Probing the Origin of the Universe with the EBEX Balloon-Borne Telescope. Kate Raach University of Minnesota Twin Cities

Size: px
Start display at page:

Download "Probing the Origin of the Universe with the EBEX Balloon-Borne Telescope. Kate Raach University of Minnesota Twin Cities"

Transcription

1 Probing the Origin of the Universe with the EBEX Balloon-Borne Telescope Kate Raach University of Minnesota Twin Cities

2 History of the Universe Inflation: Universe expands by a factor of in only seconds = = Image Courtesy WMAP Science Team Time

3 History of the Universe Inflation: Universe expands by a factor of in only seconds. Cosmic Microwave Background (CMB) photons emitted (~ years) Image Courtesy WMAP Science Team Time

4 History of the Universe Inflation: Universe expands by a factor of in only seconds. Cosmic Microwave Background (CMB) photons emitted (~ years) First stars form (~500 million years) Image Courtesy WMAP Science Team Time

5 History of the Universe Inflation: Universe expands by a factor of in only seconds. Cosmic Microwave Background (CMB) photons emitted (~ years) First stars form (~500 million years) Structure Formation: Galaxies, Planets, etc. Image Courtesy WMAP Science Team Time

6 History of the Universe Inflation: Universe expands by a factor of in only seconds. Cosmic Microwave Background (CMB) photons emitted (~ years) First stars form (~500 million years) Structure Formation: Galaxies, Planets, etc. Today (~14 billion years) Image Courtesy WMAP Science Team Time

7 History of the Universe The CMB is a baby picture of the universe Image Courtesy WMAP Science Team Time

8 What can we learn from the CMB? How old is the universe? How did the universe begin? What is the universe made of? Have the contents changed over time? How did the large structures in our universe form? What is the geometry of space (e.g. flat, curved)? How will the universe evolve in the future? ESA Planck Collaboration

9 Polarization Light is a wave with both an amplitude and a direction Wikimedia Commons, User:Heron Unpolarized Polarized

10 The CMB is Polarized E-modes: Density perturbations in the primordial soup B-modes: Gravity waves generated at the time of inflation Krauss, Science May 2010 WMAP Science Team

11 A balloon-borne telescope designed to measure the polarization of the CMB EBEX in a nutshell First science flight from Antarctica in December 2012/January 2013

12 EBEX Collaboration APC Paris Radek Stompor Berkeley Lab Julian Borrill Ted Kisner Brown University Kyle Helson Andrei Korotkov Greg Tucker Cardiff Peter Ade Enzo Pascale Columbia University Daniel Chapman Joy Didier Seth Hillbrand Brad Johnson Michele Limon Amber Miller Britt Reichborn- Kjennerud IAS-Orsay Julien Grain Imperial College Andrew Jaffe Stephen Feeney Donnacha Kirk LAL-Orsay Matthieu Tristram McGill University Kevin Bandura Matt Dobbs Kevin MacDermid Graeme Smecher NIST Gene Hilton Hannes Hubmayr Kent Irwin Carl Reintsema SISSA-Trieste Carlo Baccigalupi Giuseppe Puglisi University of California/Berkeley Adrian Lee Ben Westbrook University of Minnesota/Twin Cities Asad Aboobaker Francois Aubin Chaoyun Bao Bikramjit Chandra Christopher Geach Shaul Hanany (PI) Terry Jones Jeff Klein Michael Milligan Kate Raach Karl Young Kyle Zilic Weizmann Institute of Science Lorne Levinson Ilan Sagiv

13 Long Duration Ballooning (LDB) At Launch At Float (120,000 ft) Asad Aboobaker NASA Columbia Scientific Balloon Facility

14 Antarctic LDB Facility Photo: Asad Aboobaker

15 Antarctic LDB Facility Photo: Daniel Chapman

16 EBEX Telescope Sun Shades Solar Panels Sun Shades 25 ft Ground Shield Ground Shield 6000 lb Suspended Science Weight 2.6 kwatt max provided by panels Photo: Asad Aboobaker

17 EBEX Telescope Star Camera Receiver Secondary Mirror Gyros Readout Electronics Primary Mirror

18 EBEX Detectors mm 3 mm 30 cm 8.6 cm 0.1 mm

19 EBEX Detectors ground technology -> balloon environment testing and characterization operation

20 EBEX Status First science flight was successful 25 days at float, 11 days of cryogens (as predicted) first time this type of detectors recorded science data in a spacelike environment Data recovered January 2013; Instrument recovered November 2013 Data analysis and mapmaking is in progress Photo: Asad Aboobaker

21 EBEX Recovery Photo: Asad Aboobaker

22 EBEX Recovery January 2013 November 2013 Photos: Asad Aboobaker

23 EBEX Recovery Photo: Asad Aboobaker

24 Minnesota State Fair UMN Math & Science Family Fun Fair Lab tours for: EBEXers Around Town grade school students (Girls Day for TCGIS) high school students (QuarkNet, UMN CSE outreach) undergraduate students (prospective physics majors, experimental physics lab) graduate students

25 Acknowledgements Minnesota Space Grant Consortium NASA Canada Space Agency National Science Foundation Canada Research Chairs Program Natural Sciences and Engineering Research Council of Canada Canadian Institute for Advanced Research Science and Technology Facilities Council (UK) Minnesota Supercomputing Institute National Energy Research Scientific Computing Center Rhode Island Space Grant Consortium Funding from Collaborating Institutions Sigma Xi Private Donations Photo: Francois Aubin

The E and B Experiment (EBEX): Overview and status

The E and B Experiment (EBEX): Overview and status The E and B Experiment (EBEX): Overview and status Michael Milligan and the EBEX Collaboration Great Lakes Cosmology Workshop X: June 14, 2010 Collaboration APC Paris Radek Stompor Berkeley Lab Julian

More information

arxiv: v1 [astro-ph.im] 28 Jan 2016

arxiv: v1 [astro-ph.im] 28 Jan 2016 April 6, 2018 13:1 WSPC Proceedings - 9.75in x 6.5in main page 1 1 Temperature calibration of the E and B experiment François Aubin, Asad M. Aboobaker, Chaoyun Bao, Christopher Geach, Shaul Hanany, Terry

More information

The EBEX. Michele Limon Columbia University Inflation Probe Systematics Workshop Annapolis, MD July 28-30

The EBEX. Michele Limon Columbia University Inflation Probe Systematics Workshop Annapolis, MD July 28-30 The EBEX Michele Limon Columbia University Inflation Probe Systematics Workshop Annapolis, MD July 28-30 Collaboration APC Paris Radek Stompor Brown University Andrei Korotkov John Macaluso Greg Tucker

More information

arxiv: v2 [astro-ph.im] 3 May 2017

arxiv: v2 [astro-ph.im] 3 May 2017 Torsional Balloon Flight Line Oscillations: Comparison of Modelling to Flight Data arxiv:1702.01817v2 [astro-ph.im] 3 May 2017 François Aubin University of Minnesota School of Physics and Astronomy, Minneapolis,

More information

Development of a cryogenic remote sensing thermometer for CMB polarization experiment

Development of a cryogenic remote sensing thermometer for CMB polarization experiment Development of a cryogenic remote sensing thermometer for CMB polarization experiment Y. Sakurai 1, T. Matsumura 1, N. Katayama 1, H. Kanai 2, T. Iida 3 1 Kavli Institute for the Physics and Mathematics

More information

MAXIPOL. Shaul Hanany. Observational Cosmology - University of Minnesota

MAXIPOL. Shaul Hanany. Observational Cosmology - University of Minnesota MAXIPOL Shaul Hanany 1 MAXIPOL NA Balloon Borne Based on MAXIMA Pathfinder for HWPbased CMB Polarimetry 2 MAXIPOL Collaboration Matthew Abroe, Peter Ade, Jamie Bock, Julian Borrill, Andrea Boscaleri, Jeff

More information

SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes

SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes SPIDER: A Balloon-Borne Polarimeter for Measuring Large Angular Scale CMB B-modes, Dick Bond, Olivier Doré CITA, University of Toronto, Canada E-mail: cmactavi@cita.utoronto.ca Rick Bihary, Tom Montroy,

More information

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron

The international scenario Balloons, LiteBIRD, PIXIE, Millimetron The international scenario Balloons, LiteBIRD, PIXIE, Millimetron Francesco Piacentini Sapienza Università di Roma, Dipartimento di Fisica on behalf of the Italian CMB community Overview International

More information

EBEX: A balloon-borne CMB polarization experiment

EBEX: A balloon-borne CMB polarization experiment EBEX: A balloon-borne CMB polarization experiment Britt Reichborn-Kjennerud a,asadm.aboobaker b, Peter Ade c, François Aubin d, Carlo Baccigalupi e, Chaoyun Bao b, Julian Borrill f, Christopher Cantalupo

More information

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi

Forthcoming CMB experiments and expectations for dark energy. Carlo Baccigalupi Forthcoming CMB experiments and expectations for dark energy Carlo Baccigalupi Outline Classic dark energy effects on CMB Modern CMB relevance for dark energy: the promise of lensing Lensing (B modes)

More information

CMB Lensing with POLARBEAR. Michael Myers UC Berkeley

CMB Lensing with POLARBEAR. Michael Myers UC Berkeley CMB Lensing with POLARBEAR Michael Myers UC Berkeley POLARBEAR Collaboration University of California at Berkeley University of California at San Diego Kam Arnold Daniel Flanigan Wlliam Holzapfel Jacob

More information

Publications. Bradley R. Johnson. In Preparation. Refereed Publications. Assistant Professor Phone: Columbia University

Publications. Bradley R. Johnson. In Preparation. Refereed Publications. Assistant Professor Phone: Columbia University Publications Bradley R. Johnson Assistant Professor Phone: 212-854-0008 Columbia University Email: bradley.johnson@columbia.edu Department of Physics Web: http://cosmology.phys.columbia.edu/bjohnson 538

More information

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations

Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations Six Days at the Edge of Space: 10 Years of HASP Balloon Flight Operations T. Gregory Guzik, Louisiana Space Grant Consortium Department of Physics & Astronomy Louisiana State University v030316 1 Primary

More information

Current Outlook for Scientific Research with Super Pressure Balloons

Current Outlook for Scientific Research with Super Pressure Balloons 32 nd International Cosmic Ray Conference 11 18 August, 2011 Beijing, China Current Outlook for Scientific Research with Super Pressure Balloons W. Vernon Jones and David L. Pierce Science Mission Directorate

More information

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law Chapter 21 Evidence of the Big Bang Hubble s Law Universal recession: Slipher (1912) and Hubble found that all galaxies seem to be moving away from us: the greater the distance, the higher the redshift

More information

Measurements of CMB Polarization Anisotropy and Searches for Galaxy Clusters with Bolometer Arrays

Measurements of CMB Polarization Anisotropy and Searches for Galaxy Clusters with Bolometer Arrays Measurements of CMB Polarization Anisotropy and Searches for Galaxy Clusters with Bolometer Arrays Adrian Lee Department of Physics, LBNL Physics Division University of California, Berkeley CMB Polarization

More information

Big Bang, Big Iron: CMB Data Analysis at the Petascale and Beyond

Big Bang, Big Iron: CMB Data Analysis at the Petascale and Beyond Big Bang, Big Iron: CMB Data Analysis at the Petascale and Beyond Julian Borrill Computational Cosmology Center, LBL & Space Sciences Laboratory, UCB with Christopher Cantalupo, Theodore Kisner, Radek

More information

Planck. Report on the status of the mission Carlo Baccigalupi, SISSA

Planck. Report on the status of the mission Carlo Baccigalupi, SISSA Planck Report on the status of the mission Carlo Baccigalupi, SISSA Outline CMB The Planck satellite Data processing center Expectations from Planck Planck data CMB CMB angular power spectrum Angle 200/l

More information

Cosmic Microwave Background

Cosmic Microwave Background Cosmic Microwave Background Carlo Baccigalupi,, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/main/winterschoollecture5 These lectures are available in pdf format

More information

MIT Exploring Black Holes

MIT Exploring Black Holes THE UNIVERSE and Three Examples Alan Guth, MIT MIT 8.224 Exploring Black Holes EINSTEIN'S CONTRIBUTIONS March, 1916: The Foundation of the General Theory of Relativity Feb, 1917: Cosmological Considerations

More information

BLAST: The CIB in a new light. marco viero / university of toronto

BLAST: The CIB in a new light. marco viero / university of toronto BLAST: The CIB in a new light marco viero / university of toronto 1 University of Toronto Peter Martin Barth Netterfield Marco Viero University of Pennsylvania Mark Devlin Marie Rex Chris Semisch Jeff

More information

Lecture 37 Cosmology [not on exam] January 16b, 2014

Lecture 37 Cosmology [not on exam] January 16b, 2014 1 Lecture 37 Cosmology [not on exam] January 16b, 2014 2 Structure of the Universe Does clustering of galaxies go on forever? Looked at very narrow regions of space to far distances. On large scales the

More information

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc.

OUSSEP Final Week. If we run out of time you can look at uploaded slides Pearson Education, Inc. OUSSEP Final Week Last week hopefully read Holiday-Week 23rd November Lecture notes Hand in your Hubble Deep Field Reports today! (If not today then in my mail box @ International College.) Today we will

More information

arxiv: v1 [astro-ph.im] 7 Oct 2015

arxiv: v1 [astro-ph.im] 7 Oct 2015 GEOPHYSICAL RESEARCH LETTERS, VOL.???, XXXX, DOI:10.1002/, Stratospheric Imaging of Polar Mesospheric Clouds: A New Window on Small-Scale Atmospheric Dynamics A. D. Miller, 1 D. C. Fritts, 2 D. Chapman,

More information

Mitigation of Systematic Errors in the polarbear CMB Polarization Experiment

Mitigation of Systematic Errors in the polarbear CMB Polarization Experiment Mitigation of Systematic Errors in the polarbear CMB Polarization Experiment Adrian T. Lee 1,2, Peter Ade 3, Aubra Anthony 4, Kam Arnold 1, David Boetger 11, Julian Borrill 5,6, Chris Cantalupo 5, Matt

More information

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe

THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe THE PLANCK MISSION The most accurate measurement of the oldest electromagnetic radiation in the Universe Rodrigo Leonardi Planck Science Office ESTEC/ESA OVERVIEW Planck observational objective & science.

More information

arxiv: v2 [astro-ph.im] 11 Apr 2017

arxiv: v2 [astro-ph.im] 11 Apr 2017 Accepted for publication in ApJ Supp The EBEX Balloon-Borne Experiment - Gondola, Attitude Control, and Control Software arxiv:1702.07020v2 [astro-ph.im] 11 Apr 2017 The EBEX Collaboration: Asad Aboobaker

More information

What is the evidence that Big Bang really occurred

What is the evidence that Big Bang really occurred What is the evidence that Big Bang really occurred Hubble expansion of galaxies Microwave Background Abundance of light elements but perhaps most fundamentally... Darkness of the night sky!! The very darkness

More information

If you want to learn more about us, contact us or show up here, we are glad to give you a tour of CENTRA's facilities.

If you want to learn more about us, contact us or show up here, we are glad to give you a tour of CENTRA's facilities. The Multidisciplinar Centre for Astrophysics (CENTRA) is a scientific research centre in IST, with a team in Universidade do Algarve (UAlg) and collaborators at the Universidade da Beira Interior (UBI).

More information

Galaxy Clustering from CIB Correlations. marco viero / university of toronto

Galaxy Clustering from CIB Correlations. marco viero / university of toronto Galaxy Clustering from CIB Correlations marco viero / university of toronto 1 University of Toronto Peter Martin Barth Netterfield Marco Viero University of Pennsylvania Mark Devlin Marie Rex Chris Semisch

More information

Chapter 22 Back to the Beginning of Time

Chapter 22 Back to the Beginning of Time Chapter 22 Back to the Beginning of Time Expansion of Universe implies dense, hot start: Big Bang Back to the Big Bang The early Universe was both dense and hot. Equivalent mass density of radiation (E=mc

More information

Power spectrum exercise

Power spectrum exercise Power spectrum exercise In this exercise, we will consider different power spectra and how they relate to observations. The intention is to give you some intuition so that when you look at a microwave

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

Cosmic Microwave Background. Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010

Cosmic Microwave Background. Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010 Cosmic Microwave Background Eiichiro Komatsu Guest Lecture, University of Copenhagen, May 19, 2010 1 Cosmology: The Questions How much do we understand our Universe? How old is it? How big is it? What

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 1 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 What is a Gravitational Wave? What is a Gravitational Wave? 11 Feb 2016 We have

More information

Foreground Cleaning for Cosmic Microwave Background Polarimeters in the Presence of Instrumental Effects

Foreground Cleaning for Cosmic Microwave Background Polarimeters in the Presence of Instrumental Effects Foreground Cleaning for Cosmic Microwave Background Polarimeters in the Presence of Instrumental Effects A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Chaoyun

More information

The Cosmic Microwave Background

The Cosmic Microwave Background The Cosmic Microwave Background Our probe of the birth of the universe Will Handley wh260@cam.ac.uk Astrophysics Department Cavendish Laboratory University of Cambridge 20 th March 2013 Overview Light

More information

arxiv: v1 [astro-ph.im] 17 Sep 2015

arxiv: v1 [astro-ph.im] 17 Sep 2015 Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) arxiv:1509.05392v1 [astro-ph.im] 17 Sep 2015 Michael D. Niemack 1 Peter Ade 2 Francesco de Bernardis 1 Francois Boulanger

More information

CMB studies with Planck

CMB studies with Planck CMB studies with Planck Antony Lewis Institute of Astronomy & Kavli Institute for Cosmology, Cambridge http://cosmologist.info/ Thanks to Anthony Challinor & Anthony Lasenby for a few slides (almost) uniform

More information

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings

BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings COSGC Space Research Symposium 2009 BOWSER Balloon Observatory for Wavelength and Spectral Emission Readings BOWSER 1 Mission Premise 4.3 km above sea level 402.3km above sea level BOWSER 2 Information

More information

PICO - Probe of Inflation and Cosmic Origins

PICO - Probe of Inflation and Cosmic Origins PICO - Probe of Inflation and Cosmic Origins Shaul Hanany University of Minnesota Executive Committee Bock, Borrill, Crill, Devlin, Flauger, Hanany, Jones, Knox, Kogut, Lawrence, McMahon, Pryke, Trangsrud

More information

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?)

The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) The Contents of the Universe (or/ what do we mean by dark matter and dark energy?) Unseen Influences Dark Matter: An undetected form of mass that emits little or no light but whose existence we infer from

More information

The Big Bang Theory, General Timeline. The Planck Era. (Big Bang To 10^-35 Seconds) Inflationary Model Added. (10^-35 to 10^-33 Of A Second)

The Big Bang Theory, General Timeline. The Planck Era. (Big Bang To 10^-35 Seconds) Inflationary Model Added. (10^-35 to 10^-33 Of A Second) The Big Bang Theory, General Timeline The Planck Era. (Big Bang To 10^-35 Seconds) The time from the exact moment of the Big Bang until 10^-35 of a second later is referred to as the Planck Era. While

More information

The microwave sky as seen by Planck

The microwave sky as seen by Planck The microwave sky as seen by Planck Ingunn Kathrine Wehus Jet Propulsion Laboratory California Institute of Technology on behalf of the Planck Collaboration Bayesian component separation We adopt a parametric

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Writing very large numbers

Writing very large numbers 19.1 Tools of Astronomers Frequently in the news we hear about discoveries that involve space. Since the 1970s, space probes have been sent to all of the planets in the solar system and we have seen them

More information

Data analysis of massive data sets a Planck example

Data analysis of massive data sets a Planck example Data analysis of massive data sets a Planck example Radek Stompor (APC) LOFAR workshop, Meudon, 29/03/06 Outline 1. Planck mission; 2. Planck data set; 3. Planck data analysis plan and challenges; 4. Planck

More information

Measuring the Cosmic Microwave Background B-mode Polarization with the POLARBEAR Experiment. Neil Goeckner-Wald for the POLARBEAR collaboration

Measuring the Cosmic Microwave Background B-mode Polarization with the POLARBEAR Experiment. Neil Goeckner-Wald for the POLARBEAR collaboration Measuring the Cosmic Microwave Background B-mode Polarization with the POLARBEAR Experiment Neil Goeckner-Wald for the POLARBEAR collaboration 1 POLARBEAR Collaboration UC Berkeley Shawn Beckman Darcy

More information

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe.

Island Universes. Up to 1920 s, many thought that Milky Way encompassed entire universe. Island Universes Up to 1920 s, many thought that Milky Way encompassed entire universe. Observed three types of nebulas (clouds): - diffuse, spiral, elliptical - many were faint, indistinct - originally

More information

Chapter 23 The Beginning of Time. Agenda. Presentation Tips. What were conditions like in the early universe? 23.1 The Big Bang.

Chapter 23 The Beginning of Time. Agenda. Presentation Tips. What were conditions like in the early universe? 23.1 The Big Bang. Chapter 23 The Beginning of Time Agenda Announce: Observation April 19 Thursday 8pm APS Meeting April 17 no class (instead Fate of the Universe tutorial Presentation Tips Ch. 23 Presentation Tips Limit

More information

Michel Piat for the BRAIN collaboration

Michel Piat for the BRAIN collaboration Precise measurement of CMB polarisation from Dome-C: the BRAIN experiment Michel Piat for the BRAIN collaboration Laboratoire Astroparticule et Cosmologie Université Paris 7 Denis Diderot 1 Outline 1.

More information

arxiv:astro-ph/ v1 25 Jun 1998

arxiv:astro-ph/ v1 25 Jun 1998 Science 280, 1397 (1998) The Case of the Curved Universe: Open, Closed, or Flat? Marc Kamionkowski Department of Physics, Columbia University, 538 West 120th Street, New York, NY 10027 arxiv:astro-ph/9806347v1

More information

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012

Taking the Measure of the Universe. Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 Taking the Measure of the Universe Gary Hinshaw University of British Columbia TRIUMF Saturday Series 24 November 2012 The Big Bang Theory What is wrong with this picture? The Big Bang Theory The Big bang

More information

arxiv: v1 [astro-ph.im] 5 Jul 2017

arxiv: v1 [astro-ph.im] 5 Jul 2017 Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) arxiv:1707.01488v1 [astro-ph.im] 5 Jul 2017 Sean Bryan 1 Peter Ade 2 J. Richard Bond 3 Francois Boulanger 4 Mark Devlin

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

Astronomy: The Big Picture. Outline. What does Hubble s Law mean?

Astronomy: The Big Picture. Outline. What does Hubble s Law mean? Last Homework is due Friday 11:50 am Honor credit need to have those papers this week! Estimated grades are posted. Does not include HW 8 or Extra Credit THE FINAL IS DECEMBER 15 th : 7-10pm! Astronomy:

More information

Cosmology with the ESA Euclid Mission

Cosmology with the ESA Euclid Mission Cosmology with the ESA Euclid Mission Andrea Cimatti Università di Bologna Dipartimento di Astronomia On behalf of the Euclid Italy Team ESA Cosmic Vision 2015-2025 M-class Mission Candidate Selected in

More information

Shadows and Light in the Universe

Shadows and Light in the Universe Shadows and Light in the Universe Andreas Albrecht UC Davis dept. of Physics Public Talk at Manetti Shrem Museum December 1, 2016 A. Albrecht @ Manetti Shrem 12/1/16 https://www.nasa.gov/mission_pages/chandra/multimedia/spiral-galaxy-m101.html

More information

The Big Bang The Beginning of Time

The Big Bang The Beginning of Time The Big Bang The Beginning of Time What were conditions like in the early universe? The early universe must have been extremely hot and dense Photons converted into particle-antiparticle pairs and vice-versa

More information

PLANCK lately and beyond

PLANCK lately and beyond François R. Bouchet, Institut d Astrophysique de Paris PLANCK lately and beyond CORE/M5 TT, EE, BB 2016 status Only keeping points w. sufficiently small error bars, Fig. E Calabrese τ = 0.055±0.009 1 114

More information

Stars and Galaxies. The Big History of our Planet The 2nd threshold

Stars and Galaxies. The Big History of our Planet The 2nd threshold Stars and Galaxies The Big History of our Planet The 2nd threshold Big Bang Our universe starts from a Big Bang The early universe was simple, with little structure A thin mist of H & He atoms + photons

More information

Cosmology After WMAP. David Spergel Cambridge December 17, D. Spergel

Cosmology After WMAP. David Spergel Cambridge December 17, D. Spergel Cosmology After WMAP David Spergel Cambridge December 17, 2007 Wilkinson Microwave Anisotropy Probe A partnership between NASA/GSFC and Princeton Science Team: NASA/GSFC Chuck Bennett (PI) -> JHU Michael

More information

Observational cosmology: the RENOIR team. Master 2 session

Observational cosmology: the RENOIR team. Master 2 session Observational cosmology: the RENOIR team Master 2 session 2014-2015 Observational cosmology: the RENOIR team Outline A brief history of cosmology Introduction to cosmological probes and current projects

More information

Dark Energy and the Accelerating Universe

Dark Energy and the Accelerating Universe Dark Energy and the Accelerating Universe Dragan Huterer Department of Physics University of Michigan The universe today presents us with a grand puzzle: What is 95% of it made of? Shockingly, we still

More information

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe Big Bang Theory and the Early Universe. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe and the Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu December 02, 2014 Read: Chap 23 12/04/14 slide 1 Assignment on Chaps 22 23, at the end of next week,

More information

Astronomy 210 Final. Astronomy: The Big Picture. Outline

Astronomy 210 Final. Astronomy: The Big Picture. Outline Astronomy 210 Final This Class (Lecture 40): The Big Bang Next Class: The end HW #11 Due next Weds. Final is May 10 th. Review session: May 6 th or May 9 th? Designed to be 2 hours long 1 st half is just

More information

Dark Energy: Measuring the Invisible with X-Ray Telescopes

Dark Energy: Measuring the Invisible with X-Ray Telescopes Black holes, Galactic Dark Center Matter and Galactic Center Dark Energy: Measuring the Invisible with X-Ray Telescopes Christine Jones Before 1930 -- only optical observations of the sky Intro Before

More information

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty

Assignments. Read all (secs ) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Assignments Read all (secs. 25-29) of DocOnotes-cosmology. HW7 due today; accepted till Thurs. w/ 5% penalty Term project due last day of class, Tues. May 17 Final Exam Thurs. May 19, 3:30 p.m. here Olber

More information

Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it

Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it Cosmology Origin, early history, and fate of the Universe Does the Universe have a beginning? An end? What physics processes caused the Universe to be what it is? Are other universes possible? Would they

More information

Astroparticle physics

Astroparticle physics Timo Enqvist University of Oulu Oulu Southern institute lecture cource on Astroparticle physics 15.09.2009 15.12.2009 10 Cosmic microwave background Content 10.0 Small introduction 10.1 Cosmic microwave

More information

Bernard Frederick Schutz

Bernard Frederick Schutz 1 of 5 29/01/2007 18:13 Homepage of Bernard Schutz 14 / 24 Bernard Frederick Schutz Director, Max Planck Institute for Gravitational Physics Born 11 August 1946, Paterson, NJ, USA Nationality: USA (by

More information

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation )

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation ) WMAP Density fluctuations at t = 79,000 yr he Growth of Structure Read [CO 0.2] 1.0000 1.0001 0.0001 10 4 Early U. contained condensations of many different sizes. Current large-scale structure t = t 0

More information

Probing Early Universe Physics with Observations of the Cosmic Microwave Background. Sarah Church KIPAC, Stanford University

Probing Early Universe Physics with Observations of the Cosmic Microwave Background. Sarah Church KIPAC, Stanford University Probing Early Universe Physics with Observations of the Cosmic Microwave Background Sarah Church KIPAC, Stanford University CMB maps yield precision measurements of cosmological parameters WMAP 2003 Foreground

More information

4.3 Planck. Scientific goals. Planck payload

4.3 Planck. Scientific goals. Planck payload 4.3 Planck In late 1992, the NASA COBE team announced the detection of intrinsic temperature fluctuations in the Cosmic Background Radiation Field (CBRF), observed on the sky at angular scales larger than

More information

Planck: new revelations on dark matter and relic neutrinos

Planck: new revelations on dark matter and relic neutrinos PRESS RELEASE I PARIS I 1 ST DECEMBER 2014 Planck: new revelations on dark matter and relic neutrinos The Planck collaboration, which notably includes the CNRS, CEA, CNES and several French universities,

More information

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission

Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December The Planck mission Planck 2014 The Microwave Sky in Temperature and Polarisation Ferrara, 1 5 December 2014 The Planck mission Marco Bersanelli Dipartimento di Fisica, Università degli Studi di Milano Planck-LFI Deputy PI

More information

Star. Chapter 1: Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning:

Star. Chapter 1: Our Place in the Universe. 1.1 A Modern View of the Universe Our goals for learning: Chapter 1: Our Place in the Universe 1.1 A Modern View of the Universe Our goals for learning: What is our physical place in the Universe? How did we come to be? How can we know what the Universe was like

More information

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe?

Hubble s Law. Our goals for learning. What is Hubble s Law? How do distance measurements tell us the age of the universe? Hubble s Law Our goals for learning What is Hubble s Law? How do distance measurements tell us the age of the universe? How does the universe s expansion affect our distance measurements? We measure speeds

More information

Planet-like Companion to a Brown Dwarf

Planet-like Companion to a Brown Dwarf National Aeronautics and Space Administration Planet-like Companion to a Brown Dwarf Taken from: Hubble 2010: Science Year in Review Produced by NASA Goddard Space Flight Center and the Space Telescope

More information

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious.

UNIT 3 The Study of the. Universe. Chapter 7: The Night Sky. Chapter 8: Exploring Our Stellar Neighbourhood. Chapter 9:The Mysterious. UNIT 3 The Study of the Universe Chapter 7: The Night Sky Chapter 8: Exploring Our Stellar Neighbourhood Chapter 9:The Mysterious Universe CHAPTER 9 The Mysterious Universe In this chapter, you will: identify

More information

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy

3. It is expanding: the galaxies are moving apart, accelerating slightly The mystery of Dark Energy II. Cosmology: How the universe developed Outstanding features of the universe today: 1. It is big, and full of galaxies. 2. It has structure: the galaxies are clumped in filaments and sheets The structure

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe

ASTR 1120 General Astronomy: Stars & Galaxies. OUR Universe: Accelerating Universe ASTR 1120 General Astronomy: Stars & Galaxies FINAL: Saturday, Dec 12th, 7:30pm, HERE ALTERNATE FINAL: Monday, Dec 7th, 5:30pm in Muenzinger E131 Last OBSERVING session, Tue, Dec.8th, 7pm Please check

More information

Cosmic Inflation and Neutrino Masses at POLARBEAR CMB Polarization Experiment

Cosmic Inflation and Neutrino Masses at POLARBEAR CMB Polarization Experiment KEK Inter-University Research Institute Corporation High Energy Accelerator Research Organization Institute of Particle and Nuclear Studies Cosmic Inflation and Neutrino Masses at POLARBEAR CMB Polarization

More information

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC

CMB Polarization Experiments: Status and Prospects. Kuo Assistant Professor of Physics Stanford University, SLAC CMB Polarization Experiments: Status and Prospects Chao-Lin Kuo Assistant Professor of Physics Stanford University, SLAC Remaining questions in fundamental Cosmology Spectral index of the initial perturbations,

More information

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh The Tools of Cosmology Andrew Zentner The University of Pittsburgh 1 Part Two: The Contemporary Universe 2 Contents Review of Part One The Pillars of Modern Cosmology Primordial Synthesis of Light Nuclei

More information

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University

Extreme Astronomy and Supernovae. Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University Extreme Astronomy and Supernovae Professor Lynn Cominsky Department of Physics and Astronomy Sonoma State University What are X- & Gamma rays? Why study X- & gamma rays? Universe as seen by eye is peaceful

More information

Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments

Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments Precise measurement of CMB polarisation from Dome-C: the BRAIN and CLOVER experiments M. Piat, C. Rosset To cite this version: M. Piat, C. Rosset. Precise measurement of CMB polarisation from Dome-C: the

More information

The Continuing Copernican Revolution...

The Continuing Copernican Revolution... The Continuing Copernican Revolution... from Heliocentricity to the Cosmological Principle Astro 203 Vanderbilt University 2006/10/19 Prof. Rob Knop Slides online at: http://brahms.phy.vanderbilt.edu/~rknop/classes/talkslides#awayfmctr

More information

Testing the concordance cosmology with weak gravitational lensing

Testing the concordance cosmology with weak gravitational lensing Testing the concordance cosmology with weak gravitational lensing Ali Vanderveld (University of Chicago) with Tim Eifler, Wayne Hu, Michael Mortonson, and Jason Rhodes Case Western Reserve University,

More information

Galaxies. Beyond the Book. FOCUS Book. Make a model that helps demonstrate how the universe is expanding. Follow these steps:

Galaxies. Beyond the Book. FOCUS Book. Make a model that helps demonstrate how the universe is expanding. Follow these steps: FOCUS Book Galaxies Make a model that helps demonstrate how the universe is expanding. Follow these steps: 1 Use markers to make dots on the outside of an uninflated balloon to represent galaxies full

More information

Space Cryogenics at the Rutherford Appleton Laboratory

Space Cryogenics at the Rutherford Appleton Laboratory Space Cryogenics at the Rutherford Appleton Laboratory Tom Bradshaw Martin Crook Bryan Shaughnessy Cryogenic Cluster Day STFC, Rutherford Appleton Laboratory 22 nd September 2010 Introduction Rutherford

More information

The Formation of the Solar System

The Formation of the Solar System Earth and the Solar System The Formation of the Solar System Write a number beside each picture to rank each from the oldest (1) to the youngest (4). The universe includes everything that exists: all matter,

More information

Transition Edge Sensor Bolometers for CMB Polarimetry

Transition Edge Sensor Bolometers for CMB Polarimetry Transition Edge Sensor Bolometers for CMB Polarimetry Dominic Benford NASA/GSFC Thanks To: Jamie Bock, William Duncan, Gene Hilton, Kent Irwin, Nikhil Jethava, Adrian Lee, Harvey Moseley, Lyman Page, Bob

More information

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Big Bang Theory. Martin D. Weinberg UMass Astronomy A100H Exploring the : Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 21, 2016 Read: Chap 23 04/26/16 slide 1 Early Final Exam: Friday 29 Apr at 10:30 am 12:30 pm, here! Emphasizes

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

How Did the Universe Begin?

How Did the Universe Begin? How Did the Universe Begin? As we will discuss in this lecture, it looks like the Universe started about 14 billion years ago and has been expanding (space stretching) ever since. The model of what happened

More information

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS BÙI VĂN TUẤN Advisors: Cyrille Rosset, Michel Crézé, James G. Bartlett ASTROPARTICLE AND COSMOLOGY LABORATORY PARIS DIDEROT UNIVERSITY

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information