AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test

Size: px
Start display at page:

Download "AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test"

Transcription

1 AIDA-DART Asteroid Impact & Deflection Assessment Double Asteroid Redirection Test DART Andy Cheng [JHU/APL] Cheryl Reed [JHU/APL] Ian Carnelli [ESA, HQs.] Patrick Michel [Obs. Cote D Azur, Nice, France] Stephan Ulamec [DLR] AIM NASA Team: Goddard Space Flight Center Johnson Space Center Langley Research Center 1

2 Planetary Defense: Mitigation of Asteroid Hazards, a Global Concern Small asteroids that hit the Earth, Chelyabinsk-sized impacts (500 kilotons TNT) every few decades Tunguska-sized impacts (5 megatons TNT) every few centuries 2

3 What can be done, if a dangerous asteroid is discovered that can hit the Earth? AIDA/DART Multiple studies of impact threat deflection have cited three techniques: Kinetic Impactor, Gravity Tractor, Nuclear Device All techniques require some level of demonstration and validation before considered viable for implementation in impact emergency response Kinetic Impactor technology has been assessed as most mature and most capable of effecting adequate deflection except in cases of short term warning before impact - highest ranked as ready for flight demonstration International participation in any asteroid mitigation / deflection campaign is highly desirable if not essential to overall acceptability The AIDA/DART mission is an international collaboration to demonstrate asteroid deflection by kinetic impact 3

4 AIDA supports important goals of the Planetary Defense community Consistent with finding from SBAG 12, January 2015: AIDA/DART SBAG strongly supports the creation of a NASA Planetary Defense Coordination Office, a top recommendation of the 2010 NAC Task Force report. Furthermore, SBAG recommends that this new office (1) pursue goals specified in congressional direction, such as NEO population survey completion, (2) work towards development of NEO mitigation technologies through additional funded programs, including flight validation of the most promising mitigation system concepts, and (3) utilize cross-agency and international collaborations as warranted in accomplishing those goals. Consistent with recommendations from 2011 and 2013 Planetary Defense Conferences: Missions should be planned to demonstrate and validate the most promising deflection or disruption options (2011) Missions are being proposed that would use kinetic impactors to move an asteroid, and the impact and motion away from the original path would be verified by observer spacecraft. Designing these missions and developing the necessary tools and payloads for these types of actions would verify model predictions and build confidence in our abilities to deal with an actual threat. (2013) 4

5 AIDA international cooperation DART kinetic impactor (NASA) AIM rendezvous (ESA) AIM Radar Telescopes DART AIDA = AIM + DART Didymos Binary 5

6 AIDA: First Full Scale Test of Asteroid Deflection First mission to demonstrate asteroid deflection by a kinetic impactor Measure outcomes of a known impact on an asteroid at full scale AIDA combines US and European space experience and expertise to address an international concern, the asteroid impact hazard. First mission to study a binary asteroid and its origins Impact on to secondary allows Earthbased observations of changes to binary orbit First mission (AIM) to demonstrate interplanetary optical communication and deep-space inter-satellite links with CubeSats and a lander in deep-space Cheng AF et al. (2015). Acta Astronautica, 115: Radar image of Didymos L. Benner, Arecibo, Nov

7 AIDA is relevant for many disciplines Planetary Defense Deflection demonstration and characterization Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub surface properties Composition (mineral, chemical) Human Exploration Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Composition (mineral, chemical) Radiation environment Dust environment AIM DART Deflection demonstration and characterization Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub surface properties PDC 2015 Science Orbital state Rotation state Size, shape, gravity Geology, surface properties Density, internal structure Sub surface properties Composition (including isotopic) Resource Utilization Geology, surface properties Density, internal structure Sub surface properties Composition (mineral, chemical)

8 AIDA Investigation Summary AIDA = DART + AIM Planetary Defense Demonstrate kinetic impact mitigation technique, measure asteroid deflection Develop and validate models for momentum transfer in asteroid impacts Science and Exploration Understand asteroid collisions Infer physical properties of asteroid surface and subsurface, interior structure Data on impact cratering Test models of binary formation Demonstrate technologies: optical communication, cubesats, proximity operations 8

9 AIDA Joint Working Groups Welcome AIM DART AIM Advisory Team led by P. Michel DART Investigation Team co-led by A. Cheng, A. Rivkin Working Group 1 [Modeling and Simulation of Impact Outcomes] Angela Stickle, Paul Miller, Steven Schwartz Working Group 2 [Remote Sensing Observations] Andy Rivkin, Peter Pravec Working Group 3 [Dynamical Properties of Didymos] Derek Richardson, Kleomenis Tsiganis Working Group 4 [Science Proximity Operations] Stephan Ulamec, Olivier Barnouin 9

10 JHU/APL Proprietary DART: Double Asteroid Redirection Test NASA s DART, a kinetic impactor mission with supporting Earth-based observing campaigns Full-scale demonstration of asteroid deflection by kinetic impact, to learn how to mitigate an asteroid Understand impact effects, to infer asteroid physical properties and study long term dynamics of impact ejecta Ground-based observations to measure the binary period change from kinetic impact to within 10% Return high resolution images of target prior to impact to determine impact site and geologic context Target: Didymos binary in JHU/APL Proprietary

11 Didymos: Spectral Type and Composition Observations by Binzel et al. (2004) and de León et al. (2010) Pretty clearly S type Not exotic, new type Context for Eros/Itokawa Most common NEO type Dunn et al. (2013): L/LL chondrite best analog, very common 1.6 meteorite type Originally from Flora family? 1.3 LL chondrite parent family? Chelyabinsk link? 1 Gaspra link? 0.9 Normalized Reflectance 0.8 de León et al. (2010) Didymos (de Leon et al.) 433 Eros (Binzel et al.) Itokawa (Binzel et al) Wavelength ( m) 11

12 JHU/APL Proprietary DART: Double Asteroid Redirection Test Target: Didymos binary in September, 2022 Launch Date Dec 18, 2020 Launch C km 2 /s 2 Arrival Relative Speed 7.03 km/s Time of Flight 640 days Maximum Earth Distance 0.21 AU Solar Distance 0.95 AU 1.06 AU Earth Distance at Impact AU Solar Phase Angle 44 Impact Angle to Orbit Plane 27.5 DART payload is a single instrument, a high resolution imager derived from New Horizons LORRI Support optical navigation and autonomous targeting Determine impact site and geologic context 12 JHU/APL Proprietary

13 DART: 2022 Didymos Intercept DART trajectory remains near 1 AU from Sun, Earth distance < 0.2 AU. DART launch energy 6 km 2 /s 2 Impact velocity 7 km/s Impact event in Sept. 20, 2022 occurs under excellent Earth-based optical viewing conditions, with radar study of aftermath shortly thereafter SEP architecture may allow impact during radar observability window NEA flyby 10 months before Didymos encounter DART launches in Dec 2020 and intercepts Didymos on Sept 20,

14 DART Spacecraft Orbit Configuration Launch Configuration HGA LGA DRACO imager LGA Star Tracker Three-axis stabilized, thruster control only Monoprop propulsion Single payload instrument: DRACO imager 14

15 AIDA: DART+ AIM Objectives AIM mission objectives together with DART: Determine the momentum transfer resulting from DART s impact by measuring the dynamical state of Didymos after the impact and imaging the resulting crater Study the shallow subsurface and deepinterior structure of the secondary after the impact to characterize any change Study the impact response of the target asteroid and measure distributions of impact ejecta providing valuable data to validate impact models

16 Momentum Transfer Efficiency Full-scale measurement at an asteroid is defined as momentum transferred divided by momentum input If no ejecta, then = 1 Ejecta enhances momentum transfer, > 1 M is target mass, is velocity change Incident momentum ejecta ejecta Enhanced momentum transfer 16

17 Impact-Induced Binary Orbit Change The orbit changes depend on orbit phase of the impact DART targets close to maximal period change 1% variation in period change over 34 minute window. 17

18 Modeling and understanding the outcome of the DART kinetic impact Scaling law calculations, 300 kg at 7.0 km/s on Didymos secondary, accounting for ballistic trajectories of ejecta Basalt Weakly Cemented Basalt Perlite /Sand Sand / Fly Ash β R [m] β* Orbiting fraction <1% <1% 32% <1% Nonporous, strong Housen & Holsapple 2011 Holsapple & Housen 2012 Cheng 2012 Low porosity, moderate strength Very high porosity, weak High porosity, weak Porous target cases predict of ~1.1 to ~1.3 consistent with simulations, Jutzi & Michel (2014) Basalt case not expected to apply because of binary formation scenario Deflection result of kinetic impact is not appreciably affected by gravity of binary companion AIM measurement of crater radius is important for finding target properties is the contribution from ejecta fast enough to escape Didymos system, almost the same as Orbiting fraction is the ejecta mass fraction captured into temporary binary orbits 18

19 Post-Impact Observing Prospects Observation and Modeling of DART ejecta Didymos primary and secondary are separated by up to 0.02 arcsec when 0.08 AU from Earth Marginally resolvable with ALMA (sub-mm), Magellan adaptive optics Post-impact brightening and ejecta stream as extended object ( coma ) may be observable from Earth Nonporous, strong Low porosity, moderate strength Very high porosity, weak High porosity, weak Brightening [mag] Coma, integrated V mag Itokawa gravel size distribution; Miyamoto et al

20 Didymos Observations during 2015 Establishing preferred pole for system Apparition in spring. Reached V ~ 20.5 Several observers, using telescopes with 2-4 m apertures Bad weather limited useful data. Observations by Moskovitz and Thirouin with DCT show mutual event Observations This rules out one of two possible poles, favor low-obliquity, retrograde YORPy option Confirming is major goal of 2017 observations 20

21 Preparations for 2017 Didymos apparition Focusing on Jan-May Reaches V~20.3 Four goals for 2017 observing: 1. Confirming the preferred retrograde pole position 2. Gathering data to allow BYORP-driven changes in the mutual orbit to potentially be determined by later observations 3. Establishing whether or not the secondary is in synchronous rotation with the primary 4. Constraining the inclination of the satellite orbit Some of these goals met with a few nights of 4-m time, others require up to 6-m time Investigating whether HST proposal is warranted 21

22 Outline of 2022 Impact Observing Campaign DART impact during excellent apparition: Didymos at V ~ 14-15, very well placed for Chile, observable from other observatories Planetary Radar participation hugely useful Didymos primary and secondary are separated by up to 0.02 arcsec when 0.08 AU from Earth Marginally resolvable with ALMA (sub-mm), Magellan adaptive optics Post-impact brightening and ejecta stream as extended object ( coma ) may be observable from Earth White paper about observing campaign possibilities in preparation Debris cloud analogous to YORP-driven MBCs? P/2013 P5 ~250 m, observed at 1.1 AU distance from Earth 22

23 Didymos, Points 5 days apart Period of impact Motion with time

24 Modeling and Simulation of Impact Outcomes Working Group Goals (1) Determine the expected outcome of the DART impact and its sensitivity to initial impact conditions. (2) Assess the effect of the DART impact on the moon of Didymos, focusing on implications for asteroid deflection and properties. Preliminary Modeling Predicts: crater diameter of 5-10 m β values range from 1 5 using estimated target properties The DART impact will change the secondary s period by ~ 10 minutes Current Activities Benchmarking of hydrocodes and comparison to experimental data and analytical models Investigating sensitivity of momentum transfer to: target properties, impact conditions, shape effects (target and spacecraft) Investigating ejecta dynamics and evolution in the Didymos system following DART impact 24

25 Modeling and Simulation of Impact Outcomes Working Group Goals (1) Determine the expected outcome of the DART impact and its sensitivity to initial impact conditions. (2) Assess the effect of the DART impact on the moon of Didymos, focusing on implications for asteroid deflection and properties. Impact simulations and scaling rules predict β~1-5 for reasonable target strength and porosity conditions Analytical models and preliminary simulations predict crater diameters of 5-17 m Orbit evolution studies predict 8-10 minute period change For a two-body problem, it is most efficient to impact in direction parallel to orbit velocity For aggregate bodies (e.g., rubble pile), the disturbance of most orbit parameters (a and i) nearly identical to 2-body case. 25

26 Potential Future Opportunities for the Community Participating Scientist Program Modeling of Event (pre- and post-dart impact) Observing Campaign (pre-encounter, near-impact, and postimpact) Instruments on AIM 26

27 Conclusion DART successfully completed NASA s Pre-Phase A study milestone in May 2015, Mission Concept Review (MCR) DART is now officially in Phase A! This study phase continues through September Primary NASA milestone is System Requirements Review (SRR) and Mission Design Review (MDR), scheduled for August 2016 DART is in tandem with AIM s Phase A/B1 study phase, and supports their programmatic milestones DART will continue to support joint both AIM interfaces and reviews, and joint AIDA sessions The 2 nd International AIDA Community Workshop will be held in June 1-3, 2016 in Nice, France. You are all welcomed to attend!! Consideration underway for maximizing and optimizing community involvement in getting full success! 27

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission Andy Cheng (The Johns Hopkins Applied Physics Laboratory) Patrick Michel (Univ. Nice, CNRS, Côte d Azur Observatory) On behalf of

More information

Asteroid Impact Mission (AIM)

Asteroid Impact Mission (AIM) Asteroid Impact Mission (AIM) Andrés Gálvez, ESA HQ, Paris, France Ian Carnelli, ESA HQ, Paris, France Carlos Corral, ESTEC, Noordwijk, The Netherlands & the AIDA team (JHU/APL, NASA, OCA. DLR) NEO mission

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ Asteroid Impact Mission (AIM) ESA s NEO Exploration Precursor Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ SBAG Jan 2013 HSF Precursor Missions Application driven

More information

ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION

ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION Andres Galvez (1), Ian Carnelli (1), Michael Khan (2), Waldemar Martens (2), Patrick Michel (3), Stephan Ulamec (4),

More information

HERA MISSION. ESA UNCLASSIFIED - For Official Use

HERA MISSION. ESA UNCLASSIFIED - For Official Use HERA MISSION ESA UNCLASSIFIED - For Official Use HERA/AIM mission scenario! First ever investigation of deflection test! Detailed analysis of impact crater (before/after impact or after only depending

More information

NEOShield Progress Towards an International NEO Mitigation Program. Alan Harris. DLR Institute of Planetary Research, Berlin

NEOShield Progress Towards an International NEO Mitigation Program. Alan Harris. DLR Institute of Planetary Research, Berlin NEOShield Progress Towards an International NEO Mitigation Program Alan Harris DLR Institute of Planetary Research, Berlin and the NEOShield Consortium NEOShield November 2010: Submitted in response to

More information

IAC-13-A A. Galvez, I. Carnelli ESA Headquarters, Paris. P. Michel Lagrange Laboratory, Univ. Nice, CNRS, Côte d Azur Observatory

IAC-13-A A. Galvez, I. Carnelli ESA Headquarters, Paris. P. Michel Lagrange Laboratory, Univ. Nice, CNRS, Côte d Azur Observatory IAC-13-A3.4.8 AIDA: ASTEROID IMPACT & DEFLECTION ASSESSMENT A. F. Cheng, A. S. Rivkin, C. Reed, O. Barnouin, Z. Fletcher, C. Ernst The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland,

More information

Space Mission Planning Advisory Group Open Forum

Space Mission Planning Advisory Group Open Forum Space Mission Planning Advisory Group Open Forum Gerhard Drolshagen ESA (Chair of SMPAG) 18 February 2016 SMPAG purpose and membership The purpose of the SMPAG is to prepare for an international response

More information

ASPECT Spectral Imager CubeSat Mission to Didymos

ASPECT Spectral Imager CubeSat Mission to Didymos ASPECT Spectral Imager CubeSat Mission to Didymos Kestilä A. 1),Näsilä A. 2), Kohout T. 3),Tikka T. 1),Granvik M. 3) 1. Aalto University, Finland. 2. Technical Research Center of Finland, Finland 3. Helsinki

More information

Update on NASA NEO Program

Update on NASA NEO Program Near Earth Object Observations Program Update on NASA NEO Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 3 February 2015 1 NASA s NEO Search

More information

Dynamics of the Didymos asteroid binary

Dynamics of the Didymos asteroid binary Dynamics of the Didymos asteroid binary target of the AIDA mission Kleomenis Tsiganis Aristotle University of Thessaloniki (AUTh) with: George Voyatzis (AUTh), Christos Efthymiopoulos (RCAAM Athens), Ioannis

More information

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS Fabio Ferrari (1), Michèle Lavagna (2), Ingo Gerth (3), Bastian Burmann (4), Marc

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

ISIS Impactor for Surface and Interior Science

ISIS Impactor for Surface and Interior Science ISIS Impactor for Surface and Interior Science ISIS Mission Concept!! Send an independent, autonomous impactor spacecraft to the target of the OSIRIS-REx mission!! Launch as secondary payload with InSight!!

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ

Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ July 8, 2013 Impact is a Planetary Process Vesta Saturn moon Tethys Mars Mercury

More information

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 Ross (née, CAESAR) Presentation to SBAG Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 First, A Word on Names Our proposal was named Cubesat Asteroid Encounters for Science And Reconnaissance (CAESAR)

More information

AIM RS: Radio Science Investigation with AIM

AIM RS: Radio Science Investigation with AIM Prepared by: University of Bologna Ref. number: ALMARS012016 Version: 1.0 Date: 08/03/2017 PROPOSAL TO ESA FOR AIM RS Radio Science Investigation with AIM ITT Reference: Partners: Radio Science and Planetary

More information

Dealing with the asteroid impact threat in Europe - ESA's SSA-NEO programme status

Dealing with the asteroid impact threat in Europe - ESA's SSA-NEO programme status Image credit: ESA Dealing with the asteroid impact threat in Europe - ESA's SSA-NEO programme status Detlef Koschny, Gerhard Drolshagen (ESA) SSA-NEO Segment Managers SSA-NEO-ESA-HO-0236/1.0; Jan 2016,

More information

Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee

Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee Tim Swindle, SBAG Chair February 23, 2018 Last SBAG Meeting: January 17-18, 2018: 18 th SBAG Meeting, NASA-Ames

More information

Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL

Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL Asteroid Redirect Mission: Candidate Targets Paul Chodas, NEO Program Office, JPL Small Bodies Assessment Group Meeting #12, January 7, 2015 NEA Discovery Rates Are Increasing Overall discovery rate of

More information

Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan

Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan (NM Tech/Magdalena Ridge Observatory) Astronauts to Visit an Asteroid by 2025

More information

NEOShield: une approche globale visant à atténuer le risque d'impact des astéroïdes M.A. BARUCCI

NEOShield: une approche globale visant à atténuer le risque d'impact des astéroïdes M.A. BARUCCI NEOShield: une approche globale visant à atténuer le risque d'impact des astéroïdes M.A. BARUCCI Orleans, 27.5.2014 The NEOShield Consortium An appropriate team of renowned personalities with an excellent

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

Presentation to SBAG January 2016

Presentation to SBAG January 2016 Presentation to SBAG January 2016 Julie Castillo-Rogez (JPL/Caltech/NASA) Les Johnson (Marshall Space Flight Center/NASA) And the NEAScout Team Edit as appropriate AES EM-1 Secondary Payload Overview HEOMD

More information

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Dan Mazanek Senior Space Systems Engineer NASA Langley Research Center Virginia Space Grant Consortium

More information

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France

BIRDY T. Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France BIRDY T Daniel Hestroffer - IMCCE/Paris obs., PSL Research univ., France M. Agnan ESEP - Odysseus Space Ltd., Taiwan J.J. Miau - NCKU, Taiwan G. Quinsac - LESIA/Paris observatory, France P. Rosenblatt

More information

GPU Accelerated 3-D Modeling and Simulation of a Blended Kinetic Impact and Nuclear Subsurface Explosion

GPU Accelerated 3-D Modeling and Simulation of a Blended Kinetic Impact and Nuclear Subsurface Explosion GPU Accelerated 3-D Modeling and Simulation of a Blended Kinetic Impact and Nuclear Subsurface Explosion Brian Kaplinger Christian Seltzer Pavithra Premartne Bong Wie Iowa State University Introduction

More information

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or Hayabusa at Itokawa: first visit to a rubble pile asteroid, or How do we know it s a rubble pile, and what does that mean? A. F. Cheng, O Barnouin-Jha, N. Hirata, H. Miyamoto, R. Nakamura, H. Yano and

More information

Asteroid Impact Mitigation: Why? How? When?

Asteroid Impact Mitigation: Why? How? When? Asteroid Impact Mitigation: Why? How? When? Simon Green Planetary and Space Sciences School of Physical Sciences, The Open University Milton Keynes, UK. Why. should we care? Impacts everywhere? Physical

More information

Near Earth Object Observations Program

Near Earth Object Observations Program Near Earth Object Observations Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 16 February 2010 1 Terminology Near Earth Objects (NEOs) -

More information

Beyond NEOShield A Roadmap for Near-Earth Object Impact Mitigation. Alan Harris

Beyond NEOShield A Roadmap for Near-Earth Object Impact Mitigation. Alan Harris Beyond NEOShield A Roadmap for Near-Earth Object Impact Mitigation Alan Harris DLR Institute of Planetary Research, Berlin NEOShield Project Coordinator The Impact Hazard - What Should We Do? Search the

More information

ESA s activities related to the meteoroid environment

ESA s activities related to the meteoroid environment ESA s activities related to the meteoroid environment G. Drolshagen, D. Koschny ESA/ESTEC, Noordwijk, The Netherlands Engineering flux models In-situ impacts Fireball database as part of SSA Sep 2010,

More information

COMMON THEMES IN PLANETARY SMALL BODIES RESEARCH (2018 UPDATE)

COMMON THEMES IN PLANETARY SMALL BODIES RESEARCH (2018 UPDATE) COMMON THEMES IN PLANETARY SMALL BODIES RESEARCH (2018 UPDATE) Thomas S. Statler NASA Headquarters Washington DC Common Themes: What and Why? To help answer the question Why so many missions to small bodies?

More information

Status of Arecibo Observatory and the Planetary Radar Program

Status of Arecibo Observatory and the Planetary Radar Program Status of Arecibo Observatory and the Planetary Radar Program Patrick A. Taylor Arecibo Observatory, USRA Small Bodies Assessment Group (SBAG) Meeting January 11, 2017 @ Tucson, AZ Management Arecibo Observatory

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations

Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations Shape model of binary asteroid (90) Antiope reconstructed from lightcurves and stellar occultations J. urech Charles University contact e-mail: durech@sirrah.troja.m.cuni.cz I will present a shape model

More information

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist OSIRIS-REx Asteroid Sample Return Mission Lucy F. Lim Assistant Project Scientist WHAT IS OSIRIS-REX? OSIRIS-REx is a PI-led New Frontiers sample return mission to return at least 60 g (and as much as

More information

arxiv: v1 [astro-ph.ep] 23 Mar 2016

arxiv: v1 [astro-ph.ep] 23 Mar 2016 Yang Yu et al. 1 arxiv:1603.07151v1 [astro-ph.ep] 23 Mar 2016 Ejecta Cloud from a Kinetic Impact on the Secondary of a Binary Asteroid: I. Mechanical Environment and Dynamic Model Yang Yu Patrick Michel

More information

AN OVERVIEW OF THE LOS ALAMOS PROJECT SUPPORTING PLANETARY DEFENSE

AN OVERVIEW OF THE LOS ALAMOS PROJECT SUPPORTING PLANETARY DEFENSE 5 th IAA Planetary Defense Conference PDC 2017 15 19 May 2017, Tokyo, Japan IAA-PDC17-04-02 AN OVERVIEW OF THE LOS ALAMOS PROJECT SUPPORTING PLANETARY DEFENSE Robert P. Weaver a,1,, Galen R. Gisler a,2,

More information

DART Mission Overview 15 August 2017 Cheryl Reed, APL Project Manager & DART Team

DART Mission Overview 15 August 2017 Cheryl Reed, APL Project Manager & DART Team Approved for Public Release, August 2017 Asteroid Impact & Deflection Assessment (AIDA) Solar System Exploration Program DART Mission Overview 15 August 2017 Cheryl Reed, APL Project Manager & DART Team

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

Deep Impact Continued Investigations (DI3) Tony Farnham

Deep Impact Continued Investigations (DI3) Tony Farnham Deep Impact Continued Investigations (DI3) Tony Farnham Deep Impact Spacecraft Medium Resolution Imager (MRI) 8 broad and narrowband filters OH, CN, C2 and continuum 10 µrad/pix High Resolution Imager

More information

SHIELD A Comprehensive Earth-Protection System

SHIELD A Comprehensive Earth-Protection System SHIELD A Comprehensive Earth-Protection System Robert E. Gold Johns Hopkins University Applied Physics Laboratory robert.gold@jhuapl.edu Washington 240-228-5412 Baltimore 443-778-5412 Earth Impact Fatalities

More information

GOALS: Resource Utilization

GOALS: Resource Utilization NASA Small Bodies Advisory Group 18 January 2018 GOALS: Resource Utilization Amara L. Graps Planetary Science Institute / Baltics in Space graps@psi.edu 1 An acronym note. Let us shift ISRU = In-Situ Resource

More information

Exploring and Understanding the Primitive Bodies of the Solar System: Progress Report from the Primitive Bodies Panel of the Decadal Survey

Exploring and Understanding the Primitive Bodies of the Solar System: Progress Report from the Primitive Bodies Panel of the Decadal Survey Exploring and Understanding the Primitive Bodies of the Solar System: Progress Report from the Primitive Bodies Panel of the Decadal Survey J. VEVERKA, H. MCSWEEN AND THE PRIMITIVE BODIES PANEL AGU MEETING

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California NASA s National Aeronautics and Near-Earth Object Program Overview Don Yeomans/JPL The Population of Near-Earth Objects is Made Up of Active Comets (1%) and Asteroids (99%) Comets (Weak and very black

More information

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Asteroid Mitigation Strategy By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Impact History 65 mya- End of the Jurassic Period 3.3 mya- Impact in Argentina 50,000 ya- Barringer

More information

Space Mission Planning Advisory Group (SMPAG)

Space Mission Planning Advisory Group (SMPAG) Space Mission Planning Advisory Group (SMPAG) Roadmap of Relevant Research for Planetary Defense Work plan activity: 5 Participating Members: DLR: A. W. Harris, L. Drube NASA: L. Johnson Living document

More information

Planetary Protection at NASA: Overview and Status

Planetary Protection at NASA: Overview and Status at NASA: Overview and Status Catharine A. Conley, NASA Officer 1 June, 2016 1 NASA Strategic Goals Strategic Goal 1: Expand the frontiers of knowledge, capability, and opportunity in space. Objective 1.1:

More information

DEALING WITH THE THREAT TO EARTH FROM ASTEROIDS AND COMETS

DEALING WITH THE THREAT TO EARTH FROM ASTEROIDS AND COMETS DEALING WITH THE THREAT TO EARTH FROM ASTEROIDS AND COMETS Synopsis of a NEO study by THE INTERNATIONAL ACADEMY OF ASTRONAUTICS (IAA) Mr. Ivan Bekey, study chairman February 16, 2009 Contact information:

More information

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon

New Worlds Observer Final Report Appendix J. Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon Appendix J: Trajectory Design and Orbit Determination Lead Author: Karen Richon The two NWO spacecraft will orbit about the libration point created by the Sun and Earth/Moon barycenter at the far side

More information

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 Near Earth Objects The NEO Observation Program and Planetary Defense Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 NEO Observation Program US component to International Spaceguard

More information

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark

Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Measurements & Instrumentation Systems National Space Institute Technical University of Denmark Assessment Study of Autonomous Optical Navigation for an Asteroid Impact Mission -Executive Summary- Prepared

More information

A Global Approach to Near-Earth Object Impact Threat Mitigation. Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium

A Global Approach to Near-Earth Object Impact Threat Mitigation. Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium A Global Approach to Near-Earth Object Impact Threat Mitigation Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium Defending Planet Earth: Near-Earth Object Surveys and

More information

Asteroid Redirect Mission (ARM) Status

Asteroid Redirect Mission (ARM) Status National Aeronautics and Space Administration Asteroid Redirect Mission (ARM) Status Briefing to Small Bodies Assessment Group Michele Gates NASA Headquarters January 28, 2016 2 A Sustainable Exploration

More information

The Near-Earth Object Segment of ESA s Space Situational Awareness programme (SSA-NEO)

The Near-Earth Object Segment of ESA s Space Situational Awareness programme (SSA-NEO) The Near-Earth Object Segment of ESA s Space Situational Awareness programme (SSA-NEO) Overview Detlef Koschny, Gerhard Drolshagen The SSA-NEO segment shall provide information about the impact threat

More information

ESA S DON QUIJOTE MISSION: AN OPPORTUNITY FOR THE INVESTIGATION OF AN ARTIFICIAL IMPACT CRATER ON AN ASTEROID

ESA S DON QUIJOTE MISSION: AN OPPORTUNITY FOR THE INVESTIGATION OF AN ARTIFICIAL IMPACT CRATER ON AN ASTEROID ISTS 2006-k-26 ESA S DON QUIJOTE MISSION: AN OPPORTUNITY FOR THE INVESTIGATION OF AN ARTIFICIAL IMPACT CRATER ON AN ASTEROID Andrés Gálvez 1, Ian Carnelli 2 1 Advanced Concepts and Studies Office, ESA-HQ

More information

PTYS/ASTR 416/516: Asteroids, Comets and KBOs

PTYS/ASTR 416/516: Asteroids, Comets and KBOs Fall 2017 PTYS/ASTR 416/516 (ACK) PTYS/ASTR 416/516: Asteroids, Comets and KBOs Summary: Small bodies (asteroids, comets and KBOs) are time capsules that have recorded the conditions under which our Solar

More information

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA

DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon. September 20, 2017 ISAS/JAXA DESTINY + : Technology Demonstration and Exploration of Asteroid 3200 Phaethon September 20, 2017 ISAS/JAXA 1 DESTINY + Overview This mission is to acquire the compact deep space explorer technology, fly-by

More information

ON THE NATIONAL PROGRAM TO COUNTERACT SPACE THREATS

ON THE NATIONAL PROGRAM TO COUNTERACT SPACE THREATS ON THE NATIONAL PROGRAM TO COUNTERACT SPACE THREATS Boris Shustov 1 & Yuri Makarov 2 1) Russian Academy of Sciences 2) Federal Space Agency Life and the human civilization on the Earth exist in the environment

More information

JUICE/Laplace Mission Summary & Status

JUICE/Laplace Mission Summary & Status JUICE/Laplace Mission Summary & Status C. Erd JUICE Instrument WS, Darmstadt 9/11/2011 Activities during the Reformulation Phase 1. Feasible JGO s/c as a starting point a. no re-design of s/c necessary

More information

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland Cometary Science Jessica Sunshine Department of Astronomy University of Maryland Slide 1 Major Cometary Goals: Last Decadal Survey Building Blocks of the Solar System Where in the solar system are the

More information

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope) Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up

More information

ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD OPERATIONS SCENARIO

ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD OPERATIONS SCENARIO estec European Space Research and Technology Centre Keplerlaan 1 2201 AZ Noordwijk The Netherlands T +31 (0)71 565 6565 F +31 (0)71 565 6040 www.esa.int ASTEROID IMPACT MISSION: AIM3P MISSION AND PAYLOAD

More information

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency

Current Status of Hayabusa2. Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Current Status of Hayabusa2 Makoto Yoshikawa, Yuichi Tsuda, Hayabusa2 Project Japan Aerospace Exploration Agency Small Body Assessment Group 19th Meeting, June 14, 2018 Outline of mission flow Launch December

More information

The Precursor Services of ESA s Space Situational Awareness NEO programme (SSA-NEO)

The Precursor Services of ESA s Space Situational Awareness NEO programme (SSA-NEO) The Precursor Services of ESA s Space Situational Awareness NEO programme (SSA-NEO) Overview Detlef Koschny, Gerhard Drolshagen And >80 % of the European asteroid community The SSA-NEO segment shall provide

More information

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers

NEW HORIZONS 2. New Horizons: A Journey to New Frontiers NEW HORIZONS 2 New Horizons: A Journey to New Frontiers WHY NEW HORIZONS 2? PROVIDE BACKUP FOR THE HIGHEST PRIORITY NF OBJECTIVE OF THE DECADAL SURVEY. ENABLE THE FIRST EXPLORATION OF A LARGE (500 KM CLASS)

More information

James Webb Space Telescope Cycle 1 Call for Proposals

James Webb Space Telescope Cycle 1 Call for Proposals James Webb Space Telescope Cycle 1 Call for Proposals Stefanie Milam JWST Deputy Project Scientist for Planetary John Stansberry Solar System Lead, STScI Bryan Holler Solar System Scientist, STScI Getting

More information

NEO Program 2015 for SBAG #12. Lindley Johnson Near Earth Object Observations Program Executive NASA HQ

NEO Program 2015 for SBAG #12. Lindley Johnson Near Earth Object Observations Program Executive NASA HQ NEO Program 2015 for SBAG #12 Lindley Johnson Near Earth Object Observations Program Executive NASA HQ January 6, 2015 NEO Observations Program US component to International Spaceguard Survey effort Has

More information

radar astronomy The basics:

radar astronomy The basics: 101955 (1999 RQ36) Michael Nolan, Ellen Howell, (Arecibo Observatory), Lance A. M. Benner,Steven J. Ostro (JPL/Caltech), Chris Magri (U. Maine, Farmington), R. Scott Hudson (U. Washington) radar astronomy

More information

NASA s Planetary Science Program Status

NASA s Planetary Science Program Status NASA s Planetary Science Program Status Presentation to VEXAG James L. Green Director, Planetary Science Division October 28, 2009 1 Outline MSL status Announcements of Opportunity R&A International Agreements

More information

A Phase I Report to the NASA Institute for Advanced Concepts

A Phase I Report to the NASA Institute for Advanced Concepts SHIELD A Comprehensive Earth Protection System A Phase I Report to the NASA Institute for Advanced Concepts R. E. Gold Principal Investigator The Johns Hopkins University Applied Physics Laboratory May

More information

Jupiter Icy Moons Orbiter

Jupiter Icy Moons Orbiter Jupiter Icy Moons Orbiter Forum on Concepts and Approaches for Jupiter Icy Moons Orbiter Science Capabilities & Workshop Goals Dr. Colleen Hartman Director of Solar System Exploration June 12, 2003 the

More information

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team

Team X Study Summary for ASMCS Theia. Jet Propulsion Laboratory, California Institute of Technology. with contributions from the Theia Team Team X Study Summary for ASMCS Theia Jet Propulsion Laboratory, California Institute of Technology with contributions from the Theia Team P. Douglas Lisman, NASA Jet Propulsion Laboratory David Spergel,

More information

PHOOTPRINT. An ESA mission study. previously: MMSR (Martian Moon Sample Return)

PHOOTPRINT. An ESA mission study. previously: MMSR (Martian Moon Sample Return) An ESA mission study previously: MMSR (Martian Moon Sample Return) D. Koschny (Study Scientist, ESA/ESTEC) And the MMSR Science Definition Team MMSR-RSSD-HO-007/1.0 - Page 1 MMSR-RSSD-HO-007/1.0 - Page

More information

Planetary Radar and Radio Astronomy

Planetary Radar and Radio Astronomy Planetary Radar and Radio Astronomy T. Joseph W. Lazio 2017 California Institute of Technology. Government sponsorship acknowledged. NASA Discovery Missions PI-led medium scale Small Bodies 75% of current

More information

Mission Architecture Options For Enceladus Exploration

Mission Architecture Options For Enceladus Exploration Mission Architecture Options For Enceladus Exploration Presentation to the NRC Planetary Science Decadal Survey Satellites Panel Nathan Strange Jet Propulsion Laboratory, California Inst. Of Technology

More information

Security in Outer Space: Rising Stakes

Security in Outer Space: Rising Stakes Security in Outer Space: Rising Stakes Forging ahead: from SSA to Space Safety 12 th ESPI Autumn Conference, Vienna, 27-28 Septembre Nicolas Bobrinsky ESA, H/ SSA Programme ESA UNCLASSIFIED - For Official

More information

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars Mars: Overview General properties Telescopic observations Space missions Atmospheric Characteristics Reading: Chapters 7.1 (Mars), 9.4, 10.4 Lecture #19: Mars The Main Point Changes in the Martian surface

More information

Orbital Debris Mitigation

Orbital Debris Mitigation Orbital Debris Mitigation R. L. Kelley 1, D. R. Jarkey 2, G. Stansbery 3 1. Jacobs, NASA Johnson Space Center, Houston, TX 77058, USA 2. HX5 - Jacobs JETS Contract, NASA Johnson Space Center, Houston,

More information

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI)

Science Update SBAG July, Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Science Update SBAG July, 2014 Andrew Cheng (JHU/APL) Karl Hibbitts (JHU/APL) Eliot Young (SwRI) Overview BOPPS science objectives BIRC calibration results UVVis update Science operations 4/23/14 2 BOPPS

More information

The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft

The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft The Characteristics and Consequences of the Break-up of the Fengyun-1C Spacecraft N. Johnson, E. Stansbery, J.-C. Liou, M. Horstman, C. Stokely, D. Whitlock NASA Orbital Debris Program Office NASA Johnson

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts. Chapter 12 Lecture Chapter 12 Lecture The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts

More information

Mission analysis for potential threat scenarios: kinetic impactor

Mission analysis for potential threat scenarios: kinetic impactor Mission analysis for potential threat scenarios: kinetic impactor Marco Castronuovo, Camilla Colombo, Pierluigi Di Lizia, Lorenzo Bolsi, Mathieu Petit, Giovanni Purpura, Marta Albano, Roberto Bertacin,

More information

SBAG GOALS Origin of the Solar System Theme

SBAG GOALS Origin of the Solar System Theme SBAG GOALS Origin of the Solar System Theme Objective 1.2. Study small bodies to understand the origin of the Solar System Objective 1.1.2 Find and characterize new samples from small bodies Presented

More information

Operation status for the asteroid explorer, Hayabusa2

Operation status for the asteroid explorer, Hayabusa2 Operation status for the asteroid explorer, Hayabusa2 October 23, 2018 JAXA Hayabusa2 Project Regarding Hayabusa2: Contents Today Report on TD1-R1-A TD1-R3 operation plan TD1-R1-A Touchdown 1 rehearsal

More information

New Horizons Mission Update

New Horizons Mission Update New Horizons Mission Update NASA SBAG: June 2018 Hal Weaver New Horizons Project Scientist JHU-APL First Mission to Explore the Kuiper Belt = Ultima Thule PI = Alan Stern (SwRI) PM = Helene Winters (JHU-APL)

More information

Broadband Photometry of the Potentially Hazardous Asteroid (153958) 2002 AM31: A Binary Near-Earth Asteroid

Broadband Photometry of the Potentially Hazardous Asteroid (153958) 2002 AM31: A Binary Near-Earth Asteroid Broadband Photometry of the Potentially Hazardous Asteroid (153958) 2002 AM31: A Binary Near-Earth Asteroid Tamara Davtyan¹, Michael D Hicks² 1-Los Angeles City College, Los Angeles, CA 2-Jet Propulsion

More information

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld X The Planet Pluto & Kuiper Belt Updated May 9, 2016 The Search for PLANET X Recall Neptune was predicted from observed changes in orbit of Uranus Lowell & Pickering suggest small changes in Neptune s

More information

New Horizons Pluto/KBO Mission Status Report for SBAG. Hal Weaver JHU Applied Physics Laboratory

New Horizons Pluto/KBO Mission Status Report for SBAG. Hal Weaver JHU Applied Physics Laboratory New Horizons Pluto/KBO Mission Status Report for SBAG Hal Weaver JHU Applied Physics Laboratory New Horizons: To Pluto and Beyond The Initial Reconnaissance of The Solar System s Third Zone KBOs 2016-2020

More information

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL)

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Rosetta Mission Status Update Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Wake Up Rosetta, Please! Hibernating since June 2011 Wakeup by timer on: 2014-Jan-20

More information

Lunar Discovery and Exploration program

Lunar Discovery and Exploration program Lunar Discovery and Exploration program Space Policy Directive-1 (December 11, 2017) amends the National Space Policy to include the following paragraph: Lead an innovative and sustainable program of exploration

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global

OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology. 3 rd Mission Idea Contest UNISEC Global OTSUKIMI Moon-sighting Satellite Kyushu Institute of Technology 3 rd Mission Idea Contest UNISEC Global The Idea We want to take image for the moon phases as seen from Earth Why? Introduction 1.6 billion,23.4%

More information

James L. Green Director, Planetary Science NASA

James L. Green Director, Planetary Science NASA James L. Green Director, Planetary Science NASA 1 Year of the Solar System Planetary Science Mission Events 2010 * September 16 Lunar Reconnaissance Orbiter in PSD * November 4 EPOXI encounters Comet Hartley

More information

Modeling the Orbits of the Outer Planets

Modeling the Orbits of the Outer Planets Name Modeling the Orbits of the Outer Planets (a NASA New Horizons activity) Materials Paper clip Scissors Glue Pencil and crayons or markers Planet sheets Safety Concerns: Scissors. Discuss safe and proper

More information

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016

Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 Prospector-1: A Low-Cost Commercial Asteroid Mission Grant Bonin SmallSat 2016 About DSI A space technology and resources company Vision to enable the human space development by harvesting asteroid materials

More information