Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL

Size: px
Start display at page:

Download "Asteroid Redirect Mission: Candidate Targets. Paul Chodas, NEO Program Office, JPL"

Transcription

1 Asteroid Redirect Mission: Candidate Targets Paul Chodas, NEO Program Office, JPL Small Bodies Assessment Group Meeting #12, January 7, 2015

2 NEA Discovery Rates Are Increasing Overall discovery rate of Near- Earth Asteroids (NEAs) has increased 45% since last year Total known NEAs: >12000 Pan-STARRS survey is now dedicated to NEO search; its discovery rate is up 70% Catalina Sky Survey discovery rate is same as last year; its camera will be upgraded in 2015 NEOWISE is reactivated and finding several NEAs every month Discovery rate for accessible targets (per NHATS criteria) is up 65% Discovery rate for small (< ~10m) NEAs is up 80% BUT, only 1 potential candidate for ARM Option A was found in 2014, and it could not be fully characterized due to radar being down 2

3 Summary of NEO Radar Observations in NEAs and 2 comets were observed by radar in 2014, up 13% from 2013, and more than in any previous year This is remarkable considering Arecibo was down for ~120 days due to equipment problems mainly due to damage from an earthquake, and Goldstone was down for ~35 days In just the last 2 weeks, Arecibo characterized two ~10m NEAs that were almost suitable candidates for ARM Option A 14 NHATS targets were observed by radar this year Boulders were detected on two 100m-class NEAs this year, but neither of them was in suitable orbit to be candidate for Option B 2014 BR HQ124 3

4 2014 BR57: Radar Evidence for Boulders 2014 February 18, resolution = 3.75 m x 0.06 Hz Monthly report for February 2014 Goldstone images of 2014 BR57. The images reveal that 2014 BR57 is a rounded object and suggest a diameter of ~80 m. Radar-bright spots at two locations are visible and persist as the asteroid rotates. The figure above shows one of them with arrows. The spots resemble similar features seen in radar images on numerous larger NEAs that are candidates for boulders BR57 is the smallest NEA by about a factor of four with these features imaged to date by radar. This hints that smaller NEAs than previously realized can have boulders

5 2014 HQ124: Radar Evidence for Boulders 2014 June 8, resolution = 3.75 m x Hz Monthly report for June 2014 Bistatic Goldstone-Arecibo radar images of 2014 HQ124. This was the first test of new data taking equipment installed at Arecibo in May HQ124 is an elongated, bifurcated object with a rotation period of ~20 h and a long axis of about 380 m. Numerous radar-bright spots (some highlighted with green circles) are visible that are candidate boulders. 5

6 Asteroid Redirect Mission: Two Robotic Capture Options Option A for Asteroid Rendezvous with a <10 m asteroid Demonstrate some basic planetary defense techniques Match its spin, capture it and despin Guide the asteroid back to lunar orbit Max return mass depends on orbit, but is likely on the order of 100 tons Option B for Boulder Rendezvous with a 100+ m asteroid Characterize its surface, select boulder Land on the asteroid and collect the boulder, probably ~2-3 m in size Demonstrate gravity tractor deflection Bring the boulder back to lunar orbit Max return mass depends on orbit, but is likely on the order of 10 tons 66

7 Earth-like orbit Favorable Close Approach Not too big, Not rapidly spinning Rotation rate less than 0.5 rpm 7 7

8 Trajectory of 2009 BD in a Rotating Frame NASA Asteroid Initiative Opportunities Forum #AskNASA 8

9 Why So Few ARM Option A Candidates in 2014? In 2014, 10 NEAs were discovered in Earth-like orbits, similar to the number found in 2013 But unlike in 2013, more than half of the objects were in orbits that return to Earth too late (2030s or later), and all but one of the remaining NEAs were too large (~15 35 m) The only new potential candidate, 2014 BA3, was too far away for Goldstone, and Arecibo was down due to earthquake damage Thus, no new valid candidates for Option A in 2014: the bottom line remains the same: 9 potential candidates, 3 valid candidates 2014 was unlucky: historical trends indicate 2-3 new potential candidates per year even without enhancements to the observation campaign, and 1-2 of these per year should become valid candidates Another potential candidate, 2008 HU4, has radar opportunity in 2016 As the ARM launch pushes later, candidates drop off the list, but if the return date/arcm accessibility date also pushes later, other potential candidates get added to the list 9

10 Summary of Potential Candidates for Option A KISS baseline Current baseline Estimated Was Radar Size Return Comment Name Possible? (m) V (km/s) Date 2008 HU4 Y /2026 Characterizable in BD Y /2023 Valid Candidate 2010 UE51 Y / MD Y /2024 Valid Candidate 2013 EC20 Y /2024 Valid Candidate 2013 GH66 Y / LE7? / PZ6 N 5 23 n/a 8/ BA3 Y /2024 Arecibo Down 9 Potential Candidates: Pre-2013 discovery rate: ~1/year; in 2013: 4/year; in 2014: 1/year Expected discovery rate without enhancements: 2-3 per year Expected discovery rate with enhancements: ~5 per year 3 Valid Candidates (yellow): 2009 BD, 2011 MD and 2013 EC20 Additional valid candidates still expected at ~1-2 per year 10

11 11 Option A Candidates 2009 BD and 2011 MD Both are well observed (hundreds of observations, dozens of observatories) Neither observed by radar or ground IR, so sizes initially not well constrained But, both were targeted by the Spitzer Space Telescope (space-based IR) 2009 BD: Not detected, but this still constrains the size (Mommert et al., 2013): Probable diameter: ~4 m; likely range is 2.6 m - 7 m Upper bound on mass: 150 tons, which is within the return mass capability if ARM launches before the end of MD: Detected. (Mommert et al., 2014): Probable diameter: ~6 m; likely range is 3 m - 15 m Upper bound on mass: 350 t, which is within the return mass capability if ARM launches before the end of m 2009 BD and 2011 MD are Valid Candidates for Option A 2011 MD observed by Spitzer

12 Characterization of Option A Candidates 2009 BD and 2011 MD: Both objects very well observed from the ground, and orbits well determined Spitzer detection/non-detection puts bounds on the sizes (Mommert et al.) Non-gravitation parameters can be modeled, yielding distributions on size and mass with good constraints on uncertainties 2013 EC20: Less well observed from the ground Detection by Arecibo radar puts bounds on the size Non-grav parameters were not modeled: mass was estimated from size and assumed range of densities Diameter [m] 1.2 x BD Size Distribution 2009 BD Mass Distribution Mass [kg] x

13 Summary of Option A Candidate Characteristics Candidate Target Mass (t) Size (m) 2009 BD 95% upper limit Median 95% lower limit Spin Period (minutes) > MD 95% upper limit Median 95% lower limit EC20 95% upper limit Median 95% lower limit ~2 13

14 Medium-sized NEA Accessible orbit Observational evidence of 14 boulders 14

15 Characterizing Option B Candidates In order to be a Valid Candidate for Option B, the surface of the host asteroid must be characterized, and the existence of boulders of the size which can be returned must at least be inferred There are two means of adequately characterizing the surface: 1) In situ imaging from a precursor mission 2) Ground-based radar with high enough SNR Candidates must approach within ~8 lunar distances to have high enough SNR. Amount of mass which can be returned from Option B candidates which can be characterized is <~50 t, corresponding to boulder sizes of <~4 m 15

16 In Situ Characterization for Option B Candidates One Option B candidate has been visited by a spacecraft and characterized well enough to detect boulders of a size which could be returned: Itokawa, visited by Hayabusa in Two other Option B candidates are planned to be similarly characterized by spacecraft in 2018: Bennu (OSIRIS-Rex), and 1999 JU3 (Hayabusa 2). 535 m Itokawa is a Valid Candidate for Option B, and Bennu and 1999 JU3 are expected to become Valid Candidates Itokawa 16

17 Radar Characterization for Option B Candidates Radar cannot detect individual <4m boulders, but if the SNR is high enough, ~10m-scale features can be seen, and the presence of <4m boulders can be inferred Radar observed ~10m-scale features interpreted as boulders on 2014 HQ124 and 2005 YU55, but neither is in an accessible orbit ~15m-scale boulders are observed on 2 candidates: Bennu & 2008 EV5 (both C- types); we infer the presence of <4m boulders on these two asteroids 2014 HQ YU55 Bennu and 2008 EV5 are considered Valid Candidates for Option B because of the inferred presence of boulders 2008 EV5 17

18 Candidates for Option B: Mid-2019 Launch & Return Target Type Asteroid V (km/s) Earth Launch or Escape Earth return Max Return mass (t) Boulder max diam (m) c CharacterizaHon Itokawa a S 5.7 3/ / Visited by Hayabusa in 2005 Bennu b C 6.4 5/ / Radar, OSIRIS- REx, mid JU3 C 5.1 6/2019 7/ Hayabusa 2, mid EV5 a C 4.4 1/2020 6/ Radar in Dec. 2008, SNR= 240, UW158? 5.3 7/2018 7/ Radar in Jul. 2015, SNR = 280, DL46 a? /2019 8/ Radar in May 2016, SNR= 48,000 Valid Valid Expected Valid Possible Possible a Earth gravity assist ~1yr prior to capture c Assuming densities in the range 2.0 to 3.0 g/cm 3 NB: Max Return masses and Boulder max diameters vary significantly with launch date and return date Assumes Falcon Heavy launch vehicle, Earth departure in mid 2019, 400-day stay and return in 2023 Green: In situ characterization from precursor mission Grey: Characterization by radar and inference of appropriate-sized boulders Lots of Potential Candidates (characterizable candidates tabulated above) 3 Valid Candidates: Itokawa, Bennu, 2008 EV5 (radar only) Additional candidates validated by radar at ~1 per year.

19 Summary of Candidate Asteroids for Option B Itokawa: Precursor: Hayabusa in 2005 S-type, 535 x 200 m, 12 hr spin Bennu: Precursor: OSIRIS-REx in 2018 B/C-type, 500 m size, 4 hr spin 2008 EV5: No precursor, but radar detected boulders in 2008 C-type, 400 m size, 4 hr spin 1999 JU3: Precursor: Hayabusa 2 in 2018/19 C-type, 870 m size, 8 hr spin Possible Future Candidates: No precursors, but radar could detect boulders on 2011 UW158 in 2015, 2009 DL46 in 2016 Itokawa 2008 EV5 19

20 End-to-End ARRM Mission Examples OpHon A OpHon B Crew Accessible Date (LDRO) Aug 2024 Aug 2024 Dec 2024 Sep 2025 Launch Date Oct 2019 Oct 2020 Dec 2019 Oct 2020 Target 2009 BD 2009 BD 2008 EV EV5 Launch Vehicle D4H SLS SLS D4H Solar Array Power, BOL 50 kw 50 kw 50 kw 50 kw Total Flight Time 4.8 yrs 3.8 yrs 5.0 yrs 4.6 yrs Return Mass Capability 170 t 157 t 10 t 22 t DuraSon of Planetary Defense Demo < 20 min. < 20 min. 55 days 32 days Planetary Defense DV 1.0 mm/s 1.0 mm/s mm/s mm/s Stay Time at Asteroid 90 days 90 days 430 days 458 days Total Xenon with margin 3.2 t 6.3 t 7.9 t 4.7 t 20

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement

Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Asteroid Robotic Mission Overview: A First Step in the Journey of Human Space Exploration and Settlement Dan Mazanek Senior Space Systems Engineer NASA Langley Research Center Virginia Space Grant Consortium

More information

Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ

Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ Finding Near Earth Objects Before They Find Us! Lindley Johnson Near Earth Object Observations Program Executive NASA HQ July 8, 2013 Impact is a Planetary Process Vesta Saturn moon Tethys Mars Mercury

More information

Astrodynamics of Moving Asteroids

Astrodynamics of Moving Asteroids Astrodynamics of Moving Asteroids Damon Landau, Nathan Strange, Gregory Lantoine, Tim McElrath NASA-JPL/CalTech Copyright 2014 California Institute of Technology. Government sponsorship acknowledged. Capture

More information

Asteroid Redirect Mission Update

Asteroid Redirect Mission Update National Aeronautics and Space Administration Asteroid Redirect Mission Update SBAG Meeting 1/8/14 Exploration Activities Related to Small Bodies Michele Gates/NASA HEOMD Leveraging Capabilities for an

More information

Asteroid Redirect Robotic Mission (ARRM) Concept Overview

Asteroid Redirect Robotic Mission (ARRM) Concept Overview Asteroid Redirect Robotic Mission (ARRM) Concept Overview Briefing to SBAG Brian Muirhead Chief Engineer and ARRM Pre-project Manager, JPL/Caltech July 30, 2014 ARRM Mission Concept Rendezvous with an

More information

Update on NASA NEO Program

Update on NASA NEO Program Near Earth Object Observations Program Update on NASA NEO Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 3 February 2015 1 NASA s NEO Search

More information

Space Mission Planning Advisory Group Open Forum

Space Mission Planning Advisory Group Open Forum Space Mission Planning Advisory Group Open Forum Gerhard Drolshagen ESA (Chair of SMPAG) 18 February 2016 SMPAG purpose and membership The purpose of the SMPAG is to prepare for an international response

More information

Bring the Asteroids to the Astronauts

Bring the Asteroids to the Astronauts Don t Send the Astronauts to the Asteroid Bring the Asteroids to the Astronauts A radical proposal for the planned 2025 asteroid visit Missions that Create Industry Asteroid Mining Group Al Globus, Chris

More information

Asteroid Redirect Mission (ARM) Status

Asteroid Redirect Mission (ARM) Status National Aeronautics and Space Administration Asteroid Redirect Mission (ARM) Status Briefing to Small Bodies Assessment Group Michele Gates NASA Headquarters January 28, 2016 2 A Sustainable Exploration

More information

radar astronomy The basics:

radar astronomy The basics: 101955 (1999 RQ36) Michael Nolan, Ellen Howell, (Arecibo Observatory), Lance A. M. Benner,Steven J. Ostro (JPL/Caltech), Chris Magri (U. Maine, Farmington), R. Scott Hudson (U. Washington) radar astronomy

More information

Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan

Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan Physical Characterization Studies of Near- Earth Object Spacecraft Mission Targets Drs. Eileen V. Ryan and William H. Ryan (NM Tech/Magdalena Ridge Observatory) Astronauts to Visit an Asteroid by 2025

More information

Asteroid Redirect Mission (ARM) Overview NASA Advisory Council Planetary Protection Committee November 17, 2014

Asteroid Redirect Mission (ARM) Overview NASA Advisory Council Planetary Protection Committee November 17, 2014 Asteroid Redirect Mission (ARM) Overview NASA Advisory Council Planetary Protection Committee November 17, 2014 Dr. Michele Gates, ARM Program Director Steve Stich, ARM Crewed Mission Lead Bob Gershman,

More information

ISIS Impactor for Surface and Interior Science

ISIS Impactor for Surface and Interior Science ISIS Impactor for Surface and Interior Science ISIS Mission Concept!! Send an independent, autonomous impactor spacecraft to the target of the OSIRIS-REx mission!! Launch as secondary payload with InSight!!

More information

Spitzer Observations of ARM Targets 2009 BD and 2011 MD

Spitzer Observations of ARM Targets 2009 BD and 2011 MD Spitzer Observations of ARM Targets 2009 BD and 2011 MD Michael Mommert In collaboration with J. L. Hora, D. Farnocchia, S. R. Chesley, D. Vokrouhlicky, D. E. Trilling, P. W. Chodas, M. Mueller, A. W.

More information

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018

Ross (née, CAESAR) Presentation to SBAG. Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 Ross (née, CAESAR) Presentation to SBAG Beau Bierhaus, Ben Clark, Josh Hopkins 18 January 2018 First, A Word on Names Our proposal was named Cubesat Asteroid Encounters for Science And Reconnaissance (CAESAR)

More information

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California NASA s National Aeronautics and Near-Earth Object Program Overview Don Yeomans/JPL The Population of Near-Earth Objects is Made Up of Active Comets (1%) and Asteroids (99%) Comets (Weak and very black

More information

Solar System Observations with Spitzer

Solar System Observations with Spitzer Solar System Observations with Spitzer Michael Werner Spitzer Project Scientist, JPL/Caltech Lisa Storrie-Lombardi Manager, Spitzer Science Center, IPAC/Caltech Presented to SBAG July 1, 2015 http://ssc.spitzer.caltech.edu

More information

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008

Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or November 19, 2008 Feasible Mission Designs for Solar Probe Plus to Launch in 2015, 2016, 2017, or 2018 2007 Solar Probe Study & Mission Requirements Trajectory study and mission design trades were conducted in the fall

More information

HERA MISSION & CM16 lessons learned

HERA MISSION & CM16 lessons learned HERA MISSION HERA MISSION & CM16 lessons learned (CM16) Schedule criticality for 2020 launch Prepare Asteroid mission with launch opportunities in 2023 (with back-up in 2024 and 2025) (CM16) Payload selection

More information

Asteroid Redirect Mission Update

Asteroid Redirect Mission Update National Aeronautics and Space Administration Asteroid Redirect Mission Update Mr. Lindley Johnson, NEO Program Executive, NASA HQ Dr. Michele Gates, ARM Program Director, NASA HQ Today we are Updating

More information

Planetary Science Update. David Schurr Deputy Director Planetary Science July 23, 2014

Planetary Science Update. David Schurr Deputy Director Planetary Science July 23, 2014 Planetary Science Update David Schurr Deputy Director Planetary Science July 23, 2014 Outline Planetary upcoming mission events Recent accomplishments Use of Astrophysics Telescopes R&A status Planetary

More information

Spitzer Space Telescope: Status & Opportuni4es

Spitzer Space Telescope: Status & Opportuni4es Spitzer Space Telescope: Status & Opportuni4es Lisa Storrie- Lombardi & Sean Carey Caltech/IPAC Spitzer DPS 48 - Pasadena 17 October 2016 Mission Status Spitzer Beyond Phase Oct 2016 Mar 2019 >inal 2.5

More information

Near Earth Object Observations Program

Near Earth Object Observations Program Near Earth Object Observations Program Presentation to UN COPUOS Scientific & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 16 February 2010 1 Terminology Near Earth Objects (NEOs) -

More information

Presentation to SBAG January 2016

Presentation to SBAG January 2016 Presentation to SBAG January 2016 Julie Castillo-Rogez (JPL/Caltech/NASA) Les Johnson (Marshall Space Flight Center/NASA) And the NEAScout Team Edit as appropriate AES EM-1 Secondary Payload Overview HEOMD

More information

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror

How do telescopes work? Simple refracting telescope like Fuertes- uses lenses. Typical telescope used by a serious amateur uses a mirror Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 4 Don Campbell How do telescopes work? Typical telescope used

More information

Near Earth Object Observations Program

Near Earth Object Observations Program Near Earth Object Observations Program Presentation to UN COPUOS Science & Technical Subcommittee Lindley Johnson Program Executive NASA HQ 16 February 2009 Terminology Near Earth Objects (NEOs) - any

More information

Where you can put your asteroid

Where you can put your asteroid Where you can put your asteroid Nathan Strange, Damon Landau, and ARRM team NASA/JPL-CalTech 2014 California Institute of Technology. Government sponsorship acknowledged. Distant Retrograde Orbits Works

More information

Planetary Radar and Radio Astronomy

Planetary Radar and Radio Astronomy Planetary Radar and Radio Astronomy T. Joseph W. Lazio 2017 California Institute of Technology. Government sponsorship acknowledged. NASA Discovery Missions PI-led medium scale Small Bodies 75% of current

More information

Status of Arecibo Observatory and the Planetary Radar Program

Status of Arecibo Observatory and the Planetary Radar Program Status of Arecibo Observatory and the Planetary Radar Program Patrick A. Taylor Arecibo Observatory, USRA Small Bodies Assessment Group (SBAG) Meeting January 11, 2017 @ Tucson, AZ Management Arecibo Observatory

More information

Low Thrust Mission Trajectories to Near Earth Asteroids

Low Thrust Mission Trajectories to Near Earth Asteroids Low Thrust Mission Trajectories to Near Earth Asteroids Pratik Saripalli Graduate Research Assistant, College Park, Maryland, 20740, USA Eric Cardiff NASA Goddard Space Flight Center, Greenbelt, Maryland,

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee

Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee Report from the Small Bodies Assessment Group (SBAG) to the Planetary Science Advisory Committee Tim Swindle, SBAG Chair February 23, 2018 Last SBAG Meeting: January 17-18, 2018: 18 th SBAG Meeting, NASA-Ames

More information

Planetary Defense Coordination Office Brief. Lindley Johnson Program Executive / Planetary Defense Officer Science Mission Directorate NASA HQ

Planetary Defense Coordination Office Brief. Lindley Johnson Program Executive / Planetary Defense Officer Science Mission Directorate NASA HQ Planetary Defense Coordination Office Brief Lindley Johnson Program Executive / Planetary Defense Officer Science Mission Directorate NASA HQ January 27, 2016 Planetary Defense Coordination Office This

More information

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist OSIRIS-REx Asteroid Sample Return Mission Lucy F. Lim Assistant Project Scientist WHAT IS OSIRIS-REX? OSIRIS-REx is a PI-led New Frontiers sample return mission to return at least 60 g (and as much as

More information

HERA MISSION. ESA UNCLASSIFIED - For Official Use

HERA MISSION. ESA UNCLASSIFIED - For Official Use HERA MISSION ESA UNCLASSIFIED - For Official Use HERA/AIM mission scenario! First ever investigation of deflection test! Detailed analysis of impact crater (before/after impact or after only depending

More information

NEO Program 2015 for SBAG #12. Lindley Johnson Near Earth Object Observations Program Executive NASA HQ

NEO Program 2015 for SBAG #12. Lindley Johnson Near Earth Object Observations Program Executive NASA HQ NEO Program 2015 for SBAG #12 Lindley Johnson Near Earth Object Observations Program Executive NASA HQ January 6, 2015 NEO Observations Program US component to International Spaceguard Survey effort Has

More information

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013

Near Earth Objects The NEO Observation Program and Planetary Defense. Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 Near Earth Objects The NEO Observation Program and Planetary Defense Lindley Johnson Planetary Science Division NASA HQ 15 January 2013 NEO Observation Program US component to International Spaceguard

More information

Arecibo Radar Observations of 19 High-Priority Near-Earth Asteroids During 2018 and January 2019

Arecibo Radar Observations of 19 High-Priority Near-Earth Asteroids During 2018 and January 2019 Arecibo Radar Observations of 19 High-Priority Near-Earth Asteroids During 2018 and January 2019 Patrick A. Taylor, Anne K. Virkki, Sriram S. Bhiravarasu, Flaviane Venditti, Sean E. Marshall, Edgard G.

More information

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE

OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OSIRIS-REX OVERVIEW PRESENTATION TO THE PLANETARY SCIENCE SUBCOMMITTEE OCTOBER 3, 2012 GORDON JOHNSTON PROGRAM EXECUTIVE OSIRIS-REx Science Objectives 1. Return and analyze a sample of pristine carbonaceous

More information

Operation status for the asteroid explorer, Hayabusa2

Operation status for the asteroid explorer, Hayabusa2 Operation status for the asteroid explorer, Hayabusa2 October 23, 2018 JAXA Hayabusa2 Project Regarding Hayabusa2: Contents Today Report on TD1-R1-A TD1-R3 operation plan TD1-R1-A Touchdown 1 rehearsal

More information

Robotic Lunar Exploration Scenario JAXA Plan

Robotic Lunar Exploration Scenario JAXA Plan Workshop May, 2006 Robotic Lunar Exploration Scenario JAXA Plan Tatsuaki HASHIMOTO JAXA 1 Question: What is Space Exploration? Answers: There are as many answers as the number of the people who answer

More information

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA)

Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu. Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Flight S4-002 Status of Hayabusa2: Asteroid Sample Return Mission to C-type Asteroid Ryugu Yuichi Tsuda, Makoto Yoshikawa (ISAS/JAXA) Highlights of Hayabusa2 Hayabusa2 is the 2nd Japanese sample return

More information

NASA Planetary Science Programs

NASA Planetary Science Programs NASA Planetary Science Programs James L. Green NASA, Planetary Science Division February 19, 2015 Presentation at OPAG 1 Outline Mission events Passed FY15 Budget elements President s FY16 Budget Discovery

More information

PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS*

PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS* . AIAA-98-4393 PLANETARY MISSIONS FROM GTO USING EARTH AND MOON GRAVITY ASSISTS* Paul A. Penzo, Associate Fellow AIAA+ Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Dr. Pasadena,

More information

InSight Spacecraft Launch for Mission to Interior of Mars

InSight Spacecraft Launch for Mission to Interior of Mars InSight Spacecraft Launch for Mission to Interior of Mars InSight is a robotic scientific explorer to investigate the deep interior of Mars set to launch May 5, 2018. It is scheduled to land on Mars November

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

Radar Characterization of NEAs: Moderate Resolution Imaging, Astrometry, and a Systematic Survey

Radar Characterization of NEAs: Moderate Resolution Imaging, Astrometry, and a Systematic Survey Radar Characterization of NEAs: Moderate Resolution Imaging, Astrometry, and a Systematic Survey Anne K. Virkki, Patrick A. Taylor, Sriram S. Bhiravarasu, Flaviane Venditti, Sean E. Marshall, Edgard G.

More information

APOPHIS EXPRESS, A UNIQUE OPPORTUNITY FOR A HUMAN VISIT TO A NEO IN 2029

APOPHIS EXPRESS, A UNIQUE OPPORTUNITY FOR A HUMAN VISIT TO A NEO IN 2029 IAA-PDC13-04-20 APOPHIS EXPRESS, A UNIQUE OPPORTUNITY FOR A HUMAN VISIT TO A NEO IN 2029 Jean-Yves Prado CNES, France, jean-yves.prado@cnes.fr Christophe Bonnal, CNES France Christophe.Bonnal@cnes.fr Thierry

More information

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING

LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING LAB 2 HOMEWORK: ENTRY, DESCENT AND LANDING YOUR MISSION: I. Learn some of the physics (potential energy, kinetic energy, velocity, and gravity) that will affect the success of your spacecraft. II. Explore

More information

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION AAS 11-499 ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION J. Bauman,* K. Getzandanner, B. Williams,* K. Williams* The proximity operations phases of a sample return mission to an

More information

INTERNATIONAL SPACE UNIVERSITY TEAM PROJECT PROPOSAL FORM. Proposed by (name): Al Globus, Chris Cassell, Stephen Covey, Jim Luebke, and Mark Sonter

INTERNATIONAL SPACE UNIVERSITY TEAM PROJECT PROPOSAL FORM. Proposed by (name): Al Globus, Chris Cassell, Stephen Covey, Jim Luebke, and Mark Sonter INTERNATIONAL SPACE UNIVERSITY TEAM PROJECT PROPOSAL FORM Project Title: Astronauts and Asteroids Proposed by (name): Al Globus, Chris Cassell, Stephen Covey, Jim Luebke, and Mark Sonter E-mail address:

More information

Asteroid Impact Mitigation: Why? How? When?

Asteroid Impact Mitigation: Why? How? When? Asteroid Impact Mitigation: Why? How? When? Simon Green Planetary and Space Sciences School of Physical Sciences, The Open University Milton Keynes, UK. Why. should we care? Impacts everywhere? Physical

More information

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS

THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS THE ASTEROID IMPACT MISSION: CONSOLIDATED MISSION ANALYSIS AND SCIENTIFIC PAYLOAD OPERATIONS AT BINARY ASTEROID DIDYMOS Fabio Ferrari (1), Michèle Lavagna (2), Ingo Gerth (3), Bastian Burmann (4), Marc

More information

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission

DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission DAVID: Diminutive Asteroid Visitor with Ion Drive A Cubesat Asteroid Mission Geoffrey A. Landis NASA Glenn Research Center COMPASS Team at NASA Glenn: Steve Oleson, Melissa McGuire, Aloysius Hepp, James

More information

Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1

Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1 Asteroid Sample Return and the Path to Exploration of Near-Earth Space* By Dante S. Lauretta 1 Search and Discovery Article #70044 (2008) Posted August 25, 2008 *Adapted from oral presentation at AAPG

More information

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008 Lecture #22: Asteroids Discovery/Observations Where are they? How many are there? What are they like? Where did they come from? Reading: Chapter 12.1 Astro 102/104 1 The Main Points Asteroids are small,

More information

James L. Green Director, Planetary Science NASA

James L. Green Director, Planetary Science NASA James L. Green Director, Planetary Science NASA 1 Year of the Solar System Planetary Science Mission Events 2010 * September 16 Lunar Reconnaissance Orbiter in PSD * November 4 EPOXI encounters Comet Hartley

More information

David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder

David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder David A. Surovik Daniel J. Scheeres The University of Colorado at Boulder 6 th International Conference on Astrodynamics Tools and Techniques March 16, 2016 Irregular shapes and proportionally large external

More information

Near Earth Object Program

Near Earth Object Program Near Earth Object Program Presentation to Asteroid Deflection Research Symposium Lindley Johnson Program Executive NASA HQ 23 Oct 2008 Why this is Important Why this is Important Barringer Crater Winslow,

More information

NASA s Planetary Science Program Overview. James L. Green, Director Planetary Science Presenta6on to the SBAG January 9, 2014

NASA s Planetary Science Program Overview. James L. Green, Director Planetary Science Presenta6on to the SBAG January 9, 2014 NASA s Planetary Science Program Overview James L. Green, Director Planetary Science Presenta6on to the SBAG January 9, 2014 1 Outline Planetary Budget Selected Planetary Missions Status Upcoming PSD Mission

More information

Near Earth Object Program

Near Earth Object Program Near Earth Object Program Presentation to Small Bodies Analysis Group Lindley Johnson Program Executive NASA HQ 12 Jan 2009 Terminology Near Earth Objects (NEOs) - any small body (comet or asteroid) passing

More information

Mission Trajectory Design to a Nearby Asteroid

Mission Trajectory Design to a Nearby Asteroid Mission Trajectory Design to a Nearby Asteroid A project present to The Faculty of the Department of Aerospace Engineering San Jose State University in partial fulfillment of the requirements for the degree

More information

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009

John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 Electric Propulsion Options for Small Body Missions John Dankanich NASA s In-Space Propulsion Technology Project November 18, 2009 1 How is EP Relevant to Small Body Missions? Nearly all small body missions

More information

Hayabusa Status and Proximity Operation. As of September 2nd, 2005

Hayabusa Status and Proximity Operation. As of September 2nd, 2005 Hayabusa Status and Proximity Operation As of September 2nd, 2005 2005/9/2 0 What is Hayabusa? World s First Round-trip Interplanetary Flight HAYABUSA Challenge to Asteroid Sample Return Touch-down + Dimensions

More information

Using Spitzer to Observe the Solar System

Using Spitzer to Observe the Solar System Using Spitzer to Observe the Solar System Sean Carey Spitzer Science Center 47 th DPS meeting 09 November 2015 SJC - 1 Spitzer Space Telescope NASA s Infrared Great Observatory Launched on 25 August 2003

More information

The Genealogy of OSIRIS-REx Asteroid Sample Return Mission

The Genealogy of OSIRIS-REx Asteroid Sample Return Mission The Genealogy of OSIRIS-REx Asteroid Sample Return Mission New Frontiers-3 Proposal Due July 31, 2009 Principal Investigator Michael Drake (UA) Deputy PI Dante Lauretta (UA) May 18, 2009 University of

More information

A Study of Six Near-Earth Asteroids Summary Introduction

A Study of Six Near-Earth Asteroids Summary Introduction A Study of Six Near-Earth Asteroids John Junkins 1, Puneet Singla 1, Daniele Mortari 1, William Bottke 2, Daniel Durda 2 Summary We consider here 6 Earth-orbit-crossing asteroids (ECAs) as possible targets

More information

CAPABILITIES OF EARTH-BASED RADAR FACILITIES FOR NEAR-EARTH ASTEROID OBSERVATIONS

CAPABILITIES OF EARTH-BASED RADAR FACILITIES FOR NEAR-EARTH ASTEROID OBSERVATIONS Draft version June 28, 2016 Preprint typeset using L A TEX style AASTeX6 v. 1.0 CAPABILITIES OF EARTH-BASED RADAR FACILITIES FOR NEAR-EARTH ASTEROID OBSERVATIONS Shantanu. P. Naidu 1, Lance. A. M. Benner

More information

Spacewatch and Follow-up Astrometry of Near-Earth Objects

Spacewatch and Follow-up Astrometry of Near-Earth Objects Spacewatch and Follow-up Astrometry of Near-Earth Objects International Asteroid Warning Network Steering Group Meeting Cambridge, MA 2014 Jan 13 Robert S. McMillan1, T. H. Bressi1, J. A. Larsen2, J. V.

More information

After you read this section, you should be able to answer these questions:

After you read this section, you should be able to answer these questions: CHAPTER 16 4 Moons SECTION Our Solar System California Science Standards 8.2.g, 8.4.d, 8.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions: How did Earth s moon

More information

VLBA Astrometry of Planetary Orbiters

VLBA Astrometry of Planetary Orbiters VLBA Astrometry of Planetary Orbiters Dayton Jones (1), Ed Fomalont (2), Vivek Dhawan (2), Jon Romney (2), William Folkner (1), Robert Jacobson (1), Gabor Lanyi (1), and James Border (1) (1) Jet Propulsion

More information

NASA and Future Human Exploration of the Solar System

NASA and Future Human Exploration of the Solar System NASA and Future Human Exploration of the Solar System Presentation to the Westinghouse Science Honors Institute Murrysville, PA Bryan Palaszewski NASA Glenn Research Center Cleveland, OH September 29,

More information

OSIRIS-REx. Asteroid Sample Return Mission. Dante S. Lauretta Deputy Principal Investigator

OSIRIS-REx. Asteroid Sample Return Mission. Dante S. Lauretta Deputy Principal Investigator OSIRIS-REx Asteroid Sample Return Mission Dante S. Lauretta Deputy Principal Investigator 2 OSIRIS-REX MISSION OBJECTIVES MAP ONE TO ONE WITH NASA KEY QUESTIONS NASA Key Questions How did life begin and

More information

The Population of Near-Earth Asteroids and Current Survey Completion

The Population of Near-Earth Asteroids and Current Survey Completion The Population of Near-Earth Asteroids and Current Survey Completion Alan Harris MoreData! Inc. Target NEO 2 Washington, DC, July 9, 2013 The slides that follow are essentially material presented at the

More information

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ Asteroid Impact Mission (AIM) ESA s NEO Exploration Precursor Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ SBAG Jan 2013 HSF Precursor Missions Application driven

More information

A Gravitational Tractor for Towing Asteroids

A Gravitational Tractor for Towing Asteroids 1 A Gravitational Tractor for Towing Asteroids Edward T. Lu and Stanley G. Love NASA Johnson Space Center We present a concept for a spacecraft that can controllably alter the trajectory of an Earth threatening

More information

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars Mars: Overview General properties Telescopic observations Space missions Atmospheric Characteristics Reading: Chapters 7.1 (Mars), 9.4, 10.4 Lecture #19: Mars The Main Point Changes in the Martian surface

More information

HEOMD Overview March 16, 2015

HEOMD Overview March 16, 2015 National Aeronautics and Space Administration HEOMD Overview March 16, 2015 Ben Bussey Chief Exploration Scientist HEOMD, NASA HQ National Aeronautics and Space Administration NASA Strategic Plan Objective

More information

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying

GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying GRASP: An Asteroid Lander/Rover for Asteroid Surface Gravity Surveying Kieran A. Carroll, Gedex Systems Inc. Henry Spencer, SP Systems Robert E. Zee, Space Flight Laboratory CASI ASTRO 2016 30 th Annual

More information

A Global Approach to Near-Earth Object Impact Threat Mitigation. Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium

A Global Approach to Near-Earth Object Impact Threat Mitigation. Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium A Global Approach to Near-Earth Object Impact Threat Mitigation Alan Fitzsimmons Queen s University of Belfast on behalf of The NEOShield Consortium Defending Planet Earth: Near-Earth Object Surveys and

More information

By Helen and Mark Warner

By Helen and Mark Warner By Helen and Mark Warner Teaching Packs - Space - Page 1 In this section, you will learn about... 1. About the objects in the Solar System. 2. How the Solar System formed. 3. About the Asteroid Belt, Kuiper

More information

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr

Asteroid Mitigation Strategy. By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Asteroid Mitigation Strategy By Emily Reit, Trevor Barton, Mark Fischer, Eric Swank, and Garrett Baerr Impact History 65 mya- End of the Jurassic Period 3.3 mya- Impact in Argentina 50,000 ya- Barringer

More information

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or Hayabusa at Itokawa: first visit to a rubble pile asteroid, or How do we know it s a rubble pile, and what does that mean? A. F. Cheng, O Barnouin-Jha, N. Hirata, H. Miyamoto, R. Nakamura, H. Yano and

More information

NASA: BACK TO THE MOON

NASA: BACK TO THE MOON NASA: BACK TO THE MOON Don Campbell Cornell University "I believe that this nation should commit itself to achieving the goal, before this decade is out, of landing a man on the moon and returning him

More information

Analogue Mission Simulations

Analogue Mission Simulations Analogue Mission Simulations Briefing Topic: Potential Locations for NEO Mission Simulations, Black Point Lava Flow, Arizona David A. Kring Analogue Mission Simulations Contents: Previous BPLF Mission

More information

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C.

Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras. M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Detecting Near Earth Asteroids with a Constellation of Cubesats with Synthetic Tracking Cameras M. Shao, S. Turyshev, S. Spangelo, T. Werne, C. Zhai Introduction to synthetic tracking Synthetic tracking

More information

Space Telescopes and Solar System Science

Space Telescopes and Solar System Science Space Telescopes and Solar System Science NAS CAPS Irvine 12 Sept. 2017 John T. Clarke Center for Space Physics Space-based telescopes have contributed greatly over the decades to solar system science.

More information

SHIELD A Comprehensive Earth-Protection System

SHIELD A Comprehensive Earth-Protection System SHIELD A Comprehensive Earth-Protection System Robert E. Gold Johns Hopkins University Applied Physics Laboratory robert.gold@jhuapl.edu Washington 240-228-5412 Baltimore 443-778-5412 Earth Impact Fatalities

More information

NASA Near-Earth Object Observations (NEOO) Program

NASA Near-Earth Object Observations (NEOO) Program NASA Near-Earth Object Observations (NEOO) Program Lindley Johnson Near Earth Object Program Executive Planetary Defense Coordination Office NASA HQ November 8, 2015 NEO Observations Program Detection

More information

Threat Mitigation: The Gravity Tractor (White Paper 042)

Threat Mitigation: The Gravity Tractor (White Paper 042) Threat Mitigation: The Gravity Tractor (White Paper 042) Russell Schweickart, Clark Chapman, Dan Durda, Piet Hut 1 Summary: The Gravity Tractor (GT) is a fully controlled asteroid deflection concept using

More information

Exercise 1: Earth s Moon

Exercise 1: Earth s Moon PHYS1014 Physical Science Summer 2013 Professor Kenny L. Tapp Exercise 1: Earth s Moon Complete and submit this packet, securely stapled, at the beginning of Exam 1. PART I --- Online Video Lecture from

More information

Science Principal Investigator: Julie Castillo-Rogez Technology Principal Investigator: Les Johnson (MSFC) Project Manager: Leslie McNutt (MSFC) Sponsored by NASA HEOMD/Advanced Explorations Systems https://www.nasa.gov/content/nea-scout

More information

4 th IAA Planetary Defense Conference PDC April 2015, Frascati, Roma, Italy

4 th IAA Planetary Defense Conference PDC April 2015, Frascati, Roma, Italy 1 IAA-PDC-15-01-04 RECENT ENHANCEMENTS TO THE NEO OBSERVATIONS PROGRAM: IMPLICATIONS FOR PLANETARY DEFENSE Lindley Johnson, Rob Landis (1) (1) NASA Headquarters, Science Mission Directorate, Planetary

More information

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope) Asteroids Titius-Bode Law (1766) 2 The distances between the planets gets bigger as you go out. Johann Daniel Titius ( 1729 1796) Johann Elert Bode (1747-1826) updated May 16, 2013 Titius & Bode came up

More information

PLANETARY DEFENSE MISSION APPLICATIONS OF HEAVY-LIFT LAUNCH VEHICLES

PLANETARY DEFENSE MISSION APPLICATIONS OF HEAVY-LIFT LAUNCH VEHICLES (Preprint) AAS 15-564 PLANETARY DEFENSE MISSION APPLICATIONS OF HEAVY-LIFT LAUNCH VEHICLES George Vardaxis and Bong Wie INTRODUCTION This paper expands the previously established capabilities of the Asteroid

More information

What Objects Are Part of the Solar System?

What Objects Are Part of the Solar System? What Objects Are Part of the Solar System? Lesson 1 Quiz Josleen divided some of the planets into two main groups. The table below shows how she grouped them. Paul created a poster showing the solar system.

More information

ESA s Cosmic Vision Programme: Outer Planet Mission Studies

ESA s Cosmic Vision Programme: Outer Planet Mission Studies ESA s Cosmic Vision Programme: Outer Planet Mission Studies Jean-Pierre LEBRETON (ESA s EJSM and TSSM Study Scientist) Europa Lander workshop IKI, Moscow, 9-13 February 2009 ESA/ESTEC, Noordwijk, Pays-Bas

More information

Planets and Moons. unit overview

Planets and Moons. unit overview The Grade 4 5 kit components: Materials and equipment Each kit contains a set of high-quality materials and equipment for a class of 32 students. Consumable items are provided for two classes. Refill packages

More information

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL)

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Rosetta Mission Status Update Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Wake Up Rosetta, Please! Hibernating since June 2011 Wakeup by timer on: 2014-Jan-20

More information

GOALS: Resource Utilization

GOALS: Resource Utilization NASA Small Bodies Advisory Group 18 January 2018 GOALS: Resource Utilization Amara L. Graps Planetary Science Institute / Baltics in Space graps@psi.edu 1 An acronym note. Let us shift ISRU = In-Situ Resource

More information