Pre-Launch Characterization and In-orbit Calibration of GCOM-C/SGLI

Size: px
Start display at page:

Download "Pre-Launch Characterization and In-orbit Calibration of GCOM-C/SGLI"

Transcription

1 Pre-Launch Characterization and In-orbit Calibration of GCOM-C/SGLI IGARSS 2018 July 26, 2018 Japan Aerospace Exploration Agency Yoshihiko Okamura T. Hashiguchi, T. Urabe, K. Tanaka (JAXA) J Yoshida, T Sakashita, and T Amano (NEC)

2 Contents 1. Overview of GCOM-C satellite and SGLI 2. GCOM-C operation status 3. SGLI pre-launch characterization 4. SGLI in-orbit calibration 5. Summary and future plans IGARSS

3 1. Overview of GCOM-C satellite and SGLI (1) Global Change Observation Mission(GCOM) GCOM mission: Long-term observation of the earth s environment Two satellite series; GCOM-W SHIZUKU : Microwave observation for WATER CYCLE using AMSR2 (AMSR-E follow on) GCOM-C SHIKISAI : Optical multi-channel observation for RADIATION BUDGET and CARBON CYCLE using SGLI (GLI follow on) GCOM-W (WATER) AMSR2 GCOM-C (CLIMATE) SGLI GCOM-W was launched on May 18, GCOM-C was launched on Dec. 23, Sensor Advanced Microwave Radiometer 2 (AMSR2) Passive Microwave Observation Water vapor, soil moisture etc Sensor Second Generation Global Imager (SGLI) Optical Observation 380nm 12 micron Cloud, Aerosol, Vegetation, Chlorophyll etc IGARSS

4 1. Overview of GCOM-C satellite and SGLI (2) GCOM-C satellite SGLI IRS ELU SGLI VNR ELU +Y deep space +X flight direction + Z earth SGLI IRS SRU SGLI VNR SRU SGLI VNR IRS SRU ELU Second Generation Global Imager Visible and Near Infrared Radiometer Infrared Scanning Radiometer Scanning Radiometer Unit Electronic Unit Orbit Parameters Mission Life Orbit Type Local sun time Altitude above equator Inclination GCOM-C sun-synchronous, ground track repeat, nearcircular orbit 10:15 10:45 at descending node 798 km at Equator 98.6 degrees > 5 years IGARSS

5 1. Overview of GCOM-C satellite and SGLI (3) SGLI (Second Generation Global Imager) Non Polarized Observation Telescopes (24deg FOV x 3) Solar Diffuser Earth View Window Polarized Observation Telescopes (55deg FOV x2) Sun Cal. Window About 1.4m About 1.3m About 1.7m About 0.6m Deep Space Window Visible and Near Infrared Radiometer (SGLI-VNR) Sensor Unit Infrared Scanning Radiometer (SGLI-IRS) features SGLI VNR SGLI IRS Non Polarized Observation (11ch), IFOV 250m, Swath 1150km Polarized Observation(2ch), IFOV 1km, Swath 1150km Shortwave Infrared (SWI 4ch), IFOV 250m/1km, Swath 1400km Thermal Infrared (TIR:2ch), IFOV 500m, Swath 1400km IGARSS

6 1. Overview of GCOM-C satellite and SGLI (4) SGLI specifications The SGLI features are 250m spatial resolution and polarization/along-track slant view channels (VNR-PL), which will improve land, coastal, and aerosol observations. GCOM-C SGLI characteristics Sun-synchronous Orbit (descending local time: 10:30) Altitude 798km, Inclination 98.6deg Mission Life 5 years (3 satellites; total 13 years) Push-broom electric scan (VNR) Scan Wisk-broom mechanical scan (IRS) 1150km cross track (VNR: VN & P) Scan width 1400km cross track (IRS: SW & T) Digitalization 12bit Polarization 3 polarization angles for P Along track Nadir for VN, SW and T, direction +45 deg and -45 deg for P On-board calibration VN: Solar diffuser, LED, Lunar cal maneuvers, and dark current by masked pixels and nighttime obs. SW: Solar diffuser, LED, Lunar, and dark current by deep space window T: Black body and dark current by deep space window CH 250m over the Land or coastal area, and 1km over offshore SGLI channels L std L max SNR at Lstd IFOV VN, P: VN, P, SW: VN, P, SW: nm W/m T: m 2 /sr/ m SNR m T: Kelvin T: NE T VN VN VN VN VN VN Multi-angle VN obs. for VN and VN / nm VN VN P P SW SW SW SW T /1000 T /1000 IGARSS TIR: 500m resolution is also used 6

7 2. GCOM-C operation status GCOM-C SHIKISAI was successfully launched on Dec. 23 rd, SGLI checkout operation started on Jan. 1 st, 2018 (VNR and SWIR bands) and on Jan. 22 nd (IRS-TIR bands). SGLI first images were released on Jan. 12 th. IRS- As a result of the three-month activities for SGLI in-orbit checkout, all the SGLI functions are operating properly and SGLI maintains the predicted performances obtained by the pre-launch characterization tests. We moved on to the nominal operation phase on Mar. 28 th and keep the continuous global observation. SGLI calibration and validation activities have been carrying out towards the SGLI products release to public on Dec IGARSS

8 2. GCOM-C operation status SHIKISAI (=colorful) Earth Gallery Vegetation distribution of the middle of Japan JAXA Coral reefs in the Bahamas JAXA JAXA Namibia coast and Namib desert IGARSS Morning glow of Kamchatka peninsula JAXA 8

9 3. SGLI pre-launch characterization (1) SGLI characterization Flow Device/Component Test - Optical components - Detectors - Calibration devices - Electronic components -etc. <VNR> <IRS> NP and PL telescope Test - Radiometric test - Geometric test NP and PL Sub-unit Test - Radiometric test - Geometric test - Thermal vacuum test SGLI Proto-flight Test Initial Performance Test (IPT) - Initial radiometric test - Initial geometric test <IRS> SRU-ELU integration Test SRU Environment Test - Vibration test - Acoustic test - Thermal vacuum test -EMC test Final Performance Test (FPT) - Final radiometric test - Final geometric test <IRS> GCOM-C system Proto-flight Test Initial Performance Test (IPT) Environment Test - Vibration test - Acoustic test - Thermal vacuum test -EMC test Final Performance Test (FPT) End-to-End Test (w/ ground system) Launch-site Final test IGARSS

10 3. SGLI pre-launch characterization (2) SGLI Radiometric tests (VNR and IRS-SWIR) Three integrating spheres (ISs) were used for the pre-launch radiometric tests of reflective solar bands (VNR and IRS-SWIR). Barium sulfate IS and Spectralon IS for VNR Spectralon Gold-coated IS for IRS-SWIR Radiometric performances were characterized and satisfied the requirements. SNR, gain, dynamic range, stability, PRNU, linearity etc. IRS-SRU Gold-coated Integrating Sphere [Ref] Hashiguchi et. al. Radiometric performance of Secondgeneration Global Imager (SGLI) using integrating spheres," IGARSS Proc. 26 SPIE , (2016) 10

11 3. SGLI pre-launch characterization (2) SGLI Radiometric tests (VNR and IRS-SWIR) Traceability scheme from the national standard SGLI IRS VNR SGLI sensors are calibrated by integrating spheres of working standard. Integrating Sphere Gold coated Integrating Sphere Barium sulfate Integrating Sphere Spectralon Integrating Sphere Relative radiance Radiometer Standard Spectral Radiometer SW02 04 SW01 VN06 11 VN01 05 Transfer Radiometer Integrating spheres of working standard are traceable to each FPBB. Zn Cu Pt C Fixed Point Black Body FPBBs of primary standard are traceable to the national standard. National Standard Ref: Hashiguchi et. al. Radiometric performance of Secondgeneration Global Imager (SGLI) using integrating spheres," Proc. SPIE 10000, (2016) IGARSS

12 3. SGLI pre-launch characterization (3) SGLI Radiometric tests (TIR) Radiometric characterization of thermal infrared (TIR) bands was performed in the thermal-vacuum test using dedicated high emissivity blackbody (BB) instruments; Temperature variable BB on earth view port Cold BB on space view port IGARSS

13 3. SGLI pre-launch characterization (4) Pre-launch Calibration summary VNR Center Signal Level Band SNR Wavelength (Spec.) Level Lstd Saturation Ch width at Lstd nm W/m2/str/µm - VN VN VN VN NPN VN NPL VN NPR VN VN VN VN VN PL PL IRS-SWIR Center Signal Level Band SNR Wavelength (Spec.) Level Lstd Saturation Ch width at Lstd µm nm W/m2/str/µm - SW SW SWIR SW SW IRS-TIR TIR Ch Center Wavelength Signal Level Band Tstd width (Spec.) µm nm K K NEdT at Tstd T T All the requirements of pre-launch SGLI performances were confirmed to be satisfied. IGARSS

14 4. SGLI in-orbit Calibration (1) VNR Calibration concept Deployable Spectralon diffuser is used for both Solar and LED calibration. β angle dependency for solar calibration will be characterized shortly after launch using satellite yaw maneuver. Solar CAL LED CAL Sun Tilt Mechanism NP Tele. Left NP Tele. Center NP Tele. Right Tilt Mechanism NP Tele. Left NP Tele. Center NP Tele. Right LED and Monitor Bench Deployed Spectralon Diffuser Backward Tilting PL telescopes Diffuser Deploy Mechanism with safety function PL telescope IGARSS Tilting Mechanism 14

15 4. SGLI in-orbit Calibration (2) IRS Calibration concept IRS 81rpm rotating for both Earth Observation and Calibration. Calibration Window Spectralon Diffuser TIR Calibration : Black Body and Deep Space SWI Calibration : Diffused Solar Light, LED/Lamp and Deep Space Light Guide +Z (Earth) SCAN MIRROR Earth Observation +X (Sat. Velocity) +Y (Space) Light Guide Diffused Solar Light Deep Space SCAN MIRROR Light Guide BLACK BODY Halogen Lamp & LED SWI LED assembly ε >0.98 BLACK BODY IGARSS

16 4. SGLI in-orbit Calibration (3) VNR & IRS Lunar Calibration overview Moon reflecting solar light is a stable light source as a long term calibration reference of the optical sensors. GCOM-C lunar calibration maneuvers are planned every 29.5 days during 5 years mission. Lunar calibration data is evaluated using the GSICS lunar calibration tool (GIRO). Earth Lunar Observation Moon Calibration interval Lunar phase angle SGLI lunar observation Satellite Maneuver Requirement Every 29.5 days (= synodic period of the moon and the sun) 7deg +/-3deg All bands (VNR & IRS) 250m resolution - Pitch rate of 0.15 deg/s with high stability - Selectable roll angle (lunar image in SGLI swath) Pitch Maneuver Maneuver CT direction: about 29 pixels IGARSS AT direction: about 92 lines

17 4. SGLI in-orbit Calibration (4) Calibration operations Calibration methodology VNR SWIR TIR Calibration Events (*1) Onboard calibrator Solar diffuser Weekly Weekly - 1/10,11,16-18, 26, 2/3, 11, 19, 27, 3/15, 23, 28 Internal lamp Weekly Weekly - Hereafter, every 8 days. Dark image Weekly Weekly - Blackbody - - Every scan - Deep space - Every scan - Calibration maneuver Lunar calibration maneuver Monthly 1/31, 2/1, 3/1, 3/2, 4/1, 4/30, 5/30, 6/28 Solar angle correction maneuver Yearly - 1/4 90-deg. yaw maneuver Yearly - - 2/7, 2/17 Vicarious calibration Cross calibration Continued activities - (*) Except for dedicated checkout condition Several onboard calibration devices and calibration maneuvers have been used for SGLI calibration. Combination of calibration results from different methodologies and sources will provide us with good information for the systematic calibration error. IGARSS

18 4. SGLI in-orbit Calibration (5) Noise performances (SNR, NEdT) Preliminary Dark Noise [DN] VNR(NP) Dark Noise NPN VN01 VN02 VN03 VN04 VN05 VN06 VN07 VN08 VN09 VN10 VN11 Dark Noise [DN] VNR(PL) Dark Noise PL Pre launch Post launch_ Post launch_ m60 pm0 p60 m60 pm0 p60 Pre launch Post launch_ NPN Post launch_ NPN PL01 PL02 Noise [DN] SW1,2,4 Dark Noise (1km resolution) Pre launch Post launch( ) Post launch( ) NEdT Spec.: 0.2 resolution TIR 1 NEdT (250m resolution) Pre launch(@300k) Post launch(@290k) IRS(SWIR) Noise [DN] SW3 Dark Noise (250m resolution) Pre launch Post launch( ) Post launch( ) IRS(TIR) NEdT Spec.: 0.2 resolution TIR 2 NEdT (250m resolution) Pre launch(@300k) Post launch(@290k) SGLI in-orbit noise performances of all bands keep the pre-launch ones and satisfy the SNR and NEdT requirements. IGARSS

19 Solar calibration 4. SGLI in-orbit Calibration (6) VNR gain trend LED calibration Preliminary Lunar calibration VN03 (443nm) VN05 (530nm) VN07 (673nm) VN10 (868nm) PD Monitor 865nm 670nm 530nm 412nm 865nm 670nm 530nm 412nm (*) Ratio of SGLI observation to GIRO simulation IGARSS

20 4. SGLI in-orbit Calibration (6) VNR gain trend Preliminary 1.1 VNR Solar Cal. trend ( / ) NPL NPN NPL m60 pm0 p60 PDM 1.1 VNR internal Lamp Cal. trend ( / ) NPL NPN NPL m60 pm0 p60 PDM 1.1 VNR Lunar Cal. trend ( / ) NPL NPN NPL m60 pm0 p60 PDM Calibration Trend Calibration Trend Calibration Trend Solar cal. LED cal. Lunar cal Wavelength [nm] Wavelength [nm] Wavelength [nm] Output of VNR shorter wavelength bands is decreasing for Solar and LED cal. On the other hand, output of the lunar calibration is almost constant. In-orbit VNR observation gains itself are stable. (less than +- 1%) Decrease of the Solar and LED calibration output is due to degradation of Spectralon diffuser. (Solar light might be partially illuminated to the stored diffuser around south pole.) IGARSS

21 4. SGLI in-orbit Calibration (7) IRS gain trend Preliminary 1.01 SW3 gain trend using LED calibrator SW3 lamp Cal. trend (LED) Ratio to pre launch PIX1 PIX2 PIX3 PIX4 PIX5 PIX6 PIX7 PIX8 PIX9 PIX10 PIX11 PIX12 PIX13 PIX14 PIX15 PIX16 PIX17 PIX18 PIX19 PIX20 Pre launch 2018/1/ /1/ /1/ /2/3 2018/2/ /2/ /2/27 SW1,2,4 gain trend using Halogen lamp (ratio to SW3) Ratio to pre launch SW1 lamp Cal. trend (Halogen lamp, SW3 比 ) 1.01 PIX1 PIX2 PIX3 PIX PIX Ratio to pre launch SW2 lampcal.trend(halogenlamp,sw3 比 ) Ambient test Due to water vapor PIX1 PIX3 PIX5 PIX2 PIX4 Ratio to pre launch SW4 lamp Cal. trend (Halogen lamp, SW3 比 ) 1.01 PIX1 PIX2 PIX3 PIX PIX SWIR Lunar calibration trend (Ratio of SGLI observation to GIRO simulation) In-orbit SWIR observation gain are stable. (less than +- 1%) IGARSS

22 5. Summary and future plans As a result of the three-month checkout activities and preliminary calibration trend, All the SGLI functions are operating properly. SGLI maintains the predicted performances obtained by the pre-launch characterization tests. Calibration and validation activities are ongoing. SGLI scientific products will be released to public on December 2018 via JAXA G-Portal (data distribution system). Level 1 products Level 2 and 3 products (more than 28 scientific products including clouds, aerosols, ocean color, vegetation, snow and ice, and other applications.) IGARSS

23 5. Summary and future plans JAXA G-Portal Website IGARSS

24 5. Summary and future plans Vegetation distribution of the middle of Japan JAXA Coral reefs in the Bahamas JAXA Please look forward to using SGLI data!! Thank you. JAXA Namibia coast and Namib desert IGARSS Morning glow of Kamchatka peninsula JAXA 24

25 Acknowledgements SGLI Lunar calibration data was evaluated using the GSICS lunar calibration tool (GIRO: GSICS Implementation of the Robotic Lunar Observatory). The authors would like to thank the GIRO implementation agencies led by EUMETSAT and GSICS lunar calibration community for GIRO usage and technical assistance. IGARSS

GCOM-C/SGLI and its Lunar Calibration

GCOM-C/SGLI and its Lunar Calibration GCOM-C/SGLI and its Lunar Calibration Lunar Calibration Workshop December 1-4, 2014 JAXA/GCOM Proj. Yoshihiko Okamura (okamura.yoshihiko@jaxa.jp) 1. Overview of GCOM-C satellite and SGLI (1) Global Change

More information

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration

GCOM-C SGLI calibration and characterization. Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration GCOM-C SGLI calibration and characterization Hiroshi Murakami JAXA/EORC Satellite instrument pre- and post-launch calibration 1 1. SGLI sensor system and onboard calibration system Target: Improvement

More information

Keiji Imaoka Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) GSICS/GRWG Meeting Darmstadt, Germany March 25, 2014

Keiji Imaoka Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) GSICS/GRWG Meeting Darmstadt, Germany March 25, 2014 Keiji Imaoka Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) GSICS/GRWG Meeting Darmstadt, Germany March 25, 2014 JAXA Satellite Projects Late 1990s 2000s 2003 (JAXA

More information

Status of GCOM and expectation for microwave scatterometer

Status of GCOM and expectation for microwave scatterometer Status of GCOM and expectation for microwave scatterometer Keiji Imaoka 1, Misako Kachi 1, Tamotsu Igarashi 1, Keizo Nakagawa 1, Naoto Ebuchi 2, Taikan Oki 1,3, and Haruhisa Shimoda 1,4 1 Japan Aerospace

More information

generation Global Imager (SGLI)

generation Global Imager (SGLI) Operation Concept of the Second generation Global Imager (SGLI) October 13, 2010 SPIE meeting in Incheon Kazuhiro TANAKA *1, Yoshihiko OKAMURA *1 Takahiro Amano *2, Masaru Hiramatsu *2, Koichi Shiratama

More information

APPENDIX C OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM)

APPENDIX C OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM) APPENDIX C OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM) C-1 1. Introduction Comprehensive observation, understanding, assessment, and prediction of global climate change are common and important

More information

Related missions and programs for Snowfall and Snow Hydrology of JAXA

Related missions and programs for Snowfall and Snow Hydrology of JAXA Related missions and programs for Snowfall and Snow Hydrology of JAXA ALOS AVNIR-2 2006/11/05 Shuji Shimizu Japan Aerospace Exploration Agency (JAXA) Earth Observation Research Center (EORC) JAXA Earth

More information

GOSAT mission schedule

GOSAT mission schedule GOSAT mission schedule 29 21 12 1 2 3 4 6 7 8 9 1 11 12 1 2 214 1 2 3 ~ Jan. 23 Launch Initial Checkout Initial function check Initial Cal. and Val. Mission life Normal observation operation Extra Operati

More information

JAXA Earth Observation Satellites and the Validation

JAXA Earth Observation Satellites and the Validation JAXA Earth Observation Satellites and the Validation Keiji Imaoka + many colleagues Earth Observation Research Center (EORC) Japan Aerospace Exploration Agency (JAXA) March 9, 2012 4 th GRUAN ICM Meeting

More information

Agency Status Reports: JMA and JAXA

Agency Status Reports: JMA and JAXA Agency Status Reports: JMA and JAXA Kozo Okamoto (JMA : Japan Meteorological Agency) Misako Kachi, Tamotsu Igarashi (JAXA : Japan Aerospace Exploration Agency) JMA Status and plan of MTSAT (Himawari-6

More information

Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Thermal And Near infrared Sensor for carbon Observation (TANSO) onboard the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Appendix C Operation Policies of GOSAT and Basic Observation

More information

MODIS On-orbit Calibration Methodologies

MODIS On-orbit Calibration Methodologies MODIS On-orbit Calibration Methodologies Jack Xiong and Bill Barnes NASA/GSFC, Greenbelt, MD 20771, USA University of Maryland, Baltimore County, Baltimore MD, 21250, USA (Support provided by entire MCST

More information

Status of VIIRS Reflective Solar Bands On-orbit Calibration and Performance

Status of VIIRS Reflective Solar Bands On-orbit Calibration and Performance EOS Status of VIIRS Reflective Solar Bands On-orbit Calibration and Performance X. Xiong 1, J. Fulbright 2, N. Lei 2, J. Sun 2, Z. Wang 2, and J. McIntire 2 1. NASA/GSFC, Greenbelt, MD 20771, USA 2. Sigma

More information

Calibration of Ocean Colour Sensors

Calibration of Ocean Colour Sensors Dr. A. Neumann German Aerospace Centre DLR Remote Sensing Technology Institute Marine Remote Sensing What is Calibration, why do we need it? Sensor Components Definition of Terms Calibration Standards

More information

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart

MERIS US Workshop. Instrument Characterization Overview. Steven Delwart MERIS US Workshop Instrument Characterization Overview Steven Delwart Presentation Overview On-Ground Characterisation 1. Diffuser characterisation 2. Polarization sensitivity 3. Optical Transmission 4.

More information

Landsat-8 Operational Land Imager (OLI) Initial On-Orbit Performance

Landsat-8 Operational Land Imager (OLI) Initial On-Orbit Performance Landsat-8 Operational Land Imager (OLI) Initial On-Orbit Performance Geir Kvaran, Ed Knight, Khurrum Ansari, Kenton Lee, Brent Canova, Brian Donley Ball Aerospace & Technologies Corp. Hugh Kieffer Celestial

More information

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement

Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Thermal And Near infrared Sensor for carbon Observation (TANSO) On board the Greenhouse gases Observing SATellite (GOSAT) Research Announcement Appendix A Outlines of GOSAT and TANSO Sensor GOSAT (Greenhouse

More information

JAXA agency report. Masumi MATSUNAGA Satellite Applications and Operations Center(SAOC), JAXA

JAXA agency report. Masumi MATSUNAGA Satellite Applications and Operations Center(SAOC), JAXA JAXA agency report Masumi MATSUNAGA Satellite Applications and Operations Center(SAOC), JAXA JAXA Activities Space Transportation Human Space Activities Satellite Programs Lunar & Planetary Exploration

More information

Traceability to the GIRO and ROLO

Traceability to the GIRO and ROLO EOS Traceability to the GIRO and ROLO Jack Xiong (NASA) In collaboration with Tom Stone (USGS) Sébastien Wagner, Tim Hewison (EUMETSAT) Sophie Lachérade, Bertrand Fougnie (CNES) GSICS Lunar Calibration

More information

The EarthCARE mission: An active view on aerosols, clouds and radiation

The EarthCARE mission: An active view on aerosols, clouds and radiation The EarthCARE mission: An active view on aerosols, clouds and radiation T. Wehr, P. Ingmann, T. Fehr Heraklion, Crete, Greece 08/06/2015 EarthCARE is ESA s sixths Earth Explorer Mission and will be implemented

More information

A Comparative Study and Intercalibration Between OSMI and SeaWiFS

A Comparative Study and Intercalibration Between OSMI and SeaWiFS A Comparative Study and Intercalibration Between OSMI and SeaWiFS KOMPSAT-1 Bryan A. Franz NASA SIMBIOS Project Yongseung Kim Korea Aerospace Research Institute ORBVIEW-2 Abstract Since 1996, following

More information

GOSAT update. June Prepared by JAXA EORC Presented by David Crisp

GOSAT update. June Prepared by JAXA EORC Presented by David Crisp CEOS AC-VC GOSAT update June Prepared by JAXA EORC Presented by David Crisp GOSAT & GOSAT-2 Organization ORGANIZATION GOSAT is the joint project of JAXA, MOE (Ministry of the Environment) and NIES (National

More information

GCOM-W1 now on the A-Train

GCOM-W1 now on the A-Train GCOM-W1 now on the A-Train GCOM-W1 Global Change Observation Mission-Water Taikan Oki, K. Imaoka, and M. Kachi JAXA/EORC (& IIS/The University of Tokyo) Mini-Workshop on A-Train Science, March 8 th, 2013

More information

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation

Interpretation of Polar-orbiting Satellite Observations. Atmospheric Instrumentation Interpretation of Polar-orbiting Satellite Observations Outline Polar-Orbiting Observations: Review of Polar-Orbiting Satellite Systems Overview of Currently Active Satellites / Sensors Overview of Sensor

More information

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop

Angelika Dehn Rob Koopman 10 Years GOME on ERS-2 Workshop Angelika Dehn (ADehn@serco.it), Rob Koopman (Rob.Koopman@esa.int), Overview I. ERS-2 Mission History 1. Mission Plan Highlights 2. GOME Special Operations II. GOME-1 Engineering Performance 1. Routine

More information

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space)

Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space) Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) Mireya Etxaluze (STFC RAL Space) RAL Space Radiometry Group Dave Smith Mireya Etxaluze, Ed Polehampton, Caroline Cox, Tim Nightingale, Dan

More information

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space.

Atmospheric Lidar The Atmospheric Lidar (ATLID) is a high-spectral resolution lidar and will be the first of its type to be flown in space. www.esa.int EarthCARE mission instruments ESA s EarthCARE satellite payload comprises four instruments: the Atmospheric Lidar, the Cloud Profiling Radar, the Multi-Spectral Imager and the Broad-Band Radiometer.

More information

*C. Pan 1, F. Weng 2, T. Beck 2 and S. Ding 3

*C. Pan 1, F. Weng 2, T. Beck 2 and S. Ding 3 S NPP Ozone Mapping Profiler Suite Nadir Instrument Radiometric Calibration *C. Pan 1, F. Weng 2, T. Beck 2 and S. Ding 3 Curtsey of Ball Aerospace and Technologies Corp. * 1 ESSIC, University of Maryland,

More information

First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE)

First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE) First Lunar Results from the Moon & Earth Radiation Budget Experiment (MERBE) Grant Matthews Accelerating certainty in climate change prediction GSICS Lunar cal meeting 6 th Dec 2016 Overview "The single

More information

Status of S-NPP VIIRS Solar and Lunar Calibration

Status of S-NPP VIIRS Solar and Lunar Calibration Status of S-NPP VIIRS Solar and Lunar Calibration X. Xiong 1, N. Lei 2, J. Fulbright 2, and Z. Wang 2 1 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 2 Science Systems and Applications Inc.,

More information

Mission Objectives and Current Status of GOSAT (IBUKI) Japan Aerospace Exploration Agency Yasushi Horikawa

Mission Objectives and Current Status of GOSAT (IBUKI) Japan Aerospace Exploration Agency Yasushi Horikawa Mission Objectives and Current Status of GOSAT (IBUKI) Japan Aerospace Exploration Agency Yasushi Horikawa 1 Background of the Launch of the GOSAT project 1997 Adoption of the Kyoto Protocol 2002 Ratification

More information

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature

Lectures 7 and 8: 14, 16 Oct Sea Surface Temperature Lectures 7 and 8: 14, 16 Oct 2008 Sea Surface Temperature References: Martin, S., 2004, An Introduction to Ocean Remote Sensing, Cambridge University Press, 454 pp. Chapter 7. Robinson, I. S., 2004, Measuring

More information

MODIS Reflective Solar Bands Calibration Algorithm and On-orbit Performance

MODIS Reflective Solar Bands Calibration Algorithm and On-orbit Performance MODIS Reflective Solar Bands Calibration Algorithm and On-orbit Performance X. (Jack) Xiong* a, J. Sun a, J. Esposito a, B. Guenther b, and W. Barnes c a Science Systems and Applications, Inc., 10210 Greenbelt

More information

Eight Years MOS-IRS Summary of Calibration Activities

Eight Years MOS-IRS Summary of Calibration Activities Eight Years MOS-IRS Summary of Calibration Activities Workshop on Inter-Comparison of Large Scale Optical and Infrared Sensors 12 14 October 2004, ESA / ESTEC Noordwijk, The Netherlands Horst Schwarzer,

More information

The VENμS mission: Earth Observation with High Spatial and Temporal Resolution Capabilities

The VENμS mission: Earth Observation with High Spatial and Temporal Resolution Capabilities Ben Gurion University The VENμS mission: Earth Observation with High Spatial and Temporal Resolution Capabilities G. Dedieu 1, O. Hagolle 2, A. Karnieli 3, S. Cherchali 2 P. Ferrier 2 and Y. Yaniv 4 1

More information

Project update from JAXA: GCOM-C1/SGLI

Project update from JAXA: GCOM-C1/SGLI Project update from JAXA: GCOM-C1/SGLI GCOM-C1: Global Change Observation Mission Climate, 1st satellite SGLI: Second-generation GLobal Imager Hiroshi Murakami JAXA/EORC ICAP 2013 Tsukuba Working group

More information

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations

VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations VIIRS SDR Cal/Val: S-NPP Update and JPSS-1 Preparations VIIRS SDR Cal/Val Posters: Xi Shao Zhuo Wang Slawomir Blonski ESSIC/CICS, University of Maryland, College Park NOAA/NESDIS/STAR Affiliate Spectral

More information

JAXA s Contributions to the Climate Change Monitoring

JAXA s Contributions to the Climate Change Monitoring 0 JAXA s Contributions to the Climate Change Monitoring June 7, 2011 Takao Akutsu Planning Manager Japan Aerospace Exploration Agency (JAXA) Japanese Main Activities of Earth Observation 1 GEOSS 10 years

More information

GMES: calibration of remote sensing datasets

GMES: calibration of remote sensing datasets GMES: calibration of remote sensing datasets Jeremy Morley Dept. Geomatic Engineering jmorley@ge.ucl.ac.uk December 2006 Outline Role of calibration & validation in remote sensing Types of calibration

More information

AN UPDATE OF MICROCARB PROJECT PROGRESS AND PERSPECTIVE.

AN UPDATE OF MICROCARB PROJECT PROGRESS AND PERSPECTIVE. AN UPDATE OF MICROCARB PROJECT PROGRESS AND PERSPECTIVE. PROJECT STATUS Francois BUISSON CNES Francois-Marie BREON - LSCE June 8th, 2017 1 13th IWGGMS Helsinki June 6-8, 2017 PROJECT IMPLEMENTATION STATUS

More information

Status of GCOM-W1 and

Status of GCOM-W1 and Status of GCOM-W1 and GCOM-W2 OVWST Barcelona, Spain May18,2010 Haruhisa Shimoda, Keiji Imaoka, Norimasa Ito, Keizo Nakagawa EORC, JAXA CONTENTS What is GCOM mission AMSR-E status GCOM-W1 satellite GCOM-W1

More information

Minutes of the First Meeting. of the IOCCG Working Group. L1 Requirements for Ocean-Colour Remote Sensing. April 20-21, 2010

Minutes of the First Meeting. of the IOCCG Working Group. L1 Requirements for Ocean-Colour Remote Sensing. April 20-21, 2010 Minutes of the First Meeting of the IOCCG Working Group L1 Requirements for Ocean-Colour Remote Sensing April 20-21, 2010 Bethesda, Maryland (Washington, D.C.), USA Participants: - Charles R. McClain (chair,

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010

Orbit Design Marcelo Suárez. 6th Science Meeting; Seattle, WA, USA July 2010 Orbit Design Marcelo Suárez Orbit Design Requirements The following Science Requirements provided drivers for Orbit Design: Global Coverage: the entire extent (100%) of the ice-free ocean surface to at

More information

Remote Sensing I: Basics

Remote Sensing I: Basics Remote Sensing I: Basics Kelly M. Brunt Earth System Science Interdisciplinary Center, University of Maryland Cryospheric Science Laboratory, Goddard Space Flight Center kelly.m.brunt@nasa.gov (Based on

More information

Yi Liu TanSat Science Team

Yi Liu TanSat Science Team 12th International Workshop on Greenhouse Gas Measurements from Space The Pre Launch Status of TanSat Mission Yi Liu TanSat Science Team Institute of Atmospheric Physics, Chinese Academy of Sciences 9

More information

The EarthCARE mission: An active view on aerosols, clouds and radiation

The EarthCARE mission: An active view on aerosols, clouds and radiation The EarthCARE mission: An active view on aerosols, clouds and radiation T. Wehr, T. Fehr, P. Ingmann, J. v. Bismarck ESRIN, Frascati, Italy 20/10/2015 EARTH Clouds, Aerosols and Radiation Explorer EarthCARE

More information

(A)ATSR and SLSTR VIS/SWIR Channels Calibration

(A)ATSR and SLSTR VIS/SWIR Channels Calibration (A)ATSR and SLSTR VIS/SWIR Channels Calibration Dave Smith & Mireya Etxaluze 2017 RAL Space 1 ATSR Series 1991-2000 ATSR-1 1995-2008 ATSR-2 2002-2012- AATSR 2 SLSTR Series 2016 Sentinel 3A 2018 Sentinel

More information

OVERVIEW OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1)

OVERVIEW OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1) OVERVIEW OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1) Misako Kachi, Keiji Imaoka, Hideyuki Fujii, Daisaku Uesawa, Kazuhiro Naoki, Akira Shibata, Tamotsu Igarashi, Earth

More information

APPENDIX 1 OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM)

APPENDIX 1 OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM) APPENDIX 1 OVERVIEW OF THE GLOBAL CHANGE OBSERVATION MISSION (GCOM) 1-1 1. Introduction Comprehensive observation, understanding, assessment, and prediction of global climate change are common and important

More information

HICO Science Mission Overview

HICO Science Mission Overview HICO Science Mission Overview Michael R. Corson* and Curtiss O. Davis** * Naval Research Laboratory Washington, DC corson@nrl.navy.mil ** College of Oceanic and Atmospheric Sciences Oregon State University

More information

The Compact Infrared Imager and Radiometer

The Compact Infrared Imager and Radiometer The Compact Infrared Imager and Radiometer Earth System Science from a 6U nanosat? Neil Bowles (Univ. Oxford) On behalf of the CIIR Consortium. 22 April 2015 CEOI-ST Technology 1 The Why study a tightly

More information

Overview of Hyperion On-Orbit Instrument Performance, Stability, and Artifacts

Overview of Hyperion On-Orbit Instrument Performance, Stability, and Artifacts Overview of Hyperion On-Orbit Instrument Performance, Stability, and Artifacts EO-1 Science Validation Team Meeting November 21, 2002 Debbie Beiso TRW Space and Electronics Redondo Beach, CA San Francisco

More information

MODIS and VIIRS Reflective Solar Bands Calibration, Performance, and Inter-comparison

MODIS and VIIRS Reflective Solar Bands Calibration, Performance, and Inter-comparison EOS MODIS and VIIRS Reflective Solar Bands Calibration, Performance, and Inter-comparison Jack Xiong 1, Aisheng Wu 1, and Changyong Cao 2 1. NASA/GSFC; 2. NOAA/STAR Other Contributors: NASA MCST and VCST

More information

Operational systems for SST products. Prof. Chris Merchant University of Reading UK

Operational systems for SST products. Prof. Chris Merchant University of Reading UK Operational systems for SST products Prof. Chris Merchant University of Reading UK Classic Images from ATSR The Gulf Stream ATSR-2 Image, ƛ = 3.7µm Review the steps to get SST using a physical retrieval

More information

STATUS OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1)

STATUS OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1) STATUS OF THE FIRST SATELLITE OF THE GLOBAL CHANGE OBSERVATION MISSION - WATER (GCOM-W1) Misako Kachi 1, Keiji Imaoka 1, Masahiro Hori 1, Kazuhiro Naoki 1, Takashi Maeda 1, Arata Okuyama 1, Marehiro Kasahara

More information

Vicarious calibration of GLI by global datasets. Calibration 5th Group Hiroshi Murakami (JAXA EORC)

Vicarious calibration of GLI by global datasets. Calibration 5th Group Hiroshi Murakami (JAXA EORC) Vicarious calibration of GLI by global datasets Calibration 5th Group Hiroshi Murakami (JAXA EORC) ADEOS-2 PI workshop March 2004 1 0. Contents 1. Background 2. Operation flow 3. Results 4. Temporal change

More information

Status of GOCI-II Development

Status of GOCI-II Development Status of GOCI-II Development Seongick CHO On the behalf of Dr. YoungJe Park, Director of KOSC Korea Ocean Satellite Center (KOSC) Korea Institute of Ocean Science & Technology (KIOST) IOCS Meeting 2015,

More information

Calibration of MERIS on ENVISAT Status at End of 2002

Calibration of MERIS on ENVISAT Status at End of 2002 Calibration of MERIS on ENVISAT Status at End of 2002 Bourg L. a, Delwart S. b, Huot J-P. b a ACRI-ST, 260 route du Pin Montard, BP 234, 06904 Sophia-Antipolis Cedex, France b ESA/ESTEC, P.O. Box 299,

More information

The Earth Climate Hyperspectral Observatory: Advances in Climate Change Detection, Attribution, and Remote Sensing

The Earth Climate Hyperspectral Observatory: Advances in Climate Change Detection, Attribution, and Remote Sensing The Earth Climate Hyperspectral Observatory: Advances in Climate Change Detection, Attribution, and Remote Sensing Peter Pilewskie, Greg Kopp, Odele Coddington, Sebastian Schmidt, Tom Sparn University

More information

Long-term Water Cycle Observation by the Advanced Microwave Scanning Radiometer (AMSR) Series: AMSR-E, AMSR2 and Follow-on

Long-term Water Cycle Observation by the Advanced Microwave Scanning Radiometer (AMSR) Series: AMSR-E, AMSR2 and Follow-on Long-term Water Cycle Observation by the Advanced Microwave Scanning Radiometer (AMSR) Series: AMSR-E, AMSR2 and Follow-on M. Kachi 1), H. Fujii 1), T. Kubota 1), T. Maeda 1), N. Ono 1), M. Kasahara 1),

More information

AIRS Level 1b. Tom Pagano AIRS Project Project Manager. Hartmut Aumann AIRS Project Scientist

AIRS Level 1b. Tom Pagano AIRS Project Project Manager. Hartmut Aumann AIRS Project Scientist AIRS Level 1b Tom Pagano AIRS Project Project Manager Hartmut Aumann AIRS Project Scientist Jet Propulsion Laboratory California Institute of Technology and Ken Overoye AIRS Calibration System Engineer

More information

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ. Meteorological Satellite Image Interpretations, Part III Acknowledgement: Dr. S. Kidder at Colorado State Univ. Dates EAS417 Topics Jan 30 Introduction & Matlab tutorial Feb 1 Satellite orbits & navigation

More information

Characterization of the VIIRS Blackbody Emittance

Characterization of the VIIRS Blackbody Emittance Characterization of the VIIRS Blackbody Emittance Jeremy Kloepfer, Chris Taylor, and Vijay Murgai jeremiah_kloepfer@raytheon.com Conference on Characterization and Radiometric Calibration for Remote Sensing,

More information

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission

CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 1 CIRiS: Compact Infrared Radiometer in Space LCPM, August 16, 2017 David Osterman PI, CIRiS Mission 8/15/201 7 Overview of the CIRiS instrument and mission The CIRiS instrument is a radiometric thermal

More information

Lecture 4: Radiation Transfer

Lecture 4: Radiation Transfer Lecture 4: Radiation Transfer Spectrum of radiation Stefan-Boltzmann law Selective absorption and emission Reflection and scattering Remote sensing Importance of Radiation Transfer Virtually all the exchange

More information

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER

SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER SCIAMACHY REFLECTANCE AND POLARISATION VALIDATION: SCIAMACHY VERSUS POLDER L. G. Tilstra (1), P. Stammes (1) (1) Royal Netherlands Meteorological Institute (KNMI), P.O. Box 201, 3730 AE de Bilt, The Netherlands

More information

ARCHIVED REPORT. Defense Meteorological Satellite Program - Archived 11/2005

ARCHIVED REPORT. Defense Meteorological Satellite Program - Archived 11/2005 Electronic Systems Forecast ARCHIVED REPORT For data and forecasts on current programs please visit www.forecastinternational.com or call +1 203.426.0800 Defense Meteorological Satellite Program - Archived

More information

NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission update

NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission update NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission update Antonio Mannino1, Jeremy Werdell1, Brian Cairns2 NASA GSFC1 and GISS2 Acknowledgments: PACE Team https://pace.gsfc.nasa.gov 1 Outline

More information

Uncertainties in Sentinel-3 Sea and Land Surface Temperature Radiometer Thermal Infrared Calibration

Uncertainties in Sentinel-3 Sea and Land Surface Temperature Radiometer Thermal Infrared Calibration Uncertainties in Sentinel-3 Sea and Land Surface Temperature Radiometer Thermal Infrared Calibration Dave Smith; Arrow Lee; Mireya Extaluze; Edward Polehampton; Tim Nightingale; Elliot Newman; Dan Peters

More information

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C.

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C. Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C. Price Published in the Journal of Geophysical Research, 1984 Presented

More information

Tracking On-orbit Radiometric Accuracy and Stability of Suomi NPP VIIRS using Extended Low Latitude SNOs

Tracking On-orbit Radiometric Accuracy and Stability of Suomi NPP VIIRS using Extended Low Latitude SNOs Tracking On-orbit Radiometric Accuracy and Stability of Suomi NPP VIIRS using Extended Low Latitude SNOs Sirish Uprety a Changyong Cao b Slawomir Blonski c Xi Shao c Frank Padula d a CIRA, Colorado State

More information

Remote Sensing How we know what we know A Brief Tour

Remote Sensing How we know what we know A Brief Tour Remote Sensing How we know what we know A Brief Tour Dr. Erik Richard Dr. Jerald Harder LASP Richard 1 Remote Sensing The measurement of physical variables (usually light or sound) from outside of a medium

More information

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas

Joint Polar Satellite System. 3 rd Post-EPS User Consultation Workshop Mike Haas 3 rd Post-EPS User Consultation Workshop Mike Haas Overview Introduction - Policy Drivers - Management System Description - Space Segment - Ground Segment Partnerships Status Benefits 2 Introduction (Policy

More information

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation

Topics: Visible & Infrared Measurement Principal Radiation and the Planck Function Infrared Radiative Transfer Equation Review of Remote Sensing Fundamentals Allen Huang Cooperative Institute for Meteorological Satellite Studies Space Science & Engineering Center University of Wisconsin-Madison, USA Topics: Visible & Infrared

More information

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2

Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 Graphics: ESA Graphics: ESA Graphics: ESA Long-Term Time Series of Water Vapour Total Columns from GOME, SCIAMACHY and GOME-2 S. Noël, S. Mieruch, H. Bovensmann, J. P. Burrows Institute of Environmental

More information

MSG system over view

MSG system over view MSG system over view 1 Introduction METEOSAT SECOND GENERATION Overview 2 MSG Missions and Services 3 The SEVIRI Instrument 4 The MSG Ground Segment 5 SAF Network 6 Conclusions METEOSAT SECOND GENERATION

More information

SCIAMACHY IN-FLIGHT CALIBRATION

SCIAMACHY IN-FLIGHT CALIBRATION SCIAMACHY IN-FLIGHT CALIBRATION Ralph Snel SRON Netherlands Institute for Space Research Sorbonnelaan 2, 3584 CA Utrecht, the Netherlands Email: R.Snel@sron.nl ABSTRACT The options for SCIAMACHY in-flight

More information

REMOTE SENSING TEST!!

REMOTE SENSING TEST!! REMOTE SENSING TEST!! This is a really ugly cover page I m sorry. Name. Score / 100 Directions: (idk if I need to put this???) You have 50 minutes to take this test. You may use a cheatsheet (2 pages),

More information

Satellite observation of atmospheric dust

Satellite observation of atmospheric dust Satellite observation of atmospheric dust Taichu Y. Tanaka Meteorological Research Institute, Japan Meteorological Agency 11 April 2017, SDS WAS: Dust observation and modeling @WMO, Geneva Dust observations

More information

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels

Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels MET 4994 Remote Sensing: Radar and Satellite Meteorology MET 5994 Remote Sensing in Meteorology Lecture 19: Operational Remote Sensing in Visible, IR, and Microwave Channels Before you use data from any

More information

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference

Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Cross-calibration of Geostationary Satellite Visible-channel Imagers Using the Moon as a Common Reference Thomas C. Stone U.S. Geological Survey, Flagstaff AZ, USA 27 30 August, 2012 Motivation The archives

More information

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform

Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Comparison of NASA AIRS and MODIS Land Surface Temperature and Infrared Emissivity Measurements from the EOS AQUA platform Robert Knuteson, Steve Ackerman, Hank Revercomb, Dave Tobin University of Wisconsin-Madison

More information

NASA s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) AVIRIS: PEARL HARBOR, HAWAII

NASA s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) AVIRIS: PEARL HARBOR, HAWAII AVIRIS: PEARL HARBOR, HAWAII 000412 NASA s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) LCLUC Update Robert O. Green (Tom Chrien, presenting) Jet Propulsion Laboratory Overview Objective & Approach

More information

Ocean Colour: Calibration Approach. CEOS WGCV-39, May The International Ocean Colour Coordinating Group

Ocean Colour: Calibration Approach. CEOS WGCV-39, May The International Ocean Colour Coordinating Group Ocean Colour: Calibration Approach CEOS WGCV-39, May 2015 The International Ocean Colour Coordinating Group Ocean Colour requires special calibration considerations Percentage of ocean signal in the total

More information

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team

PLANET-C: Venus Climate Orbiter mission from Japan. Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team PLANET-C: Venus Climate Orbiter mission from Japan Takeshi Imamura Japan Aerospace Exploration Agency PLANET-C team Venus Climate Orbiter JAXA s 24th science spacecraft dedicated to the exploration of

More information

ICE IN THE FAR-IR & DIVINER 3. Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese Additional Contributions: Tim Schofield & Paul Hayne

ICE IN THE FAR-IR & DIVINER 3. Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese Additional Contributions: Tim Schofield & Paul Hayne ICE IN THE FAR-IR & DIVINER 3 Far-IR Subteam: Ben Greenhagen, Christopher Edwards, Dan McCleese Additional Contributions: Tim Schofield & Paul Hayne WHY FAR IR? ~45µm fundamental ice feature (e.g. Moore

More information

JAXA Remote Sensing Satellite Missions Utilization for Earth and Environment Observation

JAXA Remote Sensing Satellite Missions Utilization for Earth and Environment Observation JAXA Remote Sensing Satellite Missions Utilization for Earth and Environment Observation 27 th June 2013 Toshiyoshi Kimura EORC/JAXA Inventory, Modeling and Climate Impacts of Greenhouse Gas emissions

More information

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc.

SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. SBUV(/2) and SSBUV Solar Irradiance Measurements Matthew DeLand, Richard Cebula, Liang-Kang Huang Science Systems and Applications, Inc. (SSAI) Solar Spectral Irradiance Variations Workshop NIST, Gaithersburg,

More information

MODIS on-orbit spatial characterization results using ground measurements

MODIS on-orbit spatial characterization results using ground measurements MODIS on-orbit spatial characterization results using ground measurements Yong Xie 1, Xiaoxiong Xiong 2, John J Qu 1,2, Nianzeng Che 3, Lingli Wang 1 1 Center for Earth Observing and Space Research (CEOSR)

More information

GSICS in CMA. Peng ZHANG, Xiuqing Hu, Ling Sun, Lin Chen, Na Xu, Yuan Li, Chengli Qi, Qiang Guo etc

GSICS in CMA. Peng ZHANG, Xiuqing Hu, Ling Sun, Lin Chen, Na Xu, Yuan Li, Chengli Qi, Qiang Guo etc GSICS in CMA Peng ZHANG, Xiuqing Hu, Ling Sun, Lin Chen, Na Xu, Yuan Li, Chengli Qi, Qiang Guo etc National Satellite Meteorological Center, CMA July 15-16, Tokyo, Japan Outline GSICS history in CMA Current

More information

Reminder: All answers MUST GO ON ANSWER SHEET! Answers recorded in the exam booklet will not count.

Reminder: All answers MUST GO ON ANSWER SHEET! Answers recorded in the exam booklet will not count. Reminder: All answers MUST GO ON ANSWER SHEET! Answers recorded in the exam booklet will not count. 1. Identify the following acronyms; compare these platform types; provide situations where one platform

More information

Line Parameters and Forward Calculation for Rertrieving Carbon Dioxide and Methane (CO 2 & CH 4 ) from GOSAT Data

Line Parameters and Forward Calculation for Rertrieving Carbon Dioxide and Methane (CO 2 & CH 4 ) from GOSAT Data 11th HITRAN Database Conference, Harvard-Smithsonian Center for Astrophysics in Cambridge MA, USA 16 June 2010 Line Parameters and Forward Calculation for Rertrieving Carbon Dioxide and Methane (CO 2 &

More information

Sumi-NPP OMPS Calibration and Characterization from Early Orbit Images

Sumi-NPP OMPS Calibration and Characterization from Early Orbit Images Sumi-NPP OMPS Calibration and Characterization from Early Orbit Images *C. Pan 1, F. Weng 2, X. Wu 2, L. Flynn 2, G. Jaross 3 and S. Janz 4 * 1 ESSIC, University of Maryland, College Park, MD 20740 2 NOAA

More information

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL

THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL THE GLI 380-NM CHANNEL APPLICATION FOR SATELLITE REMOTE SENSING OF TROPOSPHERIC AEROSOL Robert Höller, 1 Akiko Higurashi 2 and Teruyuki Nakajima 3 1 JAXA, Earth Observation Research and Application Center

More information

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2

OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2 OCEAN COLOUR MONITOR ON-BOARD OCEANSAT-2 Rangnath R Navalgund Space Applications Centre Indian Space Research Organisation Ahmedabad-380015, INDIA OCEANSAT-2 2 MISSION OCEANSAT-2 2 is a global mission

More information

Preparation for Himawari 8

Preparation for Himawari 8 Preparation for Himawari 8 Japan Meteorological Agency Meteorological Satellite Center Hidehiko MURATA ET SUP 8, WMO HQ, Geneva, 14 17 April 2014 1/18 Introduction Background The Japan Meteorological Agency

More information

Extension of the targets for the GOSAT SWIR XCO 2 and XCH 4 retrievals

Extension of the targets for the GOSAT SWIR XCO 2 and XCH 4 retrievals Extension of the targets for the GOSAT SWIR XCO 2 and XCH 4 retrievals Y. Yoshida 1 (yoshida.yukio@nies.go.jp), N. Kikuchi 1, M. Inoue 1, I. Morino 1, O. Uchino 1, T. Yokota 1, and TCCON partners 2 1 National

More information

Absolute Radiance Re-Calibration of FIRST

Absolute Radiance Re-Calibration of FIRST Utah State University DigitalCommons@USU Space Dynamics Lab Publications Space Dynamics Lab 1-1-2012 Absolute Radiance Re-Calibration of FIRST Harri Latvakoski Utah State University Marty Mylncak Utah

More information

F O U N D A T I O N A L C O U R S E

F O U N D A T I O N A L C O U R S E F O U N D A T I O N A L C O U R S E December 6, 2018 Satellite Foundational Course for JPSS (SatFC-J) F O U N D A T I O N A L C O U R S E Introduction to Microwave Remote Sensing (with a focus on passive

More information