Counter

The AMS-02 Anticoincidence Counter The AMS-02 Anticoincidence Counter, W. Karpinski, Th. Kirn, K. Lübelsmeyer, St. Schael, M. Wlochal on behalf of the AMS-02 Collaboration philip.doetinchem@rwth-aachen.de I. Phys. Inst. B, RWTH Aachen University

More information

CLAS12 at Jefferson Lab

CLAS12 at Jefferson Lab CLAS12 at Jefferson Lab Daria Sokhan University of Glasgow, UK IPPP/NuSTEC Topical Meeting on Neutrino-Nucleus Scattering IPPP, Durham, UK 19 April 2017 Jefferson Lab 6 GeV era Jefferson Lab CEBAF: Continuous

More information

Publications of Francesco Arneodo: journal articles

Publications of Francesco Arneodo: journal articles Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted

More information

OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR

OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR OPTICAL PROPERTIES OF THE DIRC FUSED SILICA CHERENKOV RADIATOR J. Cohen-Tanugi, M. Convery, B. Ratcliff, X. Sarazin, J. Schwiening, and J. Va'vra * Stanford Linear Accelerator Center, Stanford University,

More information

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington

PoS(DIS 2010)058. ATLAS Forward Detectors. Andrew Brandt University of Texas, Arlington University of Texas, Arlington E-mail: brandta@uta.edu A brief description of the ATLAS forward detectors is given. XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects April

More information

Particle Physics Beyond Laboratory Energies

Particle Physics Beyond Laboratory Energies Particle Physics Beyond Laboratory Energies Francis Halzen Wisconsin IceCube Particle Astrophysics Center Nature s accelerators have delivered the highest energy protons, photons and neutrinos closing

More information

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14

General Information. Muon Lifetime Update. Today s Agenda. The next steps. Reports due May 14 General Information Muon Lifetime Update The next steps Organize your results Analyze, prepare plots, fit lifetime distribution Prepare report using the Latex templates from the web site Reports due May

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

Experimental Methods of Particle Physics

Experimental Methods of Particle Physics Experimental Methods of Particle Physics (PHY461) Fall 015 Olaf Steinkamp 36-J- olafs@physik.uzh.ch 044 63 55763 Overview 1) Introduction / motivation measurement of particle momenta: magnetic field early

More information

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona

David Gascón. Daniel Peralta. Universitat de Barcelona, ECM department. E Diagonal 647 (Barcelona) IFAE, Universitat Aut onoma de Barcelona LHCb 2000-32, CALO 9 June 2000 Results of a tagged photon test beam for the Scintillator Pad Detector. Llu s Garrido David Gascón Ramon Miquel Daniel Peralta Universitat de Barcelona, ECM department E-08028

More information

Flavour Physics at LHC

Flavour Physics at LHC Flavour Physics at LHC ICFP2009, Hanoi, September 2009 Tatsuya Nakada LPHE/EPFL Introduction (I) There exist solid observations for physics beyond the Standard Model T. Nakada ICFP2009 Hanoi September

More information

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons Jožef Stefan Institute, Ljubljana, Slovenia; currently CERN, Geneva, Switzerland November 30 December 5, 2004 for BELLE Aerogel

More information

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013 IceCube DeepCore Original IceCube design focused on

More information

Introduction. The Standard Model

Introduction. The Standard Model Ph.D. Thesis in Engineering Physics Supervisor: Assoc. Prof. Dr. Ayda BEDDALL Co-supervisor: Assist. Prof. Dr. Andrew BEDDALL By Ahmet BNGÜL Page 1 Introduction Chapter 1-2 High energy collisions of sub-atomic

More information

Simulation studies of the PANDA detector at GSI

Simulation studies of the PANDA detector at GSI Simulation studies of the PANDA detector at GSI Carsten Schwarz for the Antiproton Physics Study Group PANDA = Proton ANtiproton at DArmstadt Introduction HESR (High Energy Storage Ring) Physics program

More information

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events Jutta Schnabel on behalf of the ANTARES collaboration Erlangen Centre for Astroparticle Physics, Erwin-Rommel Str.

More information

The Barrel DIRC Detector for the PANDA Experiment at FAIR

The Barrel DIRC Detector for the PANDA Experiment at FAIR The Barrel DIRC Detector for the PANDA Experiment at FAIR TIPP 2017 conference (GSI) for the PANDA Cherenkov Group PANDA experiment Barrel DIRC design Expected performance Validation in beam tests Summary

More information

Radio-chemical method

Radio-chemical method Neutrino Detectors Radio-chemical method Neutrino reactions: n+ν e => p+e - p+ν e => n+e + Radio chemical reaction in nuclei: A N Z+ν e => A-1 N(Z+1)+e - (Electron anti-neutrino, right) (Z+1) will be extracted,

More information

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone

High-energy neutrino detection with the ANTARES underwater erenkov telescope. Manuela Vecchi Supervisor: Prof. Antonio Capone High-energy neutrino detection with the ANTARES underwater erenkov telescope Supervisor: Prof. Antonio Capone 1 Outline Neutrinos: a short introduction Multimessenger astronomy: the new frontier Neutrino

More information