HARP (Hadron Production) Experiment at CERN

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "HARP (Hadron Production) Experiment at CERN"

Transcription

1 HARP (Hadron Production) Experiment at CERN 2nd Summer School On Particle Accelerators And Detectors Sep 2006, Bodrum, Turkey Aysel Kayιş Topaksu Çukurova Üniversitesi, ADANA

2 Outline The Physics case for Harp Harp forward spectrometer Measuring a cross section Results for Al and preliminary results for Be Conclusions and Outlook

3 The Physics case for Harp (Based on Forward section) Computing ν fluxes Physics case for a hadroproduction measurement in the MiniBoone experiment Physics case for a hadroproduction measurement in the K2K experiment The Harp experiment

4 Neutrino Beam Fluxes Neutrino beams are produced in the laboratory by the weak decays of nuclei, nucleons, and µ, π, and K mesons. The spectrum of neutrinos from these decays is known extremely well The only significant flux uncertainty comes from the production cross section of the parent particle and its subsequent scattering in target materials. In decay-at-rest beams, this is simply an overall normalization factor. A single well-understood neutrino cross section is enough to completely determine the neutrino flux (e.g. νe elastic process, or an inverse β-decay transition) However, in decay-in-flight beams, the complete differential production cross sections of the parent particles are needed, along with their interactions in material along their flight paths

5 Decay-in-Flight ν Beams The calculation of secondary-production cross sections of π and K mesons in proton-nucleus collisions is not reliable, although new data is challenging modelers to make improvements Phenomenological parameterizations can be valid over limited energy and angle ranges, more useful at higher energies (> ~15 GeV) (e.g. Sanford-Wang or others) There are large discrepancies in the various hadron production models used in MC generators (MARS, FLUKA, MCNP, GHEISHA, etc.), although the situation is has been improving In order to predict fluxes with uncertainties less than ~10%, direct measurements in the appropriate energy and angular ranges are necessary

6 Conventional neutrino beams Ingredients to compute a neutrino flux (executive summary): Pion (and kaon) production cross section (use same target and proton energy than proton driver of ν experiment) Reinteractions (take data with thin and thick target) All the rest: Simulation of the neutrino line: An easy problem. Applies to: Past, present and future conventional ν beams

7 Example: The MiniBooNE Neutrino Beam Many studies have shown that the largest uncertainty in the ν flux prediction is the knowledge of the π/k production cross sections Various models are known to have large differences in neutrino rate predictions

8 Why you need hadro-production data MiniBoone MC: Prediction of pion yields for different models MiniBoone MC: Prediction of neutrino fluxes for different models Notice: Large differences between models in final flux prediction Conclusion: the neutrino beam is sensitive to poorly understood, forward (small angle), pion production rates

9 Physics case for MiniBoone MiniBoone is looking for ν µ -->ν e oscillations using only one detector. They need, in consequence, an absolute calibration of their ν µ and ν e flux. This implies the following measurements: π + production cross section (ν µ flux and part of ne flux) K production cross section (ν e flux) π - production cross section (anti ν running) Thick target measurements (effect of reinteractions in yields)

10 Example 2: The K2K experiment

11 Atmospheric neutrinos

12 Atmospheric neutrino oscillations L/E Analysis

13 Oscillation probability P νµ ν τ (L) = sin 2 (2θ)sin 2 (1.27 m2 (ev 2 ) E(GeV ) L(km)) P νµ ν µ (L) = 1 P νµ ν τ (t) E(GeV ) L osc = 2π 1.27 m 2 (ev 2 )

14 K2K: Disappearance experiment to confirm atmospheric oscillation Oscillation 250 km from source for atmospheric parameters: maximum ~1GeV Non-oscillated oscillated spectrum must be measured near the neutrino source In the case of oscillations one observes an energy-dependent suppression of the spectrum

15 Far-Near ratio ν beam 250km For a point-like source the flux, in the absence of oscillations scales like 1/R 2 Far/Near flux ratio x Φ(E ν ) far = R(E ν ) Φ(E ν ) near PIMON data analysis Simulation E ν (GeV) Integrated above 2.5GeV R(E ν ) If the near detector does not see a point-like source it is necessary to multiply by a factor R(E ν ) to obtain the predicted spectrum in the far detector. The correct determination of R(E ν ) is essential since the signal is a distortion of the energy spectrum (a wrongly determined R(E ) ν could fake oscillations)

16 K2K results No-oscillation excluded at >4σ Total 107 beam events observed; expect Terrestrial experiment confirms that atmospheric effect is disappearance of muon neutrinos

17 Physics case for K2K protons K2K is a disappearance experiment, with a near detector which provides a stringent constrain of the flux in the far detector provided that the Far/Near ratio is well measured. This in turn requires a good measurement of the ν µ flux. To compute the ν µ spectrum one must measure de p-n cross section for the production of positive pions at the energies of K2K proton driver (12.9 GeV) and with the same target material (Al). (Done by Harp) and Compute the transport of the produced π through the magnetic horns and its decay in the decay pipe. Transport the neutrinos. (K2K Beam Monte Carlo)

18

19 Motivations Systematic study of hadron production Beam momenta from GeV/c Targets from H to Pb Input for: Calculation of fluxes for conventional neutrino beams Neutrino factory design Atmospheric neutrino flux calculations Input for Monte Carlo hadronic generators

20 HARP data set Target material Target length (l%) Beam Momentum (GeV) #events (millions) Be 420 M events 30 TB of data > 100 settings Solid targets C Al Cu Sn Ta Pb 2 (2001) ±3 ± 5 ± 8 ± 12 ± 15 Negative only 2% and 5% K2K MiniBooNE Al Be 5, 50, 100, replica Cu button Cu +12.9, Cu skew Cu Cryogenic targets N D 1 H 1 6 cm ±3 ± 5 ± 8 ± 12 ± H 2 18 cm ±3, ±8, ± Water H , , +8(10%) 9.6

21 Harp Forward Spectrometer Beam detectors Drift chambers Tracking Momentum measurement Tracking efficiency Particle identification PID with the TOF PID with CHE Combined PID

22 Beam instrumentation: Counting protons on target MWPCs Beam composition and direction & Normalization (pot) T9 beam CKOV-A TOF-A CKOV-B 21.4 m TOF-B MWPCs Incident beam direction MiniBoone target Beam cherenkov K/π/p separation at high energy p 12.9 GeV K π Beam Tof K/π/p separation at low energy T0 π k p 3 GeV d Corrected TOF (ps)

23 Drift Chambers Cosmic rays Alignment Iter 1 Iter 2 Reused from NOMAD Tracking device for low angle region (<300 mrads) Alignment with cosmic and beam muons. Corrections on: Wire positions Wire time pedestal (t 0 ) Drift velocities per plane Plane efficiency studies also with cosmic rays and muons Performance drift distance resolution Iter 10 σ=340 µm eff~80% In NOMAD was >95% Due to the use of a different gas (non flammable) lateral modules plane efficiency

24 m 2 target TOF 2 2 tw t0 = p 1 L Tof ~160 ps 3.6σ π/p a 3 GeV Beam ~70 ps Particle ID π/p using TOF entries 3 GeV beam particles 5 GeV beam particles Beam TOF t a t b t c π + p m 2 (GeV 2 ) target t 0 data GeV π + L k t w Tof Wall

25 π/p using Cerenkov 3-15 GeV data entries 3 GeV beam particles p π + cerenkov π ineficiency e + entries π / p p> 3 GeV π / k 3 <P< 9 GeV 5 GeV beam particles p π ineficiency π + N phel number of photoelectrons N 2.6 GeV Threshold pions e + phel α π GeV Threshold kaons P (GeV) 1 Pth N0 P N phe N phel N phe N phel

26 Particle identification P (GeV( GeV) π/p TOF CERENKOV CAL π/k TOF CERENKOV TOF π/e CERENKOV CALORIMETER CERENKOV data 3 GeV/c beam particles entries π + TOF p m 2 (GeV 2 ) entries p CERENKOV π inefficiency π + e N phe number of photoelectrons entries E/p 0.4 CALORIMETER h + e E 1 /E

27 Computing a Cross Section 2 d σ α 1 A 1 α = M ijαi j α Ni j i θ j N pot N Aρt dp d Number of protons on target Physics constants for target properties Correction matrix including: Momentum resolution Geometrical acceptance Reconstruction efficiency Particle identification efficiency and migration Particles Observed

28 Event Selection RPC TPC MWPC BS HALO A ITC TDS BC B BC A target HALO B TOF B TOF A FTP Event selection for protons on target ( normalization trigger ): impact point and direction of primaries (BS, TDS, HALO A, HALO B) protons: identified bytof and Cherenkovs (TOF A, TOF B, BC A, BC B) Event selection for proton inelastic interactions ( physics trigger ): normalization trigger && forward trigger scintillator plane (FTP)

29 Reconstruction efficiency dipole magnet NDC2 target B

30 Downstream reconstruction efficiency dipole magnet NDC2 NDC5 B

31 Empty target subtraction To correct for backgrounds due to proton interactions in the material surrounding the target we take data in identical conditions than physics data but without the target. Yields are computed and corrected for empty target data and then subtracted from data yields.

32 Tertiaries x NDC1 dipole NDC2 NDC5 beam z target Particles arising from decay or nuclear interactions, making it to fiducial volume B

33

34 Results for Al Data Double differential π cross section for 12.9GeV/c protons hitting a 5%λ Al target Dotted line shows best fit to Sanford Wang parameterisation Nucl.Phys.B732:1-45,2006 hep-ex/

35 -the red line is the extrapolation of our best-fit Sanford-Wang parameterization Reasonable agreement between HARP and previous results

36 K2K Near/Far Ratio Predicted Flux Shape Predicted Far/Near Ratio Near Detector Near/Far Ratio Far Detector Near/far ratio errors are greatly reduced with the inclusion of Harp Data

37 Results - Be 90% of MiniBooNE neutrino flux comes from π->µ+ν µ HARP result covers 0.75<p π <6.5 GeV/c 30<θ π <210mrad More than 80% of the relevant pions come from this region

38 Results - Be Double differential π cross section for 8.9GeV/c protons hitting a 5%λ Be target

39 Comparison with older data: Be

40 Conclusions / Outlook Precision ν studies require a precise knowledge of ν production HARP Al results have been published and incorporated into K2K final oscillation analysis HARP results give a factor of 2 reduction in errors on F/N ratio predictions HARP Be results are close to completion and should be published later this year. These results will be used in MiniBooNE oscillation analyses HARP measurements have started to fill an important gap in ν flux predictions

41 Conclusions / Outlook Inclusion of C data will allow also a contribution to the measurement of the atmospheric flux. The on-going LA analysis will make fundamental contributions to the design of future neutrino installations such as the Neutrino Factory.

42

43 Momentum estimators (II) Good (~unbiased) and consistent (~ p 2 =p 4 ) estimators of P true Yields are measured in terms of p 2 (p 4 is used to compute tracking efficiency)

44 Detector response measured from data π + and π - have the same behaviour π - p k + π + π/p/k are clearly separated by the TOFW below 3 GeV Fit the inclusive beta distribution to a triple Gaussian with fixed shapes and free normalization π + and π - have the same behaviour Above pion Cherenkov threshold pions are suppressed to less than 1% by N phe <3 p k +

45 Sanford-Wang Parameterization X Particles in the final system P beam is the proton beam p and θ are the pion mom and angle c 1,c 2.c 8 are fits parameters

46 Errors - Al Typical error 8.2% on double differential cross section Dominant errors: overall normalisation, momentum scale and secondary interactions

47 Errors - Be Typical error 13.0% on double differential cross section Dominant errors: overall normalisation, statistics, momentum reconstruction and secondary interactions

48 HARP Forward Spectrometer 8.9 GeV/c π + beam

Results From The HARP Experiment

Results From The HARP Experiment Results From The HARP Experiment Lara Howlett University of Sheffield Overview of HARP and forward analysis Al analysis for K2K experiment Be analysis for MiniBooNE experiment Motivations Systematic study

More information

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 Results from HARP Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 The HAdRon Production Experiment 124 physicists 24 institutes2 Physics Goals Input for precise calculation

More information

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration The HARP Experiment (INFN-Ferrara) on behalf of the HARP Collaboration New Views in Particle Physics Outline Goals for a HAdRon Production experiment Example: KEK PS Neutrino beam-line Detector layout

More information

Variation in MC prediction of MB nu flux

Variation in MC prediction of MB nu flux Hadron Production Results from the HARP Experiment Linda Coney For the HARP Collaboration Beach 2008 June 27, 2008 Outline Introduction Experiment & Detector Data Hadron Production Results Results for

More information

HARP Hadron production experiments for neutrino physics

HARP Hadron production experiments for neutrino physics HARP Hadron production experiments for neutrino physics Jaap Panman CERN Hadron production for neutrino experiments: Neutrino fluxes in conventional beams Prediction of atmospheric neutrino flux Neutrino

More information

arxiv:hep-ex/ v1 19 Jun 2004

arxiv:hep-ex/ v1 19 Jun 2004 arxiv:hep-ex/4653v 9 Jun 24 First physics results from the HARP experiment at CERN A. Cervera Villanueva University of Geneva, Switzerland The first physics results of the HARP experiment are presented.

More information

New Hadroproduction results from the HARP/PS214 experiment at CERN PS

New Hadroproduction results from the HARP/PS214 experiment at CERN PS New Hadroproduction results from the HARP/PS214 experiment at CERN PS Sezione INFN Milano Bicocca E-mail: maurizio.bonesini@mib.infn.it The HARP experiment at the CERN Proton Synchroton has collected data

More information

Particle production vs. energy: how do simulation results match experimental measurements?

Particle production vs. energy: how do simulation results match experimental measurements? Particle production vs. energy: how do simulation results match experimental measurements? Sezione INFN Milano Bicocca E-mail: maurizio.bonesini@mib.infn.it This talk is about the available hadroproduction

More information

arxiv:hep-ex/ v1 15 Oct 2004

arxiv:hep-ex/ v1 15 Oct 2004 arxiv:hep-ex/443v 5 Oct 24 Initial results from the HARP experiment at CERN J.J. Gomez-Cadenas a a IFIC and Departamento de Fisica, Atómica y Nuclear, P.O. Box 2285, E-467 Valencia, Spain Initial results

More information

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration

HARP a hadron production experiment. Emilio Radicioni, INFN for the HARP collaboration HARP a hadron production experiment Emilio Radicioni, INFN for the HARP collaboration HARP motivations provide data for neutrino factory / muon collider design. reduce the uncertainties in the atmospheric

More information

Hadron Production Experiments and Neutrino Beams

Hadron Production Experiments and Neutrino Beams Hadron Production Experiments and Neutrino Beams LIONeutrino2012 Oct 22 nd 12 Alessandro Bravar Why hadro-production measurements Understand the neutrino source solar neutrinos ν flux predictions based

More information

The Hadron Production Experiment at the PS, CERN

The Hadron Production Experiment at the PS, CERN Geant4 in HARP The Hadron Production Experiment at the PS, CERN P.Arce and V.Ivanchenko For the HARP Collaboration Geant4 Workshop 30 September 2002 HARP Collaboration Università degli Studi e Sezione

More information

Review of Hadron Production Experiments

Review of Hadron Production Experiments Review of Hadron Production Experiments Raphaël Schroeter - Harvard University Motivations The Experiments HARP NA61/SHINE Future Prospects Summary PITT PAC Workshop, Pittsburgh, December 6, 2012 Motivations

More information

Neutrino Cross Sections and Scattering Physics

Neutrino Cross Sections and Scattering Physics Neutrino Cross Sections and Scattering Physics Bonnie Fleming Yale University, New Haven, CT. Abstract. Large flux uncertainties and small cross sections have made neutrino scattering physics a challenge.

More information

HARP and NA61 (SHINE) hadron production experiments

HARP and NA61 (SHINE) hadron production experiments HARP and NA6 (SHINE) hadron production experiments Boris A. Popov [for the HARP and NA6 Collaborations] LPNHE, 4 place Jussieu, 755, Paris & DLNP, JINR, Joliot-Curie 6, 498, Dubna Abstract. The hadroproduction

More information

The First Results of K2K long-baseline Neutrino Oscillation Experiment

The First Results of K2K long-baseline Neutrino Oscillation Experiment The First Results of K2K long-baseline Neutrino Oscillation Experiment Taku Ishida, representing K2K collaboration arxiv:hep-ex/0008047v1 23 Aug 2000 Institute for Particle and Nuclear Studies(IPNS) High

More information

MINOS Flux Determination

MINOS Flux Determination MINOS Flux Determination Žarko Pavlović Pittsburgh, 12/07/12 Outline Introduction MINOS experiment and NuMI beam Calculating flux and systematic errors Fitting the ND data (Beam tuning) Conclusion 2 Past

More information

How large is the "LSND anomaly"?

How large is the LSND anomaly? How large is the "LSND anomaly"? Andrey Elagin on behalf of the HARP-CDP group HEP lunch, UChicago, March 12, 2012 Outline 3.8 σ LSND Final Paper PRD 64, 112007 3.8 σ 2.9 σ HARP-CDP Paper I arxiv:1110.4265

More information

NA62: Ultra-Rare Kaon Decays

NA62: Ultra-Rare Kaon Decays NA62: Ultra-Rare Kaon Decays Phil Rubin George Mason University For the NA62 Collaboration November 10, 2011 The primary goal of the experiment is to reconstruct more than 100 K + π + ν ν events, over

More information

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

HARP and NA61 (SHINE) hadron production experiments

HARP and NA61 (SHINE) hadron production experiments HARP and NA61 (SHINE) hadron production experiments and their implications for neutrino physics International Workshop on Next Nucleon decay and Neutrino detectors (NNN08) 11-13 September 2008, APC (Paris)

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

Particle Identification of the LHCb detector

Particle Identification of the LHCb detector HCP 2005 Particle Identification of the LHCb detector Ann.Van.Lysebetten@cern.ch on behalf of the LHCb collaboration CERN 5th July 2005 The LHCb experiment : introduction precision measurements of CP violation

More information

arxiv: v1 [hep-ex] 1 Oct 2015

arxiv: v1 [hep-ex] 1 Oct 2015 CIPANP2015-Galati October 2, 2015 OPERA neutrino oscillation search: status and perspectives arxiv:1510.00343v1 [hep-ex] 1 Oct 2015 Giuliana Galati 1 Università degli Studi di Napoli Federico II and INFN

More information

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009

Charged current single pion to quasi-elastic cross section ratio in MiniBooNE. Steven Linden PAVI09 25 June 2009 Charged current single pion to quasi-elastic cross section ratio in MiniBooNE Steven Linden PAVI09 25 June 2009 Motivation Oscillation searches needed for leptonic CP violation. One approach: search for

More information

K2K and T2K experiments

K2K and T2K experiments K2K and T2K experiments Issei Kato TRIUMF, Canada for the K2K and T2K collaborations Neutrino Oscillation Workshop 2006 at Conca Specchiulla,, Otranto, Italy Outline K2K experiment, shortly What s updated

More information

TeV energy physics at LHC and in cosmic rays

TeV energy physics at LHC and in cosmic rays Vulcano 2016 TeV energy physics at LHC and in cosmic rays Anatoly Petrukhin National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Russia Many physicists dream and hope to find

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

A beam line for schools

A beam line for schools A beam line for schools Great things can happen when high schools get involved with cutting edge science, and that s exactly what CERN is proposing with its new beam line for schools competition, which

More information

Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE Hideyuki Takei Thesis submitted to the Department of Physics in partial fulfillment of the requirements for

More information

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France.

Appendix A2. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Appendix A. Particle Accelerators and Detectors The Large Hadron Collider (LHC) in Geneva, Switzerland on the Border of France. Prepared by: Arash Akbari-Sharbaf Why Build Accelerators? Probe deeper From

More information

Information about the T9 beam line and experimental facilities

Information about the T9 beam line and experimental facilities Information about the T9 beam line and experimental facilities The incoming proton beam from the PS accelerator impinges on the North target and thus produces the particles for the T9 beam line. The collisions

More information

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich) " Atmospheric neutrinos

The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II. Vanderbilt University, March 5-10, Sergio Navas (ETH Zürich)  Atmospheric neutrinos The ICARUS Project FRONTIERS IN CONTEMPORARY PHYSICS II Vanderbilt University, March 5-10, 2001 Sergio Navas (ETH Zürich) Detection Principle The T600 Module Physics Programme: " Atmospheric neutrinos

More information

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters

The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters The reaction p(e,e'p)π 0 to calibrate the Forward and the Large Angle Electromagnetic Shower Calorimeters M.Battaglieri, M.Anghinolfi, P.Corvisiero, A.Longhi, M.Ripani, M.Taiuti Istituto Nazionale di Fisica

More information

Results and Prospects for Ion Physics at LHCb

Results and Prospects for Ion Physics at LHCb Discovery Physics at the LHC Kruger 2016 Results and Prospects for Ion Physics at LHCb Patrick Robbe, LAL Orsay, 7 December 2016, For the LHCb Collaboration Outline The LHCb experiment Results in ppb and

More information

Relative branching ratio measurements of charmless B ± decays to three hadrons

Relative branching ratio measurements of charmless B ± decays to three hadrons LHCb-CONF-011-059 November 10, 011 Relative branching ratio measurements of charmless B ± decays to three hadrons The LHCb Collaboration 1 LHCb-CONF-011-059 10/11/011 Abstract With an integrated luminosity

More information

The CNGS neutrino beam

The CNGS neutrino beam 10th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD06) 1-5 October 2006 Siena, Italy ν The CNGS neutrino beam G. Sirri INFN Bologna CNGS (CERN Neutrinos to Gran Sasso) The project

More information

PERFORMANCE OF THE RESISTIVE PLATE CHAMBERS OF THE HARP EXPERIMENT

PERFORMANCE OF THE RESISTIVE PLATE CHAMBERS OF THE HARP EXPERIMENT Annuaire de l Universite St. Kliment Ohridski, Faculte de Physique, 99, 2006 PERFORMANCE OF THE RESISTIVE PLATE CHAMBERS OF THE HARP EXPERIMENT MARIYAN BOGOMILOV, DIMITAR KOLEV, ROUMEN TSENOV Department

More information

Observation of the rare B 0 s µ + µ decay

Observation of the rare B 0 s µ + µ decay Observation of the rare B 0 s µ + µ decay The combined analysis of CMS and LHCb data Luke Pritchett April 22, 2016 Table of Contents Theory and Overview Detectors Event selection Analysis Flavor physics

More information

MINOS Neutrino Flux. Using NuMI Muon Monitors for calculating flux for use in cross-section calculations. D. Jason Koskinen

MINOS Neutrino Flux. Using NuMI Muon Monitors for calculating flux for use in cross-section calculations. D. Jason Koskinen MINOS Neutrino Flux Using NuMI Muon Monitors for calculating flux for use in cross-section calculations 1 Outline MINOS Experiment Beam Basics Using Muon Monitors for flux NuMI beam line Monte Carlo Minimize

More information

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute

Recent Results from K2K. Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute Recent Results from K2K Masashi Yokoyama (Kyoto U.) For K2K collaboration 2004 SLAC Summer Institute Introduction What is K2K? KEK to Kamioka first accelerator-based long baseline neutrino experiment!

More information

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17 Neutrino Energy Reconstruction Methods Using Electron Scattering Data Afroditi Papadopoulou Pre-conference, EINN 2017 10/29/17 Outline Nuclear Physics and Neutrino Oscillations. Outstanding Challenges

More information

New Limits on Heavy Neutrino from NA62

New Limits on Heavy Neutrino from NA62 CERN E-mail: michal.koval@cern.ch The NA6 experiment at CERN collected large samples of charged kaon decays in flight with a minimum bias trigger configuration in 7 and in 15 using a completely new detector

More information

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration 102 Congresso della Società Italiana di Fisica Padova, 26-30 settembre 2016 Outline Heavy flavour physics in ALICE The

More information

D + analysis in pp collisions

D + analysis in pp collisions D + analysis in pp collisions Giacomo Ortona INFN Torino Junior s Day (CERN) - 2010-11-11 Junior s Day (CERN) - 2010-11-11 2010-11-11 1 / 22 Outline 1 Physics Motivation 2 Invariant Mass Analysis 3 Cuts

More information

Search for Dark Matter with LHC proton Beam Dump

Search for Dark Matter with LHC proton Beam Dump Search for Dark Matter with LHC proton Beam Dump Ashok Kumar a, Archana Sharma b* a Delhi University, Delhi, India b CERN, Geneva, Switzerland Abstract Dark Matter (DM) comprising particles in the mass

More information

Detecting ν τ appearance in the spectra of quasielastic CC events

Detecting ν τ appearance in the spectra of quasielastic CC events Detecting ν τ appearance in the spectra of quasielastic CC events arxiv:hep-ex/89v 9 Aug A.E. Asratyan, G.V. Davidenko, A.G. Dolgolenko, V.S. Kaftanov, M.A. Kubantsev, and V.S. Verebryusov Institute of

More information

Status / Hadron Spectroscopy at COMPASS

Status / Hadron Spectroscopy at COMPASS Status / Hadron Spectroscopy at COMPASS Johannes Bernhard 1 Institut für Kernphysik Mainz January 22 nd 2010 1 johannes.bernhard@cern.ch Outline 1 Introduction 2 Recoil Proton Detector 3 Trigger 4 Analysis

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

The ALICE Experiment Introduction to relativistic heavy ion collisions

The ALICE Experiment Introduction to relativistic heavy ion collisions The ALICE Experiment Introduction to relativistic heavy ion collisions 13.06.2012 Introduction to relativistic heay ion collisions Anna Eichhorn 1 Facts about ALICE ALICE A Large Ion Collider Experiment

More information

Heavy Hadron Production and Spectroscopy at ATLAS

Heavy Hadron Production and Spectroscopy at ATLAS Heavy Hadron Production and Spectroscopy at ALAS Carlo Schiavi on behalf of the ALAS Collaboration INFN Sezione di Genova ALAS has studied heavy flavor production and measured the production cross sections

More information

B and Upsilon Cross Sections at HERA-B

B and Upsilon Cross Sections at HERA-B B and Upsilon Cross Sections at HERA-B Antonio Sbrizzi University of Bologna - Physics Department via Irnerio 46, I-426 Bologna - Italy A new measurement of the b b and Υ production cross sections using

More information

Alice TPC particle identification

Alice TPC particle identification Alice TPC particle identification on the way to Anti-Nuclei and exotic states INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 34th Course Probing the Extremes of Matter with Heavy Ions Erice-Sicily: 16-24 September

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

ALICE results on ultraperipheral Pb+Pb and p+pb collisions

ALICE results on ultraperipheral Pb+Pb and p+pb collisions ALICE results on ultraperipheral Pb+Pb and p+pb collisions Jaroslav Adam On behalf of the ALICE Collaboration Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague May

More information

The T2K Neutrino Experiment

The T2K Neutrino Experiment The T2K Neutrino Experiment Tokai to Kamioka TPC-Group, Institute 3b Achim Stahl, Stefan Roth, Karim Laihem, Dennis Terhorst, Jochen Steinmann 03.09.2009, Bad Honnef 2009-09-03 1 Overview 1. Neutrinos

More information

arxiv: v1 [hep-ex] 30 Nov 2009

arxiv: v1 [hep-ex] 30 Nov 2009 On extraction of oscillation parameters Jan Sobczyk and Jakub Zmuda Institute of Theoretical Physics, University of Wroclaw, plac Maxa Borna 9, 50-204 Wroclaw, Poland (Dated: November 28, 2017) arxiv:0912.0021v1

More information

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1

Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Fall Quarter 2010 UCSB Physics 225A & UCSD Physics 214 Homework 1 Problem 2 has nothing to do with what we have done in class. It introduces somewhat strange coordinates called rapidity and pseudorapidity

More information

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014

Detectors in Nuclear and High Energy Physics. RHIG summer student meeting June 2014 Detectors in Nuclear and High Energy Physics RHIG summer student meeting June 2014 Physics or Knowledge of Nature Experimental Data Analysis Theory ( application) Experimental Data Initial Conditions /

More information

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline

Validation of Geant4 Hadronic Physics Models at Intermediate Energies. Outline Models at Intermediate Energies Outline Motivation Models Data Used Validation Results Summary CHEP 2009 Prague, March 23-27, 2009 Sunanda Banerjee, Fermilab (on behalf of Geant4 Hadronic Group) Motivation

More information

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC Christof Roland/ MIT For the CMS Collaboration Rencontres de Moriond QCD Session 14 th March, 2010 Moriond

More information

Recent results from MiniBooNE on neutrino oscillations

Recent results from MiniBooNE on neutrino oscillations Recent results from MiniBooNE on neutrino oscillations Alexis [for the MiniBooNE collaboration] IX International Symposium on High Energy Physics 1 SILAFAE 2012,, December 10 14, 2013 Outline LSND and

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nuclear and Particle Physics (5110) March 23, 2009 From Nuclear to Particle Physics 3/23/2009 1 Nuclear Physics Particle Physics Two fields divided by a common set of tools Theory: fundamental

More information

Multi Lepton events at HERA

Multi Lepton events at HERA St. Petersburg, 25/04/2003 DIS03 Conference Multi Lepton events at HERA Andrea Parenti (on behalf of H and ZEUS Collabs.) Padova University and INFN A.Parenti - Multi Lepton Events at HERA p./?? Outline

More information

Characterisation of Silicon Photomultipliers for the T2K Experiment

Characterisation of Silicon Photomultipliers for the T2K Experiment Characterisation of Silicon Photomultipliers for the T2K Experiment, 18th May 2010 Martin Haigh, University of Oxford Outline Brief introduction to the T2K experiment. Overall configuration and goals.

More information

A method for detecting ν τ appearance in the spectra of quasielastic CC events

A method for detecting ν τ appearance in the spectra of quasielastic CC events A method for detecting ν τ appearance in the spectra of quasielastic CC events arxiv:hep-ex/9v Jan A.E. Asratyan, G.V. Davidenko, A.G. Dolgolenko, V.S. Kaftanov, M.A. Kubantsev, and V.S. Verebryusov Institute

More information

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e

CLEO c. Anders Ryd Cornell University June 7, e e cc D D. D K,D K e CLEOc Cornell University June 7, 25 e e cc D D D K,D K e K K e 1 Outline CLEOc experiment and the physics program Some early results D> Absolute hadronic branching fractions Semileptonic decays 2 Testing

More information

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility

Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility Search for New and Unusual Strangeonia States Using γp pφη with GlueX at Thomas Jefferson National Accelerator Facility Prospectus of Dissertation Bradford E. Cannon Department of Physics, Florida State

More information

Preparations for SUSY searches at the LHC

Preparations for SUSY searches at the LHC Preparations for SUSY searches at the LHC Alex Tapper UK HEP Forum: LHC First Results and Outlook, September 20-21 20. Outline Search strategy Examples with 70 nb Hadronic searches Leptonic searches (single

More information

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration

Threshold photoproduction of J/y with the GlueX experiment. Lubomir Pentchev Jefferson Lab for the GlueX collaboration Threshold photoproduction of J/y with the GlueX experiment Lubomir Pentchev Jefferson Lab for the GlueX collaboration 7 th Workshop of the APS Topical Group on Hadron Physics, Washington, DC February 1-3

More information

Status of ATLAS and Preparation for the Pb-Pb Run

Status of ATLAS and Preparation for the Pb-Pb Run Status of ATLAS and Preparation for the Pb-Pb Run Jiří Dolejší a for the ATLAS Collaboration a Charles University, Faculty of Mathematics and Physics, IPNP, V Holesovickach 2, CZ-180 00 Praha 8, Czech

More information

Measurements of the lead-hydrocarbon cross section ratio for charged-current neutrino interactions

Measurements of the lead-hydrocarbon cross section ratio for charged-current neutrino interactions College of William and Mary W&M Publish College of William & Mary Undergraduate Honors Theses Theses, Dissertations, & Master Projects 5-2015 Measurements of the lead-hydrocarbon cross section ratio for

More information

PoS(DIS 2010)190. Diboson production at CMS

PoS(DIS 2010)190. Diboson production at CMS (on behalf of the CMS collaboration) INFN-Napoli & University of Basilicata E-mail: fabozzi@na.infn.it We present an analysis strategy based on Monte Carlo simulations for measuring the WW and WZ production

More information

arxiv: v1 [hep-ex] 2 Nov 2010

arxiv: v1 [hep-ex] 2 Nov 2010 Early b-physics at CMS Andrea Rizzi EH Zurich, Switzerland arxiv:.64v [hep-ex] Nov he CMS experiment at the Large Hadron Collider collected in the first months of operation a luminosity of about /nb. he

More information

arxiv: v1 [hep-ex] 19 May 2008

arxiv: v1 [hep-ex] 19 May 2008 , Large-angle production of charged pions with 3-12.9 GeV/c incident protons on nuclear targets arxiv:0805.2871v1 [hep-ex] 19 May 2008 M.G. Catanesi, 1 E. Radicioni, 1 R. Edgecock, 2 M. Ellis, 2, F.J.P.

More information

STUDY OF D AND D PRODUCTION IN B AND C JETS, WITH THE DELPHI DETECTOR C. BOURDARIOS

STUDY OF D AND D PRODUCTION IN B AND C JETS, WITH THE DELPHI DETECTOR C. BOURDARIOS STUDY OF D AND D PRODUCTION IN B AND C JETS, WITH THE DETECTOR C. BOURDARIOS Université de Paris Sud, Laboratoire de l Accélérateur Linéaire, Bât. 2, B.P. 34, FR-91898 ORSAY CEDEX E-mail: claire.bourdarios@cern.ch

More information

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV

Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Measurements of the total and inelastic pp cross section with the ATLAS detector at 8 and 13 TeV Motivation Measurements of the total and inelastic cross sections and their energy evolution probe the non-perturbative

More information

Status of the LHCb experiment and minimum bias physics

Status of the LHCb experiment and minimum bias physics Status of the LHCb experiment and minimum bias physics Sebastian Bachman Heidelberg University on behalf of the LHCb collaboration 6/19/2010 Sebastian Bachmann 1 Beauty and Charm at the LHC LHC is a factory

More information

MINOS results from the NuMI beam

MINOS results from the NuMI beam MINOS results from the NuMI beam Žarko Pavlović and MINOS collaboration Citation: AIP Conference Proceedings 981, 18 (2008); doi: 10.1063/1.2898928 View online: http://dx.doi.org/10.1063/1.2898928 View

More information

Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration

Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration Frigyes Nemes (Eötvös University) on behalf of the TOTEM collaboration http://totem.web.cern.ch/totem/ Hadron Structure'13 2013, 29 June 4 July Hadron Structure'13 6/18/2013 Frigyes Nemes, TOTEM 1 Total

More information

Latest time-dependent CP-violation results from BaBar

Latest time-dependent CP-violation results from BaBar Latest time-dependent CP-violation results from BaBar Owen Long, UC Santa Barbara TM All results are preliminary XXXVIIth Rencontres de Moriond QCD and Hadronic Interactions March 17, 2002 The CKM matrix

More information

Flavour Physics and CP Violation (FPCP) Philadelphia, Pennsylvania, USA May 16, 2002

Flavour Physics and CP Violation (FPCP) Philadelphia, Pennsylvania, USA May 16, 2002 NEW RESULTS ON MIXING FROM LEP STEPHEN ARMSTRONG European Organization for Nuclear Research (CERN) EP Division Geneva, Switzerland Flavour Physics and CP Violation (FPCP) Philadelphia, Pennsylvania, USA

More information

Optimizing Selection and Sensitivity Results for VV->lvqq, 6.5 pb -1, 13 TeV Data

Optimizing Selection and Sensitivity Results for VV->lvqq, 6.5 pb -1, 13 TeV Data 1 Optimizing Selection and Sensitivity Results for VV->lvqq, 6.5 pb, 13 TeV Supervisor: Dr. Kalliopi Iordanidou 215 Columbia University REU Home Institution: High Point University 2 Summary Introduction

More information

SHiP: a new facility with a dedicated detector for neutrino physics

SHiP: a new facility with a dedicated detector for neutrino physics SHiP: a new facility with a dedicated detector for neutrino physics Università "Federico II" and INFN, Naples, Italy E-mail: giovanni.de.lellis@cern.ch The SHiP facility recently proposed at CERN copiously

More information

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE Kai Schweda 1 on behalf of the ALICE Collaboration Physikalisches Institut der Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg,

More information

Final results from K2K and status of T2K

Final results from K2K and status of T2K Final results from K2K and status of T2K Masashi Yokoyama for K2K and T2K collaborations Department of Physics, Kyoto University The K2K (KEK-to-Kamioka) neutrino oscillation experiment is the first accelerator-based

More information

Results from the OPERA experiment in the CNGS beam

Results from the OPERA experiment in the CNGS beam Journal of Physics: Conference Series PAPER OPEN ACCESS Results from the OPERA experiment in the CNGS beam To cite this article: N Di Marco and OPERA Collaboration 2016 J. Phys.: Conf. Ser. 718 062017

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

The SHiP experiment and its detector for neutrino physics

The SHiP experiment and its detector for neutrino physics The SHiP experiment and its detector for neutrino physics Universitá di Napoli Federico II e INFN Napoli E-mail: annarita.buonaura@na.infn.it SHIP is a new general purpose fixed target facility, proposed

More information

1. The ICARUS T600 detector

1. The ICARUS T600 detector Acta Polytechnica 53(Supplement):775 780, 2013 Czech Technical University in Prague, 2013 doi:10.14311/ap.2013.53.0775 available online at http://ojs.cvut.cz/ojs/index.php/ap NEUTRINOS FROM ICARUS Christian

More information

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2) Beyond the Standard Model with Neutrinos and Nuclear Physics Solvay Workshop November 30, 2017 Darren R Grant The atmospheric

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Performance of muon and tau identification at ATLAS

Performance of muon and tau identification at ATLAS ATL-PHYS-PROC-22-3 22/2/22 Performance of muon and tau identification at ATLAS On behalf of the ATLAS Collaboration University of Oregon E-mail: mansoora.shamim@cern.ch Charged leptons play an important

More information

Flavor Physics beyond the SM. FCNC Processes in the SM

Flavor Physics beyond the SM. FCNC Processes in the SM Flavor Physics beyond the SM 48 FCNC Processes in the SM A SM ( B ΔF = ΔF = 1 W q W b b u, c, t q b u, c, t q 0 q B ) ~ ( V V 0 q ) tb tq g m 16π m t W A SM ( b q) = V V tb tq g 16π m m t W FCNC in SM

More information

Strangeness photoproduction at the BGO-OD experiment

Strangeness photoproduction at the BGO-OD experiment Strangeness photoproduction at the BGO-OD experiment Tom Jude On behalf of the BGO-OD Collaboration University of Bonn Supported by the DFG / SFB tr-16 NSTAR 215 Tom Jude (University of Bonn) Strangeness

More information

Today: Part I: Neutrino oscillations: beam experiments. Part II: Next tutorials: making distributions with histograms and ntuples

Today: Part I: Neutrino oscillations: beam experiments. Part II: Next tutorials: making distributions with histograms and ntuples Today: Part I: Neutrino oscillations: beam experiments Part II: Next tutorials: making distributions with histograms and ntuples Super-Kamiokande Physics II: Long Baseline Beams Neutrino Oscillations Assume

More information

Publications of Francesco Arneodo: journal articles

Publications of Francesco Arneodo: journal articles Publications of Francesco Arneodo: journal articles Figure 1: Citation report from ISI Web of Science (IF=31.0) [1] E. Aprile et al., First Axion Results from the XENON100 Experiment, arxiv.org (submitted

More information

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin Measurements of the dilepton continuum in ALICE Christoph Baumann 07.03.2012 Resonance Workshop, Austin ALICE Central Detectors: Inner Tracking System Time Projection Chamber Time-of-Flight Transition

More information

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011

PMT Signal Attenuation and Baryon Number Violation Background Studies. By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011 PMT Signal Attenuation and Baryon Number Violation Background Studies By: Nadine Ayoub Nevis Laboratories, Columbia University August 5, 2011 1 The Standard Model The Standard Model is comprised of Fermions

More information