Page 312, Exercise 50

Size: px
Start display at page:

Download "Page 312, Exercise 50"

Transcription

1 Millersville University Name Answer Key Department of Mathematics MATH 130, Elements of Statistics I, Homework 4 November 5, 2009 Page 312, Exercise 50 Simulation According to the U.S. National Center for Health Statistics, there is a 98% probability that a 20-year-old male will survive to age 30. (a) Using statistical software, simulate taking 100 random samples of size 30 from this population. Your results may differ (b) Using the results of the simulation, compute the probability that exactly 29 of the 30 male survive to age 30. After creating a frequency table of the results, Age Frequency Total 100 the probability P(X 29) 31/ (c) Compute the probability that exactly 29 of the 30 males survive to age 30, using the binomial probability distribution. Compare the results with part (b).

2 The results are close. P(X 29) ( 30 C 29 )(0.98) 29 (1 0.98) (30)( )() (d) Using the results of the simulation, compute the probability that at most 27 of the 30 male survive to age P(X 27) P(X k) k0 (e) Compute the probability that at most 27 of the 30 males survive to age 30, using the binomial probability distribution. Compare the results with part (d). P(X 27) These results are again, close. 27 k0 27 P(X k) ( 30 C k ) (0.98) k (1 0.98) 30 k k0 2 (f) Compute the mean number of male survivors in the 100 simulations of the probability experiment. Is it close to the expected value? x X (X P(X)) 30 x26 (x P(X x)) (26)(0.01) + (27)(0.01) + (28)(0.06) + (29)(0.31) + (30)(0.62) 29.5 The expected value of the mean number of survivors is µ X np (30)(0.98) 29.4, so the results are close.

3 (g) Compute the standard deviation of the number of male survivors in the 100 simulations of the probability experiment. Compare the result to the theoretical standard deviation of the probability distribution. s 2 X (X 2 P(X)) (x) 2 30 x26 (x 2 P(X x)) (29.5) 2 (26 2 )(0.01) + (27 2 )(0.01) + (28 2 )(0.06) + (29 2 )(0.31) + (30 2 )(0.61) (29.5) s The theoretical standard deviation is The results are close. X np(1 p) (30)(0.98)(1 0.98) (h) Did the simulation yield any unusual results? Not in this simulation. Section 7.3, Exercise 22 Light Bulbs General Electric manufactures a decorative Crystal Clear 60-watt light bulb that it advertises will last 1500 hours. Suppose the lifetimes of the bulbs are approximately normally distributed with a mean of 1550 hours and a standard deviation of 57 hours. (a) What proportion of the light bulbs will last less than the advertised time? The Z-score associated with a lifetime of 1500 hours is P(X < 1500) P(Z < 0.88) (b) What proportion of the light bulbs will last more than 1650 hours? The Z-score associated with a lifetime of 1650 hours is P(X > 1650) P(Z > 1.75) 1 P(Z < 1.75)

4 (c) What is the probability that a randomly selected GE Crystal Clear 60-watt bulb lasts between 1625 and 1725 hours? The Z-score associated with a lifetime of 1625 hours is , while the Z-score associated with a lifetime of 1725 hours is , P(1625 X 1725) P(1.32 Z 3.07) (d) What is the probability that a randomly selected GE Crystal Clear 60-watt bulb lasts longer than 1400 hours? The Z-score associated with a lifetime of 1400 hours is P(X > 1400) P(Z > 2.63) 1 P(Z < 2.63) Section 7.3, Exercise 26 Manufacturing Ball bearings are manufactured with a mean diameter of 5 millimeter (mm). Because of variability in the manufacturing process, the diameters of the ball bearings are approximately normally distributed with a standard deviation of mm. (a) What proportion of ball bearings has a diameter more than 5.03 mm? The Z-score associated with a diameter of 5.03 mm is P(X > 5.03) P(Z > 1.50) 1 P(Z < 1.50)

5 (b) Any ball bearings that have diameter less than 4.95 mm or greater than 5.05 mm are discarded. What proportion of ball bearings will be discarded? The Z-score associated with a diameter of 4.95 mm is , while the Z-score associated with a diameter of 5.05 mm is , P(X < 4.95 or X > 5.05) 1 P(4.95 < X < 5.05) 1 P( 2.50 < Z < 2.50) 1 ( ) (c) Using the results of part (b), if 30,000 ball bearings are manufactured in a day, how many should the plant manager expect to discard? number of discards (30000)(0.0124) 372 (d) If an order comes in for 50,000 ball bearings, how many bearings should the plant manager manufacture if the order states that all ball bearings must be between 4.97 mm and 5.03 mm? The Z-score associated with a diameter of 4.97 mm is , while the Z-score associated with a diameter of 5.03 mm is , the proportion of ball bearings meeting the diameter requirements of the customer are P(4.97 < X < 5.03) P( 1.50 < Z < 1.50) Therefore if 50,000 acceptable ball bearings are needed the plant should manufacture a total of ball bearings

6 Section 7.3, Exercise 30 Earthquakes The magnitude of earthquakes since 1900 that measure 0.1 or higher on the Richter scale in California is approximately normally distributed with µ 6.2 and 0.5, according to data obtained from the U.S. Geological Survey. (a) Determine the 40th percentile of the magnitude of earthquakes in California. The 40th percentile is the magnitude of earthquake separating the bottom 40% of magnitudes from the top 60% of magnitudes. If P(Z < z) 0.40 then z X µ X X (b) Determine the magnitude of earthquakes that make up the middle 85% of magnitudes. If the area in the middle of the bell-shaped curve is 0.85 then the area in both tails combined is 0.15 and the area in the right tail is If P(Z < z) then z the middle 85% of the area under the standard normal curve lies between z 1.44 and z The magnitudes of the earthquakes associated with these Z-scores are 1.44 X 1 µ X X X 2 µ X X Section 7.3, Exercise 32 Speedy Lube The time required for Speedy Lube to complete an oil change service on an automobile approximately follows a normal distribution, with a mean of 17 minutes and a standard deviation of 2.5 minutes. (a) Speedy Lube guarantees customers that the service will take no longer than 20 minutes. If it does take longer, the customer will receive the service for half price. What percent of customers receives the service for half price? The Z-score associated with a service time of 20 minutes is

7 and thus P(X > 20) P(Z > 1.20) 1 P(Z < 1.20) Therefore 11.51% of customers receive the service for half price. (b) If Speedy Lube does not want to give the discount to more than 3% of its customers, how long should it make the guaranteed time limit? If the area under the standard normal curve to the left of z is 0.97, then z The waiting time for service associated with this Z-score is 1.88 X µ X X The guaranteed service time should be increased to 22 minutes.

STAT509: Continuous Random Variable

STAT509: Continuous Random Variable University of South Carolina September 23, 2014 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite or infinite) of real numbers for its range.

More information

Chapter 4: Continuous Random Variable

Chapter 4: Continuous Random Variable Chapter 4: Continuous Random Variable Shiwen Shen University of South Carolina 2017 Summer 1 / 57 Continuous Random Variable A continuous random variable is a random variable with an interval (either finite

More information

Chapter 4: Continuous Probability Distributions

Chapter 4: Continuous Probability Distributions Chapter 4: Continuous Probability Distributions Seungchul Baek Department of Statistics, University of South Carolina STAT 509: Statistics for Engineers 1 / 57 Continuous Random Variable A continuous random

More information

6.3 Use Normal Distributions. Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent?

6.3 Use Normal Distributions. Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent? 6.3 Use Normal Distributions Page 399 What is a normal distribution? What is standard normal distribution? What does the z-score represent? Normal Distribution and Normal Curve Normal distribution is one

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Math 3 Chapter 6 Continuous Probability Distributions The observations generated by different statistical experiments have the same general type of behavior. The followings are the probability distributions

More information

Continuous random variables

Continuous random variables Continuous random variables A continuous random variable X takes all values in an interval of numbers. The probability distribution of X is described by a density curve. The total area under a density

More information

Chapter. The Normal Probability Distribution 7/24/2011. Section 7.1 Properties of the Normal Distribution

Chapter. The Normal Probability Distribution 7/24/2011. Section 7.1 Properties of the Normal Distribution Chapter The Normal Probability Distribution 3 7 Section 7.1 Properties of the Normal Distribution 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved 7-2 Illustrating

More information

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test.

MA 1125 Lecture 33 - The Sign Test. Monday, December 4, Objectives: Introduce an example of a non-parametric test. MA 1125 Lecture 33 - The Sign Test Monday, December 4, 2017 Objectives: Introduce an example of a non-parametric test. For the last topic of the semester we ll look at an example of a non-parametric test.

More information

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution.

(i) The mean and mode both equal the median; that is, the average value and the most likely value are both in the middle of the distribution. MATH 183 Normal Distributions Dr. Neal, WKU Measurements that are normally distributed can be described in terms of their mean µ and standard deviation!. These measurements should have the following properties:

More information

6.2 Normal Distribution. Ziad Zahreddine

6.2 Normal Distribution. Ziad Zahreddine 6.2 Normal Distribution Importance of Normal Distribution 1. Describes Many Random Processes or Continuous Phenomena 2. Can Be Used to Approximate Discrete Probability Distributions Example: Binomial 3.

More information

Math 1342 Test 2 Review. Total number of students = = Students between the age of 26 and 35 = = 2012

Math 1342 Test 2 Review. Total number of students = = Students between the age of 26 and 35 = = 2012 Math 1342 Test 2 Review 4) Total number of students = 2041 + 2118 + 1167 + 845 + 226 = 6397 Students between the age of 26 and 35 = 1167 + 845 = 2012 Students who are NOT between the age of 26 and 35 =

More information

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February

Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February PID: Last Name, First Name: Section: Approximate time spent to complete this assignment: hour(s) Homework 4 Math 11, UCSD, Winter 2018 Due on Tuesday, 13th February Readings: Chapters 16.6-16.7 and the

More information

Discrete and continuous

Discrete and continuous Discrete and continuous A curve, or a function, or a range of values of a variable, is discrete if it has gaps in it - it jumps from one value to another. In practice in S2 discrete variables are variables

More information

Chapitre 3. 5: Several Useful Discrete Distributions

Chapitre 3. 5: Several Useful Discrete Distributions Chapitre 3 5: Several Useful Discrete Distributions 5.3 The random variable x is not a binomial random variable since the balls are selected without replacement. For this reason, the probability p of choosing

More information

Homework 7. Name: ID# Section

Homework 7. Name: ID# Section Homework 7 Name: ID# Section 1 Find the probabilities for each of the following using the standard normal distribution. 1. P(0 < z < 1.69) 2. P(-1.57 < z < 0) 3. P(z > 1.16) 4. P(z < -1.77) 5. P(-2.46

More information

Chapter 7: Hypothesis Testing - Solutions

Chapter 7: Hypothesis Testing - Solutions Chapter 7: Hypothesis Testing - Solutions 7.1 Introduction to Hypothesis Testing The problem with applying the techniques learned in Chapter 5 is that typically, the population mean (µ) and standard deviation

More information

Homework 9 (due November 24, 2009)

Homework 9 (due November 24, 2009) Homework 9 (due November 4, 9) Problem. The join probability density function of X and Y is given by: ( f(x, y) = c x + xy ) < x

More information

Section 5.1: Probability and area

Section 5.1: Probability and area Section 5.1: Probability and area Review Normal Distribution s z = x - m s Standard Normal Distribution s=1 m x m=0 z The area that falls in the interval under the nonstandard normal curve is the same

More information

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability

68% 95% 99.7% x x 1 σ. x 1 2σ. x 1 3σ. Find a normal probability 11.3 a.1, 2A.1.B TEKS Use Normal Distributions Before You interpreted probability distributions. Now You will study normal distributions. Why? So you can model animal populations, as in Example 3. Key

More information

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number:

Stat 2300 International, Fall 2006 Sample Midterm. Friday, October 20, Your Name: A Number: Stat 2300 International, Fall 2006 Sample Midterm Friday, October 20, 2006 Your Name: A Number: The Midterm consists of 35 questions: 20 multiple-choice questions (with exactly 1 correct answer) and 15

More information

11/16/2017. Chapter. Copyright 2009 by The McGraw-Hill Companies, Inc. 7-2

11/16/2017. Chapter. Copyright 2009 by The McGraw-Hill Companies, Inc. 7-2 7 Chapter Continuous Probability Distributions Describing a Continuous Distribution Uniform Continuous Distribution Normal Distribution Normal Approximation to the Binomial Normal Approximation to the

More information

Chapter 6 Continuous Probability Distributions

Chapter 6 Continuous Probability Distributions Continuous Probability Distributions Learning Objectives 1. Understand the difference between how probabilities are computed for discrete and continuous random variables. 2. Know how to compute probability

More information

Chapter 4 - Lecture 3 The Normal Distribution

Chapter 4 - Lecture 3 The Normal Distribution Chapter 4 - Lecture 3 The October 28th, 2009 Chapter 4 - Lecture 3 The Standard Chapter 4 - Lecture 3 The Standard Normal distribution is a statistical unicorn It is the most important distribution in

More information

Math 2311 Sections 4.1, 4.2 and 4.3

Math 2311 Sections 4.1, 4.2 and 4.3 Math 2311 Sections 4.1, 4.2 and 4.3 4.1 - Density Curves What do we know about density curves? Example: Suppose we have a density curve defined for defined by the line y = x. Sketch: What percent of observations

More information

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553

Thus, P(F or L) = P(F) + P(L) - P(F & L) = = 0.553 Test 2 Review: Solutions 1) The following outcomes have at least one Head: HHH, HHT, HTH, HTT, THH, THT, TTH Thus, P(at least one head) = 7/8 2) The following outcomes have a sum of 9: (6,3), (5,4), (4,5),

More information

Exponential, Gamma and Normal Distribuions

Exponential, Gamma and Normal Distribuions Exponential, Gamma and Normal Distribuions Sections 5.4, 5.5 & 6.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 9-3339 Cathy Poliak,

More information

Recall that the standard deviation σ of a numerical data set is given by

Recall that the standard deviation σ of a numerical data set is given by 11.1 Using Normal Distributions Essential Question In a normal distribution, about what percent of the data lies within one, two, and three standard deviations of the mean? Recall that the standard deviation

More information

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution

STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution STAT 430/510 Probability Lecture 12: Central Limit Theorem and Exponential Distribution Pengyuan (Penelope) Wang June 15, 2011 Review Discussed Uniform Distribution and Normal Distribution Normal Approximation

More information

8.4 Application to Economics/ Biology & Probability

8.4 Application to Economics/ Biology & Probability 8.4 Application to Economics/ Biology & 8.5 - Probability http://classic.hippocampus.org/course_locat or?course=general+calculus+ii&lesson=62&t opic=2&width=800&height=684&topictitle= Costs+&+probability&skinPath=http%3A%2F%

More information

Continuous Probability Distributions

Continuous Probability Distributions Continuous Probability Distributions Called a Probability density function. The probability is interpreted as "area under the curve." 1) The random variable takes on an infinite # of values within a given

More information

[ z = 1.48 ; accept H 0 ]

[ z = 1.48 ; accept H 0 ] CH 13 TESTING OF HYPOTHESIS EXAMPLES Example 13.1 Indicate the type of errors committed in the following cases: (i) H 0 : µ = 500; H 1 : µ 500. H 0 is rejected while H 0 is true (ii) H 0 : µ = 500; H 1

More information

Practice problems from chapters 2 and 3

Practice problems from chapters 2 and 3 Practice problems from chapters and 3 Question-1. For each of the following variables, indicate whether it is quantitative or qualitative and specify which of the four levels of measurement (nominal, ordinal,

More information

Chapter 5: Normal Probability Distributions

Chapter 5: Normal Probability Distributions Probability and Statistics Mrs. Leahy Chapter 5: Normal Probability Distributions 5.1 Introduction to Normal Distributions and the Standard Normal Distribution What is a Normal Distribution and a Normal

More information

SL - Binomial Questions

SL - Binomial Questions IB Questionbank Maths SL SL - Binomial Questions 262 min 244 marks 1. A random variable X is distributed normally with mean 450 and standard deviation 20. Find P(X 475). Given that P(X > a) = 0.27, find

More information

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution

CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS. 6.2 Normal Distribution. 6.1 Continuous Uniform Distribution CHAPTER 6 SOME CONTINUOUS PROBABILITY DISTRIBUTIONS Recall that a continuous random variable X is a random variable that takes all values in an interval or a set of intervals. The distribution of a continuous

More information

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal

Business Statistics. Chapter 6 Review of Normal Probability Distribution QMIS 220. Dr. Mohammad Zainal Department of Quantitative Methods & Information Systems Business Statistics Chapter 6 Review of Normal Probability Distribution QMIS 220 Dr. Mohammad Zainal Chapter Goals After completing this chapter,

More information

Lecture 10: The Normal Distribution. So far all the random variables have been discrete.

Lecture 10: The Normal Distribution. So far all the random variables have been discrete. Lecture 10: The Normal Distribution 1. Continuous Random Variables So far all the random variables have been discrete. We need a different type of model (called a probability density function) for continuous

More information

1 Binomial Probability [15 points]

1 Binomial Probability [15 points] Economics 250 Assignment 2 (Due November 13, 2017, in class) i) You should do the assignment on your own, Not group work! ii) Submit the completed work in class on the due date. iii) Remember to include

More information

Essential Question: How are the mean and the standard deviation determined from a discrete probability distribution?

Essential Question: How are the mean and the standard deviation determined from a discrete probability distribution? Probability and Statistics The Binomial Probability Distribution and Related Topics Chapter 5 Section 1 Introduction to Random Variables and Probability Distributions Essential Question: How are the mean

More information

Section 5.4: Hypothesis testing for μ

Section 5.4: Hypothesis testing for μ Section 5.4: Hypothesis testing for μ Possible claims or hypotheses: Ball bearings have μ = 1 cm Medicine decreases blood pressure For testing hypotheses, we set up a null (H 0 ) and alternative (H a )

More information

Density Curves and the Normal Distributions. Histogram: 10 groups

Density Curves and the Normal Distributions. Histogram: 10 groups Density Curves and the Normal Distributions MATH 2300 Chapter 6 Histogram: 10 groups 1 Histogram: 20 groups Histogram: 40 groups 2 Histogram: 80 groups Histogram: 160 groups 3 Density Curve Density Curves

More information

Quiz 2 covered materials in Chapter 5 Chapter 6 Chapter 7. Normal Probability Distribution. Continuous Probability. distribution 11/9/2010.

Quiz 2 covered materials in Chapter 5 Chapter 6 Chapter 7. Normal Probability Distribution. Continuous Probability. distribution 11/9/2010. Quiz covered materials in Chapter 5 Chapter 6 Chapter 7 Normal Probability Distribution Chapter 6 Continuous Probability Distribution Normal Distribution Normal Distribution is symmetrical and bell shaped,

More information

REVIEW FOR PRELIM 1 SOLUTIONS

REVIEW FOR PRELIM 1 SOLUTIONS REVIEW FOR PRELIM 1 SOLUTIONS MATH 1106, Spring 2017 Tutorial 9 Solutions Wednesday 02/22/17 Tutorial 9.1. Linear approximation (a) Let C(x) = 3x 2 + 200. (i) Use C (x) to approximate C when x = 1 and

More information

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution

Math/Stat 352 Lecture 9. Section 4.5 Normal distribution Math/Stat 352 Lecture 9 Section 4.5 Normal distribution 1 Abraham de Moivre, 1667-1754 Pierre-Simon Laplace (1749 1827) A French mathematician, who introduced the Normal distribution in his book The doctrine

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter Revised 8/1 Note: This review is composed of questions similar to those found in the chapter review and/or chapter test. This review is meant to highlight basic concepts from the course.

More information

6. Cold U? Max = 51.8 F Range = 59.4 F Mean = 33.8 F s = 12.6 F med = 35.6 F IQR = 28.8 F

6. Cold U? Max = 51.8 F Range = 59.4 F Mean = 33.8 F s = 12.6 F med = 35.6 F IQR = 28.8 F AP Stat Ch. 6 Practice Worksheet - KEY BOOK PROBLEMS: p. 129 #2-24 even 2. Hotline a) Median = 264 seconds IQR = 138 seconds b) Median = 240 seconds IQR = 138 seconds 4. Hams a) Range = 3.3 lbs. IQR =

More information

Chapter 3 Common Families of Distributions

Chapter 3 Common Families of Distributions Lecture 9 on BST 631: Statistical Theory I Kui Zhang, 9/3/8 and 9/5/8 Review for the previous lecture Definition: Several commonly used discrete distributions, including discrete uniform, hypergeometric,

More information

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2

, 0 x < 2. a. Find the probability that the text is checked out for more than half an hour but less than an hour. = (1/2)2 Math 205 Spring 206 Dr. Lily Yen Midterm 2 Show all your work Name: 8 Problem : The library at Capilano University has a copy of Math 205 text on two-hour reserve. Let X denote the amount of time the text

More information

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution

Some Continuous Probability Distributions: Part I. Continuous Uniform distribution Normal Distribution. Exponential Distribution Some Continuous Probability Distributions: Part I Continuous Uniform distribution Normal Distribution Exponential Distribution 1 Chapter 6: Some Continuous Probability Distributions: 6.1 Continuous Uniform

More information

Binomial random variable

Binomial random variable Binomial random variable Toss a coin with prob p of Heads n times X: # Heads in n tosses X is a Binomial random variable with parameter n,p. X is Bin(n, p) An X that counts the number of successes in many

More information

Quantitative Bivariate Data

Quantitative Bivariate Data Statistics 211 (L02) - Linear Regression Quantitative Bivariate Data Consider two quantitative variables, defined in the following way: X i - the observed value of Variable X from subject i, i = 1, 2,,

More information

Central Limit Theorem for Averages

Central Limit Theorem for Averages Last Name First Name Class Time Chapter 7-1 Central Limit Theorem for Averages Suppose that we are taking samples of size n items from a large population with mean and standard deviation. Each sample taken

More information

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability

3/30/2009. Probability Distributions. Binomial distribution. TI-83 Binomial Probability Random variable The outcome of each procedure is determined by chance. Probability Distributions Normal Probability Distribution N Chapter 6 Discrete Random variables takes on a countable number of values

More information

Introduction to Probability and Statistics Twelfth Edition

Introduction to Probability and Statistics Twelfth Edition Introduction to Probability and Statistics Twelfth Edition Robert J. Beaver Barbara M. Beaver William Mendenhall Presentation designed and written by: Barbara M. Beaver Introduction to Probability and

More information

POISSON RANDOM VARIABLES

POISSON RANDOM VARIABLES POISSON RANDOM VARIABLES Suppose a random phenomenon occurs with a mean rate of occurrences or happenings per unit of time or length or area or volume, etc. Note: >. Eamples: 1. Cars passing through an

More information

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1!

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1! Proportions A proportion is the fraction of individuals having a particular attribute. It is also the probability that an individual randomly sampled from the population will have that attribute Can range

More information

Inverse Normal Distribution and Sampling Distributions

Inverse Normal Distribution and Sampling Distributions Inverse Normal Distribution and Sampling Distributions Section 4.3 & 4.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 11-2311 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

The empirical ( ) rule

The empirical ( ) rule The empirical (68-95-99.7) rule With a bell shaped distribution, about 68% of the data fall within a distance of 1 standard deviation from the mean. 95% fall within 2 standard deviations of the mean. 99.7%

More information

Chapter 8: Continuous Probability Distributions

Chapter 8: Continuous Probability Distributions Chapter 8: Continuous Probability Distributions 8.1 Introduction This chapter continued our discussion of probability distributions. It began by describing continuous probability distributions in general,

More information

Continuous Distributions

Continuous Distributions Inferential Statistics and Probability a Holistic Approach Chapter 6 Continuous Random Variables This Course Material by Maurice Geraghty is licensed under a Creative Commons Attribution-ShareAlike 4.0

More information

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999.

Math st Homework. First part of Chapter 2. Due Friday, September 17, 1999. Math 447. 1st Homework. First part of Chapter 2. Due Friday, September 17, 1999. 1. How many different seven place license plates are possible if the first 3 places are to be occupied by letters and the

More information

Exam III #1 Solutions

Exam III #1 Solutions Department of Mathematics University of Notre Dame Math 10120 Finite Math Fall 2017 Name: Instructors: Basit & Migliore Exam III #1 Solutions November 14, 2017 This exam is in two parts on 11 pages and

More information

EQ: What is a normal distribution?

EQ: What is a normal distribution? Unit 5 - Statistics What is the purpose EQ: What tools do we have to assess data? this unit? What vocab will I need? Vocabulary: normal distribution, standard, nonstandard, interquartile range, population

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER / Probability ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 2 MATH00040 SEMESTER 2 2017/2018 DR. ANTHONY BROWN 5.1. Introduction to Probability. 5. Probability You are probably familiar with the elementary

More information

In this chapter, you will study the normal distribution, the standard normal, and applications associated with them.

In this chapter, you will study the normal distribution, the standard normal, and applications associated with them. The Normal Distribution The normal distribution is the most important of all the distributions. It is widely used and even more widely abused. Its graph is bell-shaped. You see the bell curve in almost

More information

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times.

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times. Lesson 2 Theoretical Foundations Probabilities Solutions monia.ranalli@uniroma3.it Exercise 1 You ip a coin three times. 1. Use a tree diagram to show the possible outcome patterns. How many outcomes are

More information

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables

Probability Distributions for Continuous Variables. Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Probability Distributions for Continuous Variables Let X = lake depth at a randomly chosen point on lake surface If we draw the histogram so that the

More information

Introductory Statistics

Introductory Statistics Introductory Statistics OpenStax Rice University 6100 Main Street MS-375 Houston, Texas 77005 To learn more about OpenStax, visit http://openstaxcollege.org. Individual print copies and bulk orders can

More information

Hypothesis for Means and Proportions

Hypothesis for Means and Proportions November 14, 2012 Hypothesis Tests - Basic Ideas Often we are interested not in estimating an unknown parameter but in testing some claim or hypothesis concerning a population. For example we may wish

More information

Statistics 528: Homework 2 Solutions

Statistics 528: Homework 2 Solutions Statistics 28: Homework 2 Solutions.4 There are several gaps in the data, as can be seen from the histogram. Minitab Result: Min Q Med Q3 Max 8 3278 22 2368 2624 Manual Result: Min Q Med Q3 Max 8 338 22.

More information

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2

Continuous RVs. 1. Suppose a random variable X has the following probability density function: π, zero otherwise. f ( x ) = sin x, 0 < x < 2 STAT 4 Exam I Continuous RVs Fall 7 Practice. Suppose a random variable X has the following probability density function: f ( x ) = sin x, < x < π, zero otherwise. a) Find P ( X < 4 π ). b) Find µ = E

More information

Continuous Random Variables

Continuous Random Variables MATH 38 Continuous Random Variables Dr. Neal, WKU Throughout, let Ω be a sample space with a defined probability measure P. Definition. A continuous random variable is a real-valued function X defined

More information

Unit 4 Probability. Dr Mahmoud Alhussami

Unit 4 Probability. Dr Mahmoud Alhussami Unit 4 Probability Dr Mahmoud Alhussami Probability Probability theory developed from the study of games of chance like dice and cards. A process like flipping a coin, rolling a die or drawing a card from

More information

2014 SM4 Revision Questions Distributions

2014 SM4 Revision Questions Distributions 2014 SM4 Revision Questions Distributions Normal Q1. Professor Halen has 184 students in his college mathematics class. The scores on the semester exam are normally distributed with a mean of 72.3 and

More information

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work.

(a) Calculate the bee s mean final position on the hexagon, and clearly label this position on the figure below. Show all work. 1. A worker bee inspects a hexagonal honeycomb cell, starting at corner A. When done, she proceeds to an adjacent corner (always facing inward as shown), either by randomly moving along the lefthand edge

More information

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions

Introduction to Statistical Data Analysis Lecture 3: Probability Distributions Introduction to Statistical Data Analysis Lecture 3: Probability Distributions James V. Lambers Department of Mathematics The University of Southern Mississippi James V. Lambers Statistical Data Analysis

More information

the yellow gene from each of the two parents he wrote Experiments in Plant

the yellow gene from each of the two parents he wrote Experiments in Plant CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments offspring can have a yellow pod only if it inherits to study

More information

Homework 4 Solutions Math 150

Homework 4 Solutions Math 150 Homework Solutions Math 150 Enrique Treviño 3.2: (a) The table gives P (Z 1.13) = 0.1292. P (Z > 1.13) = 1 0.1292 = 0.8708. The table yields P (Z 0.18) = 0.571. (c) The table doesn t consider Z > 8 but

More information

Chapter (7) Continuous Probability Distributions Examples

Chapter (7) Continuous Probability Distributions Examples Chapter (7) Continuous Probability Distributions Examples The uniform distribution Example () Australian sheepdogs have a relatively short life.the length of their life follows a uniform distribution between

More information

Statistics and Sampling distributions

Statistics and Sampling distributions Statistics and Sampling distributions a statistic is a numerical summary of sample data. It is a rv. The distribution of a statistic is called its sampling distribution. The rv s X 1, X 2,, X n are said

More information

Gamma and Normal Distribuions

Gamma and Normal Distribuions Gamma and Normal Distribuions Sections 5.4 & 5.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 15-3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2.

Francine s bone density is 1.45 standard deviations below the mean hip bone density for 25-year-old women of 956 grams/cm 2. Chapter 3 Solutions 3.1 3.2 3.3 87% of the girls her daughter s age weigh the same or less than she does and 67% of girls her daughter s age are her height or shorter. According to the Los Angeles Times,

More information

Mathematical Statistics 1 Math A 6330

Mathematical Statistics 1 Math A 6330 Mathematical Statistics 1 Math A 6330 Chapter 3 Common Families of Distributions Mohamed I. Riffi Department of Mathematics Islamic University of Gaza September 28, 2015 Outline 1 Subjects of Lecture 04

More information

121 Section 3.1 Example 3.6.9 (Higher-order Poisson moments) g(x) = x2 and use (3.6.5): For X '" Poisson{A), take E(AX2 ) = E (X(X - 1) 2 ) E(X3-2X2 + X). Therefore, the third moment of a Poisson( ). )

More information

This is Continuous Random Variables, chapter 5 from the book Beginning Statistics (index.html) (v. 1.0).

This is Continuous Random Variables, chapter 5 from the book Beginning Statistics (index.html) (v. 1.0). This is Continuous Random Variables, chapter 5 from the book Beginning Statistics (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

MATH 3200 PROBABILITY AND STATISTICS M3200SP081.1

MATH 3200 PROBABILITY AND STATISTICS M3200SP081.1 MATH 3200 PROBABILITY AND STATISTICS M3200SP081.1 This examination has twenty problems, of which most are straightforward modifications of the recommended homework problems. The remaining problems are

More information

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to

A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 224 Chapter 5 Continuous Random Variables A random variable is said to have a beta distribution with parameters (a, b) ifits probability density function is equal to 1 B(a, b) xa 1 (1 x) b 1 x 1 and is

More information

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1

9/19/2012. PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 The aspect of the data we want to describe/measure is relative position z scores tell us how many standard deviations above or below

More information

Notes on Continuous Random Variables

Notes on Continuous Random Variables Notes on Continuous Random Variables Continuous random variables are random quantities that are measured on a continuous scale. They can usually take on any value over some interval, which distinguishes

More information

Section 7.1 Properties of the Normal Distribution

Section 7.1 Properties of the Normal Distribution Section 7.1 Properties of the Normal Distribution In Chapter 6, talked about probability distributions. Coin flip problem: Difference of two spinners: The random variable x can only take on certain discrete

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions. Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE Random

More information

Chapter 4 Continuous Random Variables and Probability Distributions

Chapter 4 Continuous Random Variables and Probability Distributions Applied Statistics and Probability for Engineers Sixth Edition Douglas C. Montgomery George C. Runger Chapter 4 Continuous Random Variables and Probability Distributions 4 Continuous CHAPTER OUTLINE 4-1

More information

CIVL 7012/8012. Continuous Distributions

CIVL 7012/8012. Continuous Distributions CIVL 7012/8012 Continuous Distributions Probability Density Function P(a X b) = b ò a f (x)dx Probability Density Function Definition: and, f (x) ³ 0 ò - f (x) =1 Cumulative Distribution Function F(x)

More information

Chapter 3 Probability Distribution

Chapter 3 Probability Distribution Chapter 3 Probability Distribution Probability Distributions A probability function is a function which assigns probabilities to the values of a random variable. Individual probability values may be denoted

More information

Content by Week Week of October 14 27

Content by Week Week of October 14 27 Content by Week Week of October 14 27 Learning objectives By the end of this week, you should be able to: Understand the purpose and interpretation of confidence intervals for the mean, Calculate confidence

More information

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem

Math/Stat 352 Lecture 10. Section 4.11 The Central Limit Theorem Math/Stat 352 Lecture 10 Section 4.11 The Central Limit Theorem 1 Summing random variables Summing random variables Summing random variables Generally summation changes the shape of the distribution: range

More information

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow

green green green/green green green yellow green/yellow green yellow green yellow/green green yellow yellow yellow/yellow yellow CHAPTER PROBLEM Did Mendel s results from plant hybridization experiments contradict his theory? Gregor Mendel conducted original experiments to study the genetic traits of pea plants. In 1865 he wrote

More information