Practice problems from chapters 2 and 3

Size: px
Start display at page:

Download "Practice problems from chapters 2 and 3"

Transcription

1 Practice problems from chapters and 3 Question-1. For each of the following variables, indicate whether it is quantitative or qualitative and specify which of the four levels of measurement (nominal, ordinal, interval, and ratio) is most appropriate. a) Class standing (i.e., letter grades) of students of a statistics class b) Admitting diagnosis of patients admitted to a mental health clinic c) Weights of babies born in a hospital during a year d) Gender of babies born in a hospital during a year e) Under-arm temperature of day-old infants born in a hospital. Answer: a) Qualitative and Ordinal; b) Qualitative and Nominal; c) Quantitative and Ratio; d) Qualitative and Nominal; e) Quantitative and Interval. Question-. Consider the following the following sample data set 0.3, 0.6, 0.9, 1.3, 0.4, 0.6, 1., 1.4, 1.1, 0., 0. a) Find the mean, median, standard deviation, and range. b) Find the interquartile range. c) Find the 45th and 87th percentiles. Answer: Sort data in ascending order: 0., 0., 0.3, 0.4, 0.6, 0.6, 0.9, 1.1, 1., 1.3, 1.4 I want to remind you that L k = location of kth percentile in the sorted data and P k = data value at the location of kth percentile of sorted data a) Mean=0.75; Median: since n=11 is odd number, the median is the 6th number=0.6 Standard deviation: n( x i s = ) ( x i ) = n(n 1) 11(8.16) (8.) 11(11 1) = 0.45 Range=1.4-0.=1. b) Interquartile range = Q 3 Q 1. To find P 5 or the first quartile, find L 5 = kn 100, where k=5 and n=11. L 5 = =.75. It is a fraction number. So the third value in the sorted data, 1

2 i.e., P 5 = Q 1 = 0.3; To find P 75 or the third quartile, find L 75 = kn 100, where k=75 and n=11. L 75 = = 8.5. It is a fraction number. So 9th value in the sorted data, i.e., P 75 = Q 3 = 1.. Interquartile range=1.-0.3= 0.9. c) Find P 45 and P 87. To find P 45, calculate L 45 = kn 100, where k=45 and n=11. L 45 = = It is a fraction number. So 5th value in the sorted data, i.e., P 45 = 0.6 To find P 87, calculate L 87 = kn 100, where k=87 and n=11. L 87 = = It is a fraction number. So 10th values in the sorted data i.e., P 87 = 1.3 Question-3. A study of physical fitness tests for 1 randomly selected Pre-Medical students measured their exercise capacity (in minutes). The following data resulted: 34, 19, 33, 30, 43, 36, 3, 41, 31, 31, 37, 18 a) Find the mean, the median, and the mode for the students exercise capacity. b) Find the standard deviation and the variance for the sample data of the students exercise capacity. c) Provide the five number summary for the students exercise capacity. d) Find the percentile corresponding to 36 minutes. e) Find P 4. Answer: a) Mean=3.08; Median= 6th value+7th value = 3+33 = 3.5; Mode=31 b) Standard deviation: n( x i s = ) ( x i ) = n(n 1) 1(1971) (385) 1(1 1) = 56.6 = 7.5, s = 56.6 c) Five number of summary: Min=18, Q 1 = 30.5, Q = 3.5, Q 3 = 36.5, Max=43. e) The number of data points less than 36=8. Percentile of 36 = = 67 1 f) P 4 = 3rd value of sorted data=30

3 Question-4. Suppose we call unusual observations in a population of normally distributed data that are either at least standard deviation above the mean or about standard deviation below the mean. What percent are unusual? Answer: 5% Question-5. Suppose the distribution of grades in your statistics class is normal, with mean = 83.4, s = 7.0. There are 10 students in the class. If your score is 97.4 in the class, roughly how many students have scores higher than you? Answer: Here z score = =. If z-score= (you may think that z-score is the same as k in the rule, that is, k = ). In this rule, when k =, you are in the 95th position, that is,.5% (consider both side of normal curve, 5%/=.5%) of the population has a score greater than you (and therefore a higher exam score). If there are 10 people in the class then about (.05)*(10) = 3 students have higher scores. Question-6. Listed below are the thorax lengths of (in millimeters) of a sample of male fruit flies. Based on these sample values, is a thorax length of 0.68 mm unusual? Why or why not? 0.7, 0.90, 0.84, 0.68, 0.84, 0.90, 0.9, 0.84, 0.64, 0.84, 0.76 Answer: Mean x = 0.81, standard deviation s = 0.094, z-score= x x s This score lies between - and. So 0.68 is not unusual. = = Question-7. A woman wrote to Dear Abby and claimed that she gave birth 305 days from a visit from her husband, who was in Navy. Lengths of pregnancies have a mean of 68 days and a standard deviation of 15 days. Find the z-score for 305 days. Is such a length unusual? What do you conclude? Answer: Mean x = 68, standard deviation s = 15, z-score= x x = =.47. s 15 This score is greater than but less than 3. So 305 is somewhat unusual. We can call 305 days long pregnancy as an unusual. Question-8. If a sample has a mean 55 and a standard deviation 6, use the empirical rule (show normal curve) to determine interval that you would expect 95% of the data to lie. Assume the data show a bell-shaped distribution. 3

4 Answer: x ± ks. Here k =, x = 55, and s = 6. Interval is: 55 ± 6 = [43, 67] Question-9. Use the sample data listed below to find the coefficient of variation for each of the two samples. Compare and interpret the result in your own words? Heights (in.) of men: 71, 66, 7, 69, 68, 69 Lengths (mm) of cuckoo eggs: 19.7, 1.7, 1.9,.1,.1,.3,.7,.9, 3.9 Answer:: Height of Men: mean x = 69.17, standard deviation s =.14, CV= 100 = s x = 3.09% Lengths of cuckoo eggs: mean x =.14, standard deviation s = 1.13, CV= 100 = s x = 5.1%..14 The relative variation to the mean in the cuckoo eggs length in greater by a factor of 1.7 times than the relative variation to the mean of the men s heights. Question-10. Use Chebyshev s theorem to find what percent of the values will fall between 10 and 6 for a data set with mean of 18 and standard deviation of. Answer: As we don t know the population distribution, we have to use Tchebychev s inequality. Here x = 18 and s =. Consider the interval [ x ks, x + ks]. The length of this interval= ( x + ks) ( x ks) = x + ks x + ks = ks. According to the question we have ks = 6 10 k = 16 4k = 16 4k = k = 4 To get proportion of values, use Tchebychev s rule and which is = 1 1 = 1 1 = k = That is, at least 94% values lies between the interval 10 to Question-11. The box plot is created for wait time (in minutes) from the hospital s Emergency Room. These wait times are based on a sample of 160 patients during the month of January. (See Figure 1) a) What is an approximate value of the inter-quartile range for the above data? 4

5 Figure 1: Boxplot Answer: IQR = = 5.5 b) If a patient waited for minutes, can this time be declared as potential outlier? Justify your answer. Answer: Yes, because is greater than the upper fence value 0. c) Estimate the number of patients who waited less than 14 minutes. Comment on the shape of the distribution of wait times. Answer: 75%. The shape of the distribution is skewed to the left. Question-1. How many different 9-letter code words can be made using the symbols %, %, %, %, &, &, &, +, +? 9! Answer: = 160 as there are nine items where four are alike, three are alike, 4!3!! and two are alike. Question-13. How many different ways can 5 identical tubes of tartar control toothpaste, 3 identical tubes of bright white toothpaste, and 4 identical tubes of mint toothpaste be arranged in a grocery counter display? (Answer: 7,70). 5

6 1! Answer: = 770 as there twelve items in all where five are alike, three are 5!3!4! alike, and four are alike. Question-14. Six men and seven women apply for two identical jobs. If the jobs are filled at random, find the following: (a) The probability that both are filled by men. (b) The probability that both are filled by women. (c) The probability that one man and one woman are hired. (d) The probability that the one man and the one woman who are twins are hired. Ans. Answer: (a) The random variable X, counts the number of men in a sample of two drawn without replacement from a population of size 13. As probability is the relative frequency of the event of interest in the sample space, we need to compute a ratio. The denominator of the ratio counts the number of ways two applicants can be drawn without replacement from a pool of 13 applicants. Order is not important here. In the numerator, we compute the number of ways two men can be selected from the six male applicants and none of the women can be selected from the seven female applicants. Then we apply the counting rule that says in how many ways two men can be selected and none of the women can be selected together. The 7 0) probability is then ( 13 ) = ( 6 (b) (c) (d) ( ( ) 13 ) = ( ( 1) 13 ) = ( ( 0) 13 ) =

Section 3. Measures of Variation

Section 3. Measures of Variation Section 3 Measures of Variation Range Range = (maximum value) (minimum value) It is very sensitive to extreme values; therefore not as useful as other measures of variation. Sample Standard Deviation The

More information

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- #

Lecture Slides. Elementary Statistics Twelfth Edition. by Mario F. Triola. and the Triola Statistics Series. Section 3.1- # Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series by Mario F. Triola Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview 3-2 Measures

More information

2011 Pearson Education, Inc

2011 Pearson Education, Inc Statistics for Business and Economics Chapter 2 Methods for Describing Sets of Data Summary of Central Tendency Measures Measure Formula Description Mean x i / n Balance Point Median ( n +1) Middle Value

More information

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data

Review for Exam #1. Chapter 1. The Nature of Data. Definitions. Population. Sample. Quantitative data. Qualitative (attribute) data Review for Exam #1 1 Chapter 1 Population the complete collection of elements (scores, people, measurements, etc.) to be studied Sample a subcollection of elements drawn from a population 11 The Nature

More information

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1

Lecture Slides. Elementary Statistics Tenth Edition. by Mario F. Triola. and the Triola Statistics Series. Slide 1 Lecture Slides Elementary Statistics Tenth Edition and the Triola Statistics Series by Mario F. Triola Slide 1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Overview 3-2 Measures

More information

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved

Chapter. Numerically Summarizing Data Pearson Prentice Hall. All rights reserved Chapter 3 Numerically Summarizing Data Section 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data

More information

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study

GRACEY/STATISTICS CH. 3. CHAPTER PROBLEM Do women really talk more than men? Science, Vol. 317, No. 5834). The study CHAPTER PROBLEM Do women really talk more than men? A common belief is that women talk more than men. Is that belief founded in fact, or is it a myth? Do men actually talk more than women? Or do men and

More information

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004

UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 540W - Introduction to Biostatistics Fall 2004 UNIVERSITY OF MASSACHUSETTS Department of Biostatistics and Epidemiology BioEpi 50W - Introduction to Biostatistics Fall 00 Exercises with Solutions Topic Summarizing Data Due: Monday September 7, 00 READINGS.

More information

Chapter 2: Tools for Exploring Univariate Data

Chapter 2: Tools for Exploring Univariate Data Stats 11 (Fall 2004) Lecture Note Introduction to Statistical Methods for Business and Economics Instructor: Hongquan Xu Chapter 2: Tools for Exploring Univariate Data Section 2.1: Introduction What is

More information

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected

What is statistics? Statistics is the science of: Collecting information. Organizing and summarizing the information collected What is statistics? Statistics is the science of: Collecting information Organizing and summarizing the information collected Analyzing the information collected in order to draw conclusions Two types

More information

Chapter 3 Data Description

Chapter 3 Data Description Chapter 3 Data Description Section 3.1: Measures of Central Tendency Section 3.2: Measures of Variation Section 3.3: Measures of Position Section 3.1: Measures of Central Tendency Definition of Average

More information

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode.

Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. Chapter 3 Numerically Summarizing Data Chapter 3.1 Measures of Central Tendency Objective A: Mean, Median and Mode Three measures of central of tendency: the mean, the median, and the mode. A1. Mean The

More information

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty.

What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. What is Statistics? Statistics is the science of understanding data and of making decisions in the face of variability and uncertainty. Statistics is a field of study concerned with the data collection,

More information

3.1 Measure of Center

3.1 Measure of Center 3.1 Measure of Center Calculate the mean for a given data set Find the median, and describe why the median is sometimes preferable to the mean Find the mode of a data set Describe how skewness affects

More information

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data

Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Chapter 2: Summarising numerical data Further Mathematics 2018 CORE: Data analysis Chapter 2 Summarising numerical data Extract from Study Design Key knowledge Types of data: categorical (nominal and ordinal)

More information

MATH 117 Statistical Methods for Management I Chapter Three

MATH 117 Statistical Methods for Management I Chapter Three Jubail University College MATH 117 Statistical Methods for Management I Chapter Three This chapter covers the following topics: I. Measures of Center Tendency. 1. Mean for Ungrouped Data (Raw Data) 2.

More information

A is one of the categories into which qualitative data can be classified.

A is one of the categories into which qualitative data can be classified. Chapter 2 Methods for Describing Sets of Data 2.1 Describing qualitative data Recall qualitative data: non-numerical or categorical data Basic definitions: A is one of the categories into which qualitative

More information

Stats Review Chapter 3. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 3. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter Revised 8/16 Note: This review is composed of questions similar to those found in the chapter review and/or chapter test. This review is meant to highlight basic concepts from the

More information

Exercises from Chapter 3, Section 1

Exercises from Chapter 3, Section 1 Exercises from Chapter 3, Section 1 1. Consider the following sample consisting of 20 numbers. (a) Find the mode of the data 21 23 24 24 25 26 29 30 32 34 39 41 41 41 42 43 48 51 53 53 (b) Find the median

More information

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes

ADMS2320.com. We Make Stats Easy. Chapter 4. ADMS2320.com Tutorials Past Tests. Tutorial Length 1 Hour 45 Minutes We Make Stats Easy. Chapter 4 Tutorial Length 1 Hour 45 Minutes Tutorials Past Tests Chapter 4 Page 1 Chapter 4 Note The following topics will be covered in this chapter: Measures of central location Measures

More information

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations

Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations DAY 4 16 Jan 2014 Recap: Ø Distribution Shape Ø Mean, Median, Mode Ø Standard Deviations Two Important Three-Standard-Deviation Rules 1. Chebychev s Rule : Implies that at least 89% of the observations

More information

QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS

QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS QUIZ 1 (CHAPTERS 1-4) SOLUTIONS MATH 119 FALL 2012 KUNIYUKI 105 POINTS TOTAL, BUT 100 POINTS = 100% Show all work, simplify as appropriate, and use good form and procedure (as in class). Box in your final

More information

STAT 200 Chapter 1 Looking at Data - Distributions

STAT 200 Chapter 1 Looking at Data - Distributions STAT 200 Chapter 1 Looking at Data - Distributions What is Statistics? Statistics is a science that involves the design of studies, data collection, summarizing and analyzing the data, interpreting the

More information

MATH 1150 Chapter 2 Notation and Terminology

MATH 1150 Chapter 2 Notation and Terminology MATH 1150 Chapter 2 Notation and Terminology Categorical Data The following is a dataset for 30 randomly selected adults in the U.S., showing the values of two categorical variables: whether or not the

More information

AP Final Review II Exploring Data (20% 30%)

AP Final Review II Exploring Data (20% 30%) AP Final Review II Exploring Data (20% 30%) Quantitative vs Categorical Variables Quantitative variables are numerical values for which arithmetic operations such as means make sense. It is usually a measure

More information

The Empirical Rule, z-scores, and the Rare Event Approach

The Empirical Rule, z-scores, and the Rare Event Approach Overview The Empirical Rule, z-scores, and the Rare Event Approach Look at Chebyshev s Rule and the Empirical Rule Explore some applications of the Empirical Rule How to calculate and use z-scores Introducing

More information

Chapter 2 Class Notes Sample & Population Descriptions Classifying variables

Chapter 2 Class Notes Sample & Population Descriptions Classifying variables Chapter 2 Class Notes Sample & Population Descriptions Classifying variables Random Variables (RVs) are discrete quantitative continuous nominal qualitative ordinal Notation and Definitions: a Sample is

More information

Elementary Statistics

Elementary Statistics Elementary Statistics Q: What is data? Q: What does the data look like? Q: What conclusions can we draw from the data? Q: Where is the middle of the data? Q: Why is the spread of the data important? Q:

More information

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam: practice test 1 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam: practice test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) Using the information in the table on home sale prices in

More information

Resistant Measure - A statistic that is not affected very much by extreme observations.

Resistant Measure - A statistic that is not affected very much by extreme observations. Chapter 1.3 Lecture Notes & Examples Section 1.3 Describing Quantitative Data with Numbers (pp. 50-74) 1.3.1 Measuring Center: The Mean Mean - The arithmetic average. To find the mean (pronounced x bar)

More information

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts.

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts. Slide 1 Slide 2 Daphne Phillip Kathy Slide 3 Pick a Brick 100 pts 200 pts 500 pts 300 pts 400 pts 200 pts 300 pts 500 pts 100 pts 300 pts 400 pts 100 pts 400 pts 100 pts 200 pts 500 pts 100 pts 400 pts

More information

TOPIC: Descriptive Statistics Single Variable

TOPIC: Descriptive Statistics Single Variable TOPIC: Descriptive Statistics Single Variable I. Numerical data summary measurements A. Measures of Location. Measures of central tendency Mean; Median; Mode. Quantiles - measures of noncentral tendency

More information

Section 1.1. Data - Collections of observations (such as measurements, genders, survey responses, etc.)

Section 1.1. Data - Collections of observations (such as measurements, genders, survey responses, etc.) Section 1.1 Statistics - The science of planning studies and experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data.

More information

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency

Math 120 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency Math 1 Introduction to Statistics Mr. Toner s Lecture Notes 3.1 Measures of Central Tendency The word average: is very ambiguous and can actually refer to the mean, median, mode or midrange. Notation:

More information

MgtOp 215 Chapter 3 Dr. Ahn

MgtOp 215 Chapter 3 Dr. Ahn MgtOp 215 Chapter 3 Dr. Ahn Measures of central tendency (center, location): measures the middle point of a distribution or data; these include mean and median. Measures of dispersion (variability, spread):

More information

P8130: Biostatistical Methods I

P8130: Biostatistical Methods I P8130: Biostatistical Methods I Lecture 2: Descriptive Statistics Cody Chiuzan, PhD Department of Biostatistics Mailman School of Public Health (MSPH) Lecture 1: Recap Intro to Biostatistics Types of Data

More information

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the

equal to the of the. Sample variance: Population variance: **The sample variance is an unbiased estimator of the DEFINITION The variance (aka dispersion aka spread) of a set of values is a measure of equal to the of the. Sample variance: s Population variance: **The sample variance is an unbiased estimator of the

More information

Full file at

Full file at IV SOLUTIONS TO EXERCISES Note: Exercises whose answers are given in the back of the textbook are denoted by the symbol. CHAPTER Description of Samples and Populations Note: Exercises whose answers are

More information

Section 3.2 Measures of Central Tendency

Section 3.2 Measures of Central Tendency Section 3.2 Measures of Central Tendency 1 of 149 Section 3.2 Objectives Determine the mean, median, and mode of a population and of a sample Determine the weighted mean of a data set and the mean of a

More information

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability

3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3 Lecture 3 Notes: Measures of Variation. The Boxplot. Definition of Probability 3.1 Week 1 Review Creativity is more than just being different. Anybody can plan weird; that s easy. What s hard is to be

More information

Unit 2: Numerical Descriptive Measures

Unit 2: Numerical Descriptive Measures Unit 2: Numerical Descriptive Measures Summation Notation Measures of Central Tendency Measures of Dispersion Chebyshev's Rule Empirical Rule Measures of Relative Standing Box Plots z scores Jan 28 10:48

More information

University of Jordan Fall 2009/2010 Department of Mathematics

University of Jordan Fall 2009/2010 Department of Mathematics handouts Part 1 (Chapter 1 - Chapter 5) University of Jordan Fall 009/010 Department of Mathematics Chapter 1 Introduction to Introduction; Some Basic Concepts Statistics is a science related to making

More information

Complement: 0.4 x 0.8 = =.6

Complement: 0.4 x 0.8 = =.6 Homework The Normal Distribution Name: 1. Use the graph below 1 a) Why is the total area under this curve equal to 1? Rectangle; A = LW A = 1(1) = 1 b) What percent of the observations lie above 0.8? 1

More information

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest:

Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size. Arrange the values from smallest to largest: 1 Chapter 3 - Descriptive stats: Numerical measures 3.1 Measures of Location Mean Perhaps the most important measure of location is the mean (average). Sample mean: where n = sample size Example: The number

More information

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

3.3. Section. Measures of Central Tendency and Dispersion from Grouped Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Section 3.3 Measures of Central Tendency and Dispersion from Grouped Data Objectives 1. Approximate the mean of a variable from grouped data 2. Compute the weighted mean 3. Approximate the standard deviation

More information

Chapter. Numerically Summarizing Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc.

Chapter. Numerically Summarizing Data. Copyright 2013, 2010 and 2007 Pearson Education, Inc. Chapter 3 Numerically Summarizing Data Section 3.1 Measures of Central Tendency Objectives 1. Determine the arithmetic mean of a variable from raw data 2. Determine the median of a variable from raw data

More information

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami

Unit Two Descriptive Biostatistics. Dr Mahmoud Alhussami Unit Two Descriptive Biostatistics Dr Mahmoud Alhussami Descriptive Biostatistics The best way to work with data is to summarize and organize them. Numbers that have not been summarized and organized are

More information

Lecture 2 and Lecture 3

Lecture 2 and Lecture 3 Lecture 2 and Lecture 3 1 Lecture 2 and Lecture 3 We can describe distributions using 3 characteristics: shape, center and spread. These characteristics have been discussed since the foundation of statistics.

More information

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data

Finding Quartiles. . Q1 is the median of the lower half of the data. Q3 is the median of the upper half of the data Finding Quartiles. Use the median to divide the ordered data set into two halves.. If n is odd, do not include the median in either half. If n is even, split this data set exactly in half.. Q1 is the median

More information

The area under a probability density curve between any two values a and b has two interpretations:

The area under a probability density curve between any two values a and b has two interpretations: Chapter 7 7.1 The Standard Normal Curve Introduction Probability density curve: The area under a probability density curve between any two values a and b has two interpretations: 1. 2. The region above

More information

Measures of the Location of the Data

Measures of the Location of the Data Measures of the Location of the Data 1. 5. Mark has 51 films in his collection. Each movie comes with a rating on a scale from 0.0 to 10.0. The following table displays the ratings of the aforementioned

More information

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1

Lecture Slides. Elementary Statistics Eleventh Edition. by Mario F. Triola. and the Triola Statistics Series 3.1-1 Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by Mario F. Triola 3.1-1 Chapter 3 Statistics for Describing, Exploring, and Comparing Data 3-1 Review and Preview

More information

Example 2. Given the data below, complete the chart:

Example 2. Given the data below, complete the chart: Statistics 2035 Quiz 1 Solutions Example 1. 2 64 150 150 2 128 150 2 256 150 8 8 Example 2. Given the data below, complete the chart: 52.4, 68.1, 66.5, 75.0, 60.5, 78.8, 63.5, 48.9, 81.3 n=9 The data is

More information

1.3.1 Measuring Center: The Mean

1.3.1 Measuring Center: The Mean 1.3.1 Measuring Center: The Mean Mean - The arithmetic average. To find the mean (pronounced x bar) of a set of observations, add their values and divide by the number of observations. If the n observations

More information

Chapter 01 : What is Statistics?

Chapter 01 : What is Statistics? Chapter 01 : What is Statistics? Feras Awad Data: The information coming from observations, counts, measurements, and responses. Statistics: The science of collecting, organizing, analyzing, and interpreting

More information

Section 2.3: One Quantitative Variable: Measures of Spread

Section 2.3: One Quantitative Variable: Measures of Spread Section 2.3: One Quantitative Variable: Measures of Spread Objectives: 1) Measures of spread, variability a. Range b. Standard deviation i. Formula ii. Notation for samples and population 2) The 95% rule

More information

Announcements. Lecture 1 - Data and Data Summaries. Data. Numerical Data. all variables. continuous discrete. Homework 1 - Out 1/15, due 1/22

Announcements. Lecture 1 - Data and Data Summaries. Data. Numerical Data. all variables. continuous discrete. Homework 1 - Out 1/15, due 1/22 Announcements Announcements Lecture 1 - Data and Data Summaries Statistics 102 Colin Rundel January 13, 2013 Homework 1 - Out 1/15, due 1/22 Lab 1 - Tomorrow RStudio accounts created this evening Try logging

More information

CHAPTER 2 Description of Samples and Populations

CHAPTER 2 Description of Samples and Populations Chapter 2 27 CHAPTER 2 Description of Samples and Populations 2.1.1 (a) i) Molar width ii) Continuous variable iii) A molar iv) 36 (b) i) Birthweight, date of birth, and race ii) Birthweight is continuous,

More information

Describing distributions with numbers

Describing distributions with numbers Describing distributions with numbers A large number or numerical methods are available for describing quantitative data sets. Most of these methods measure one of two data characteristics: The central

More information

Introduction to Statistics

Introduction to Statistics Introduction to Statistics Data and Statistics Data consists of information coming from observations, counts, measurements, or responses. Statistics is the science of collecting, organizing, analyzing,

More information

are the objects described by a set of data. They may be people, animals or things.

are the objects described by a set of data. They may be people, animals or things. ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2016 C h a p t e r 5 : E x p l o r i n g D a t a : D i s t r i b u t i o n s P a g e 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms

More information

STT 315 This lecture is based on Chapter 2 of the textbook.

STT 315 This lecture is based on Chapter 2 of the textbook. STT 315 This lecture is based on Chapter 2 of the textbook. Acknowledgement: Author is thankful to Dr. Ashok Sinha, Dr. Jennifer Kaplan and Dr. Parthanil Roy for allowing him to use/edit some of their

More information

ST Presenting & Summarising Data Descriptive Statistics. Frequency Distribution, Histogram & Bar Chart

ST Presenting & Summarising Data Descriptive Statistics. Frequency Distribution, Histogram & Bar Chart ST2001 2. Presenting & Summarising Data Descriptive Statistics Frequency Distribution, Histogram & Bar Chart Summary of Previous Lecture u A study often involves taking a sample from a population that

More information

Chapter 1 - Lecture 3 Measures of Location

Chapter 1 - Lecture 3 Measures of Location Chapter 1 - Lecture 3 of Location August 31st, 2009 Chapter 1 - Lecture 3 of Location General Types of measures Median Skewness Chapter 1 - Lecture 3 of Location Outline General Types of measures What

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

The empirical ( ) rule

The empirical ( ) rule The empirical (68-95-99.7) rule With a bell shaped distribution, about 68% of the data fall within a distance of 1 standard deviation from the mean. 95% fall within 2 standard deviations of the mean. 99.7%

More information

6 THE NORMAL DISTRIBUTION

6 THE NORMAL DISTRIBUTION CHAPTER 6 THE NORMAL DISTRIBUTION 341 6 THE NORMAL DISTRIBUTION Figure 6.1 If you ask enough people about their shoe size, you will find that your graphed data is shaped like a bell curve and can be described

More information

Determining the Spread of a Distribution

Determining the Spread of a Distribution Determining the Spread of a Distribution 1.3-1.5 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3-2311 Lecture 3-2311 1 / 58 Outline 1 Describing Quantitative

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Engineers and scientists are constantly exposed to collections of facts, or data. The discipline of statistics provides methods for organizing and summarizing data, and for drawing

More information

2 Descriptive Statistics

2 Descriptive Statistics 2 Descriptive Statistics Reading: SW Chapter 2, Sections 1-6 A natural first step towards answering a research question is for the experimenter to design a study or experiment to collect data from the

More information

Averages How difficult is QM1? What is the average mark? Week 1b, Lecture 2

Averages How difficult is QM1? What is the average mark? Week 1b, Lecture 2 Averages How difficult is QM1? What is the average mark? Week 1b, Lecture 2 Topics: 1. Mean 2. Mode 3. Median 4. Order Statistics 5. Minimum, Maximum, Range 6. Percentiles, Quartiles, Interquartile Range

More information

Unit 1 Review of BIOSTATS 540 Practice Problems SOLUTIONS - Stata Users

Unit 1 Review of BIOSTATS 540 Practice Problems SOLUTIONS - Stata Users BIOSTATS 640 Spring 2017 Review of Introductory Biostatistics STATA solutions Page 1 of 16 Unit 1 Review of BIOSTATS 540 Practice Problems SOLUTIONS - Stata Users #1. The following table lists length of

More information

STAT 155 Introductory Statistics. Lecture 6: The Normal Distributions (II)

STAT 155 Introductory Statistics. Lecture 6: The Normal Distributions (II) The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL STAT 155 Introductory Statistics Lecture 6: The Normal Distributions (II) 9/14/06 Lecture 6 1 Review Density curves Normal distributions and normal curves

More information

Chapter 3. Data Description

Chapter 3. Data Description Chapter 3. Data Description Graphical Methods Pie chart It is used to display the percentage of the total number of measurements falling into each of the categories of the variable by partition a circle.

More information

(quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables)

(quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables) 3. Descriptive Statistics Describing data with tables and graphs (quantitative or categorical variables) Numerical descriptions of center, variability, position (quantitative variables) Bivariate descriptions

More information

Lecture 3: Chapter 3

Lecture 3: Chapter 3 Lecture 3: Chapter 3 C C Moxley UAB Mathematics 26 January 16 3.2 Measurements of Center Statistics involves describing data sets and inferring things about them. The first step in understanding a set

More information

Math 14 Lecture Notes Ch Percentile

Math 14 Lecture Notes Ch Percentile .3 Measures of the Location of the Data Percentile g A measure of position, the percentile, p, is an integer (1 p 99) such that the p th percentile is the position of a data value where p% of the data

More information

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things.

CHAPTER 5: EXPLORING DATA DISTRIBUTIONS. Individuals are the objects described by a set of data. These individuals may be people, animals or things. (c) Epstein 2013 Chapter 5: Exploring Data Distributions Page 1 CHAPTER 5: EXPLORING DATA DISTRIBUTIONS 5.1 Creating Histograms Individuals are the objects described by a set of data. These individuals

More information

Recall that the standard deviation σ of a numerical data set is given by

Recall that the standard deviation σ of a numerical data set is given by 11.1 Using Normal Distributions Essential Question In a normal distribution, about what percent of the data lies within one, two, and three standard deviations of the mean? Recall that the standard deviation

More information

Chapter 6 The Standard Deviation as a Ruler and the Normal Model

Chapter 6 The Standard Deviation as a Ruler and the Normal Model Chapter 6 The Standard Deviation as a Ruler and the Normal Model Overview Key Concepts Understand how adding (subtracting) a constant or multiplying (dividing) by a constant changes the center and/or spread

More information

Sampling, Frequency Distributions, and Graphs (12.1)

Sampling, Frequency Distributions, and Graphs (12.1) 1 Sampling, Frequency Distributions, and Graphs (1.1) Design: Plan how to obtain the data. What are typical Statistical Methods? Collect the data, which is then subjected to statistical analysis, which

More information

Determining the Spread of a Distribution Variance & Standard Deviation

Determining the Spread of a Distribution Variance & Standard Deviation Determining the Spread of a Distribution Variance & Standard Deviation 1.3 Cathy Poliak, Ph.D. cathy@math.uh.edu Department of Mathematics University of Houston Lecture 3 Lecture 3 1 / 32 Outline 1 Describing

More information

Range The range is the simplest of the three measures and is defined now.

Range The range is the simplest of the three measures and is defined now. Measures of Variation EXAMPLE A testing lab wishes to test two experimental brands of outdoor paint to see how long each will last before fading. The testing lab makes 6 gallons of each paint to test.

More information

Lecture 2. Descriptive Statistics: Measures of Center

Lecture 2. Descriptive Statistics: Measures of Center Lecture 2. Descriptive Statistics: Measures of Center Descriptive Statistics summarize or describe the important characteristics of a known set of data Inferential Statistics use sample data to make inferences

More information

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?!

Topic 3: Introduction to Statistics. Algebra 1. Collecting Data. Table of Contents. Categorical or Quantitative? What is the Study of Statistics?! Topic 3: Introduction to Statistics Collecting Data We collect data through observation, surveys and experiments. We can collect two different types of data: Categorical Quantitative Algebra 1 Table of

More information

CHAPTER 2: Describing Distributions with Numbers

CHAPTER 2: Describing Distributions with Numbers CHAPTER 2: Describing Distributions with Numbers The Basic Practice of Statistics 6 th Edition Moore / Notz / Fligner Lecture PowerPoint Slides Chapter 2 Concepts 2 Measuring Center: Mean and Median Measuring

More information

Quantitative Tools for Research

Quantitative Tools for Research Quantitative Tools for Research KASHIF QADRI Descriptive Analysis Lecture Week 4 1 Overview Measurement of Central Tendency / Location Mean, Median & Mode Quantiles (Quartiles, Deciles, Percentiles) Measurement

More information

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above

Final Exam STAT On a Pareto chart, the frequency should be represented on the A) X-axis B) regression C) Y-axis D) none of the above King Abdul Aziz University Faculty of Sciences Statistics Department Final Exam STAT 0 First Term 49-430 A 40 Name No ID: Section: You have 40 questions in 9 pages. You have 90 minutes to solve the exam.

More information

Chapter (3) Describing Data Numerical Measures Examples

Chapter (3) Describing Data Numerical Measures Examples Chapter (3) Describing Data Numerical Measures Examples Numeric Measurers Measures of Central Tendency Measures of Dispersion Arithmetic mean Mode Median Geometric Mean Range Variance &Standard deviation

More information

Descriptive Statistics-I. Dr Mahmoud Alhussami

Descriptive Statistics-I. Dr Mahmoud Alhussami Descriptive Statistics-I Dr Mahmoud Alhussami Biostatistics What is the biostatistics? A branch of applied math. that deals with collecting, organizing and interpreting data using well-defined procedures.

More information

Units. Exploratory Data Analysis. Variables. Student Data

Units. Exploratory Data Analysis. Variables. Student Data Units Exploratory Data Analysis Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison Statistics 371 13th September 2005 A unit is an object that can be measured, such as

More information

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16

Stats Review Chapter 6. Mary Stangler Center for Academic Success Revised 8/16 Stats Review Chapter Revised 8/1 Note: This review is composed of questions similar to those found in the chapter review and/or chapter test. This review is meant to highlight basic concepts from the course.

More information

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67

Chapter 6. The Standard Deviation as a Ruler and the Normal Model 1 /67 Chapter 6 The Standard Deviation as a Ruler and the Normal Model 1 /67 Homework Read Chpt 6 Complete Reading Notes Do P129 1, 3, 5, 7, 15, 17, 23, 27, 29, 31, 37, 39, 43 2 /67 Objective Students calculate

More information

1. Exploratory Data Analysis

1. Exploratory Data Analysis 1. Exploratory Data Analysis 1.1 Methods of Displaying Data A visual display aids understanding and can highlight features which may be worth exploring more formally. Displays should have impact and be

More information

Practice Questions for Exam 1

Practice Questions for Exam 1 Practice Questions for Exam 1 1. A used car lot evaluates their cars on a number of features as they arrive in the lot in order to determine their worth. Among the features looked at are miles per gallon

More information

University of California, Berkeley, Statistics 131A: Statistical Inference for the Social and Life Sciences. Michael Lugo, Spring 2012

University of California, Berkeley, Statistics 131A: Statistical Inference for the Social and Life Sciences. Michael Lugo, Spring 2012 University of California, Berkeley, Statistics 3A: Statistical Inference for the Social and Life Sciences Michael Lugo, Spring 202 Solutions to Exam Friday, March 2, 202. [5: 2+2+] Consider the stemplot

More information

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times.

Exercise 1. Exercise 2. Lesson 2 Theoretical Foundations Probabilities Solutions You ip a coin three times. Lesson 2 Theoretical Foundations Probabilities Solutions monia.ranalli@uniroma3.it Exercise 1 You ip a coin three times. 1. Use a tree diagram to show the possible outcome patterns. How many outcomes are

More information

Chapter 6 Assessment. 3. Which points in the data set below are outliers? Multiple Choice. 1. The boxplot summarizes the test scores of a math class?

Chapter 6 Assessment. 3. Which points in the data set below are outliers? Multiple Choice. 1. The boxplot summarizes the test scores of a math class? Chapter Assessment Multiple Choice 1. The boxplot summarizes the test scores of a math class? Test Scores 3. Which points in the data set below are outliers? 73, 73, 7, 75, 75, 75, 77, 77, 77, 77, 7, 7,

More information

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved.

1-1. Chapter 1. Sampling and Descriptive Statistics by The McGraw-Hill Companies, Inc. All rights reserved. 1-1 Chapter 1 Sampling and Descriptive Statistics 1-2 Why Statistics? Deal with uncertainty in repeated scientific measurements Draw conclusions from data Design valid experiments and draw reliable conclusions

More information

Remember your SOCS! S: O: C: S:

Remember your SOCS! S: O: C: S: Remember your SOCS! S: O: C: S: 1.1: Displaying Distributions with Graphs Dotplot: Age of your fathers Low scale: 45 High scale: 75 Doesn t have to start at zero, just cover the range of the data Label

More information